
Implicit Computational Complexity
in the small

Simone Martini

Dipartimento di Scienze dell’Informazione
Alma mater studiorum • Università di Bologna

and
Projet Focus – INRIA Mediterranée

DICE 2010 - Paphos, Cyprus. March 28th 2010

1 / 52

Implicit Computational Complexity
in the small

Simone Martini

Dipartimento di Scienze dell’Informazione
Alma mater studiorum • Università di Bologna

and
Projet Focus – INRIA Mediterranée

DICE 2010 - Paphos, Cyprus. March 28th 2010

2 / 52

Outline

1 In-the-small ?

2 Some results in recursion theory

3 Cost models for rule based languages

4 Conclusions

3 / 52

Implicit Computational Complexity

A machine-free, logic-based investigation of the notion of
feasible computation

Feasibility through language restrictions, and not external
measure conditions

Incorporate computational complexity into formal methods in
software development and programming language design

4 / 52

Programming. . .

International conference on Reliable software, 1975

5 / 52

“We need languages”. . .

Main contribution of a language are

tools, and

abstractions

to describe data and control, hiding away unnecessary details.

6 / 52

Implicit Computational Complexity

In-the-large: “languages” characterizing complexity classes
e.g., Bellantoni-Cook; Leivant; Girard’s ligth logics; etc.

In-the-small: results on specific (machine-free) models of
computation, hiding away unnecessary computational details.

7 / 52

Implicit Computational Complexity

In-the-large: “languages” characterizing complexity classes
e.g., Bellantoni-Cook; Leivant; Girard’s ligth logics; etc.

In-the-small: results on specific (machine-free) models of
computation, hiding away unnecessary computational details.

8 / 52

ICC “in-the-small”

Explicitate the complexity content of general results;

Characterize specific “machine-free” models;

. . .

To use the result we do not make our hands dirty

To establish the result we could be very “explicit”.
I dirty “not my hands only but also my feet and my head!”.

cf. John 13:9

9 / 52

Part I

Some results in Recursion Theory

[Asperti, Popl 2008]

10 / 52

Rice’s Theorem

A set A of indexes of partial recursive functions is
extensional iff

i ∈ A & ϕi = ϕj =⇒ j ∈ A

Theorem (Rice)

An extensional set A is recursive iff either A is empty, or A = N.

Useless in complexity, since complexity classes are not extensional.

11 / 52

Complexity friendly Rice’s Theorem

A set A of indexes of partial recursive functions is
resource invariant iff

i ∈ A & ϕi = ϕj & Compl(i) ∈ Θ(Compl(j)) =⇒ j ∈ A

Theorem (Rice)

A resource invariant set A is recursive iff either A is empty, or A = N.

Same proof!

12 / 52

Rice-Shapiro’s Thm

Theorem (Rice-Shapiro)

If an extensional set A is r.e.,
the corresponding set of functions is upward closed and compact.

Useless in complexity, since complexity classes are not extensional.

13 / 52

Complexity friendly Rice-Shapiro’s Thm

Theorem (Rice-Shapiro)

If a resource invariant set A is r.e.,
the corresponding set of functions is upward closed and compact.

Same proof, carefully chosen.

14 / 52

The ICC in-the-small flavor

The proof fiddles with the complexity details, but

The result makes implicit the complexity argument.

Let f be a specific function.
The set of all polynomial programs for f , is not recursive, by Rice.
I is not r.e., either, because the singleton {f } is not compact, or it
is not upward closed.

15 / 52

The ICC in-the-small flavor

The proof fiddles with the complexity details, but

The result makes implicit the complexity argument.

Let f be a specific function.
The set of all polynomial programs for f , is not recursive, by Rice.
I is not r.e., either, because the singleton {f } is not compact, or it
is not upward closed.

16 / 52

Recursion Thm

Theorem (II Recursion)

Let t be a total recursive function.
We can effectively compute an index m such that

1 ϕm ' ϕt(m)

17 / 52

Complexity friendly Recursion Thm

Theorem (II Recursion)

Assume our machine model admits a fair universal machine.
Let t be a total recursive function.
We can effectively compute an index m such that

1 ϕm ' ϕt(m)

2 Compl(m) ∈ Θ(Compl(t(m))).

A universal machine U is

1 fair if for any i there exists a such that for any x ,
Time(U(i , x)) ≤ a · Time(ϕi (x)).

2 efficient if it is fair and the constant a does not depend on the
program i [Jones, Popl 1993].

18 / 52

Intermezzo 1:
Fair universal machines?

Single tape Turing-machines: fair, not efficient (?)

