Implicit Computational Complexity
in the small

Simone Martini

Dipartimento di Scienze dell'Informazione
Alma mater studiorum e Universita di Bologna

DICE 2010 - Paphos, Cyprus. March 28th 2010

Implicit Computational Complexity
in the small

Simone Martini

Dipartimento di Scienze dell'Informazione
Alma mater studiorum e Universita di Bologna

and
Projet Focus — INRIA Mediterranée

DICE 2010 - Paphos, Cyprus. March 28th 2010

Outline

@ In-the-small ?
@ Some results in recursion theory
© Cost models for rule based languages

© Conclusions

3/52

Implicit Computational Complexity

@ A machine-free, logic-based investigation of the notion of
feasible computation

o Feasibility through language restrictions, and not external
measure conditions

@ Incorporate computational complexity into formal methods in
software development and programming language design

Programming. ..

International conference on Reliable software, 1975

PROGRAMMING- IN-THE LARGE
VERSUS
PROGRAMMING- IN-THE-SMALL

Frank DeRemer
Hans Kron

University of California, Santa Cruz

Abstract
We distinguish the activity of writing large pro-
grams from that of writing small ones. By large
programs we mean Systems consisting of many small
programs (modules), possibly written by different
people.

We need languages for programming-in-the-small,
i.e. languages not unlike the common programming
languages of today, for writing modules. We also
need a "module interconnection language" for knit-
ting those modules together into an integrated
whole and for providing an overview that formally
records the intent of the programmer(s) and that
can be checked for consistency by a compiler.

We explore the software reliability aspects of
such an interconnection language. Emphasis is
placed on facilities for information hiding and
for defining layers of virtual machines.

“We need languages”. ..

Main contribution of a language are
@ tools, and
@ abstractions

to describe data and control, hiding away unnecessary details.

Implicit Computational Complexity

@ In-the-large: “languages” characterizing complexity classes
e.g., Bellantoni-Cook; Leivant; Girard's ligth logics; etc.

@ In-the-small: results on specific (machine-free) models of
computation, hiding away unnecessary computational details.

Implicit Computational Complexity

@ In-the-small: results on specific (machine-free) models of
computation, hiding away unnecessary computational details.

(]

ICC “in-the-small”

Explicitate the complexity content of general results;

Characterize specific “machine-free” models;

To use the result we do not make our hands dirty

To establish the result we could be very “explicit”.
| dirty “not my hands only but also my feet and my head!”.

cf. John 13:9

52

Part |

Some results in Recursion Theory

[Asperti, Popl 2008]

10/52

Rice's Theorem

A set A of indexes of partial recursive functions is
extensional iff
i€A& pj= ®j —j€eA

Theorem (Rice)

An extensional set A is recursive iff either A is empty, or A= N.

v

Useless in complexity, since complexity classes are not extensional.

11/52

Complexity friendly Rice's Theorem

A set A of indexes of partial recursive functions is
resource invariant iff

i€ A& pi=pj& CompL(i) € O(COoMPL(j)) = j € A

Theorem (Rice)

A resource invariant set A is recursive iff either A is empty, or A = N.
v

Same proof!

12/52

Rice-Shapiro's Thm

Theorem (Rice-Shapiro)
If an extensional set A is r.e.,
the corresponding set of functions is upward closed and compact.

Useless in complexity, since complexity classes are not extensional.

13/52

Complexity friendly Rice-Shapiro’s Thm

Theorem (Rice-Shapiro)

If a resource invariant set A is r.e.,
the corresponding set of functions is upward closed and compact.

Same proof, carefully chosen.

14 /52

The ICC in-the-small flavor

@ The proof fiddles with the complexity details, but

@ The result makes implicit the complexity argument.

15 /52

The ICC in-the-small flavor

@ The proof fiddles with the complexity details, but

@ The result makes implicit the complexity argument.

Let f be a specific function.

The set of all polynomial programs for f, is not recursive, by Rice.
| is not r.e., either, because the singleton {f} is not compact, or it
is not upward closed.

16 /52

Recursion Thm

Theorem (II Recursion)

Let t be a total recursive function.
We can effectively compute an index m such that

Q ©m ~ Vi(m)

17 /52

Complexity friendly Recursion Thm

Theorem (Il Recursion)

Assume our machine model admits a fair universal machine.
Let t be a total recursive function.
We can effectively compute an index m such that

Q vm = Pr(m)

@ CowmpL(m) € ©(ComPL(t(m))).

A universal machine U is
© fairif for any i there exists a such that for any x,
Time(U(i,x)) < a- Time(pi(x)).
@ efficient if it is fair and the constant a does not depend on the

program | [Jones, Popl 1093}

18 /52

Intermezzo 1:
Fair universal machines?

Single tape Turing-machines: fair, not efficient (?)
Multi-tape Turing-machines: not fair (?) folklore
Jones’ fixed alphabet imperative language: efficient [jones, Popl 1993

Lambda-calculus: under which cost model?

19 /52

Intermezzo 2:
How efficient is the fixpoint operator?

@ On Turing machines, | do not know. . .
@ On A-calculus it takes few S-reductions:
@ On call-by-value, weak red:

For every natural number n, there are terms Hy, ..., H, such that for any
sequence of values Vi, ..., V, and for any 1 < i < n:

HiVi ...V, =K ViOx.Hi Vi .. Vox) . (A Ha V. VX)),

where k < 2n.

20/ 52

Part Il

Cost models for rule based languages

21/52

The question

What is a good cost model for a declarative, rule-based language,
taking into account (only) the intrinsic description of that
language, and not (also) its implementation on a conventional
machine?

where

In the intrinsic description of a declarative language, the
elementary computation step (e.g., resolution, 3-reduction, firing
of a rewrite rule, etc.) is not a constant-time operation.

22 /52

A good cost model. ..

.. .is polynomially related (or invariant) to the cost as computed
on a Turing machine

There is a polyomial p such that the cost of computing (the
normal form of) M under the cost model c is

Costc(M) < p(Costrm(M))

For f computed by a Turing machine M in time g, there is a
program Nag computing f in Costc(O(g(n))).

An answer?

For most such declarative languages, in their generality:

We do not know.)

because the elementary computation step:

@ not only looks non constant time

@ but indeed is non constant (or even non poly) time

24 /52

Let us look first to A\-calculus)|

25 /52

A negative result

@ A-calculus with full 5-reduction

@ implemented as graph reduction (a la Lamping)
thus realizing Lévy's optimal reduction

@ Have a notion of constant-time step

@ There are (simply typed) A-terms which:

» normalize in k steps
> require > O(2%) time on a TM

(On Statman's shoulders:
Asperti and Mairson, POPL 1998; Asperti, Coppola and M., POPL 2000)

26 /52

Other cost models?

Are there invariant cost models for full S-reduction ?

I do not know of any of