Multi-tape Turing-machines: not fair (?) folklore

Jones’ fixed alphabet imperative language: efficient [Jones, Popl 1993]

Lambda-calculus: under which cost model?

19 / 52

Intermezzo 2:
How efficient is the fixpoint operator?

On Turing machines, I do not know. . .

On λ-calculus it takes few β-reductions:
1 On call-by-value, weak red:

For every natural number n, there are terms H1, . . . ,Hn such that for any
sequence of values V1, . . . ,Vn and for any 1 ≤ i ≤ n:

HiV1 . . .Vn →k
v Vi (λx .H1V1 . . .Vnx) . . . (λx .HnV1 . . .Vnx),

where k ≤ 2n.

20 / 52

Part II

Cost models for rule based languages

21 / 52

The question

What is a good cost model for a declarative, rule-based language,
taking into account (only) the intrinsic description of that
language, and not (also) its implementation on a conventional
machine?

where

In the intrinsic description of a declarative language, the
elementary computation step (e.g., resolution, β-reduction, firing
of a rewrite rule, etc.) is not a constant-time operation.

22 / 52

A good cost model. . .

. . . is polynomially related (or invariant) to the cost as computed
on a Turing machine

There is a polyomial p such that the cost of computing (the
normal form of) M under the cost model c is

Costc(M) ≤ p(CostTM(M))

For f computed by a Turing machine M in time g, there is a
program NM computing f in Costc(O(g(n))).

23 / 52

An answer?

For most such declarative languages, in their generality:

We do not know.

because the elementary computation step:

not only looks non constant time

but indeed is non constant (or even non poly) time

24 / 52

Let us look first to λ-calculus

25 / 52

A negative result

λ-calculus with full β-reduction

implemented as graph reduction (à la Lamping)
thus realizing Lévy’s optimal reduction

Have a notion of constant-time step

There are (simply typed) λ-terms which:
I normalize in k steps
I require ≥ O(2k) time on a TM

(On Statman’s shoulders:

Asperti and Mairson, POPL 1998; Asperti, Coppola and M., POPL 2000)

26 / 52

Other cost models?

Are there invariant cost models for full β-reduction ?

I do not know of any of them.

27 / 52

Restrict the calculus

Linear λ-term
Normalization is PTIME-complete (Mairson, JFP 2004)

The calculus has little expressivity

Move to weak reductions
i.e., never reduce under a λ:
λx .M is always a normal form (in fact, a value)

28 / 52

Weak λ-calculus

→v is weak call-by-value

→n is weak call-by-name

29 / 52

Weak call-by-value λ-calculus

Terms M ::= x | λx .M | MM

Values V ::= x | λx .M

Weak call-by-value reduction

(λx .M)V →v M{V /x}
M →v N

ML→v NL
M →v N

LM →v LN

30 / 52

Explicit representation:
the difference cost model

If terms are represented explicitly as strings

In particular, we want to print the result as a string

Difference cost model:
for each step M →v N, count max{1, |N| − |M|}

The difference cost model is polynomially invariant.

(Dal Lago and M., CiE 2006)

31 / 52

Intermezzo 3

Under the difference cost model, we have super-efficient
interpreters

Indeed, we have constant overhead interpreters

{Eval}(〈V ,U〉) = {V }(U)
Time({Eval}(〈V ,U〉)) ≤ c + Time({U}(V))

32 / 52

Implicit representation:
the unitary cost model

If we allow shared (graph) representation for terms

In particular, the result could be a shared graph

Unitary cost model:
for each step M →v N, count 1

The unitary cost model is polynomially invariant.

(Sands, Gustavsson, and Moran, 2002

Dal Lago and M., ICALP 2009)

33 / 52

The unitary cost model
Call-by-name

Unitary cost model:
for each step M →n N, count 1

The unitary cost model accounts no more than TMs.

Most probably, it is also invariant
(that is, we can code TMs with a poly overhead).

(Dal Lago and M., ICALP 2009)

34 / 52

Why we do not say
“It is invariant” ?

In call-by-value:
Given a TM M in time g , code it as NM.
NM works in time O(g).

Now apply a CPS translation, obtaining [[NM]]
which, in call-by-name, simulates NM,
and work in time. . . ??

35 / 52

Why we do not say
“It is invariant” ?

In call-by-value:
Given a TM M in time g , code it as NM.
NM works in time O(g).

Now apply a CPS translation, obtaining [[NM]]
which, in call-by-name, simulates NM,
and work in time. . . ??

36 / 52

A needed ICC in-the-small result

What is the overhead of a CPS translation ?

37 / 52

Intermezzo 4

Let (A, ·) be a combinatory algebra.
For any expression E built on A and variables, Curry’s abstraction
algorithm gives an expression [x]E such that

[x]E ·M →∗ E [M/x]

Hence: a translation ()H of λ-calculus into Combinatory Logic:

(λx .M)H = [x]MH

What is the overhead of this translation ?

38 / 52

Intermezzo 4

Let (A, ·) be a combinatory algebra.
For any expression E built on A and variables, Curry’s abstraction
algorithm gives an expression [x]E such that

[x]E ·M →∗ E [M/x]

Hence: a translation ()H of λ-calculus into Combinatory Logic:

(λx .M)H = [x]MH

What is the overhead of this translation ?

39 / 52

Orthogonal term rewriting

Signature: for function symbols

Patterns: terms over functions and variables

Rules: f (p1, . . . , pn)→Ξ t
f is a function symbol; p1, . . . , pn are patterns; t is a (general)
term.

Orthogonal: no rule overlapping; left-linear

Innermost: the reduced redex does not contain any other
redex

Outermost: the reduced redex is not contained in any other
redex

40 / 52

Orthogonal Term rewriting
Unitary cost model

Unitary cost model:
for each step t → s, count 1

The unitary cost model is polynomially invariant,
both for innermost and outermost reduction.

(Dal Lago and M., ICALP and FOPARA 2009)

41 / 52

The proof

From λ to constructor rewriting:

M - n
v N

[M]Φ

[]Φ

?
- nt

〈 〉
6

From constructor rewriting to λ:

f (t1, . . . , th) - n u

[f]Λ〈〈t1〉〉 . . . 〈〈th〉〉

[]Λ 〈〈 〉〉
?

- kn
v 〈〈u〉〉

?

42 / 52

First simulation:
From λ to constructor rewriting

Idea: full defunctionalization
Any λ-abstraction becomes a constructor

[x]Φ = x ;

[λx .M]Φ = cx ,M(x1, . . . , xn), where FV(λx .M) = x1, . . . , xn;

[MN]Φ = app([M]Φ, [N]Φ).

Constructors: cx ,M for any M and any x .

Functions: app.

Reduction rules:

app(cx ,M(x1, . . . , xn), x)→ [M]Φ

43 / 52

Second simulation:
From constructor rewriting to λ

First: Encode data, i.e. constructor terms

Use Scott numerals-like encoding:

0 ≡ λx1.λx2.x1

n + 1 ≡ λx1.λx2.n

Here: 〈〈 〉〉Λ : constructor terms→ λ-terms
For constructors c1, . . . , cg :

〈〈ci (t1 . . . , tn)〉〉Λ ≡ λx1.λxg .λy .xi 〈〈t1〉〉Λ . . . 〈〈tn〉〉Λ.

⊥ ≡ λx1.λxg .λy .y denotes an error value

44 / 52

Derivational complexity

Derivational complexity (= unitary cost model) is an invariant cost
model.

45 / 52

Main tool
Term Graph Rewriting

a(b(x), y)→ b(a(y , a(y , x)))

'&%$!"#a

�������

��66666 b

��
b

��

⊥ aoo

��55555

⊥ a

[[

gg

46 / 52

Graph reducibility

For every orthogonal term rewrite system R over Σ and for every
term t over Σ:

Theorem (Outermost Graph-Reducibility)

1 t →n
o u, where u is in normal form; iff

2 [t]G →m
o G , where G is in normal form and 〈G 〉R = u.

Moreover, m ≤ n.

Theorem (Innermost Graph Reducibility)

1 t →n
i u, where u is in normal form; iff

2 [t]G →n
i G , where G is in normal form and 〈G 〉R = u.

47 / 52

Complexity

Theorem

For every orthogonal, constructor term rewriting system R, there
is a polynomial p : N2 → N such that for every term t the normal
form of [t]G can be computed:
• in time at most p(|t|,Cost1(t)) in outermost reduction;
• in time p(|t|,Cost1(t)) in innermost reduction.

That is:
derivational complexity is a polynomially invariant cost model for
orthogonal constructor term rewriting.

48 / 52

Part III

Conclusions

49 / 52

General theorems for complexity results, hiding the complexity
argument.

Logical, abstract notions of computation used as an actual cost
measures.

Many basic results still missing.

50 / 52

As a conclusion

[Asperti, Popl 2008]

Ditto.

51 / 52

As a conclusion

[Asperti, Popl 2008]

Ditto.

52 / 52

	In-the-small ?
	Some results in Recursion Theory
	Cost models for rule based languages

	Cost models for rule based languages
	Conclusions

	Conclusions

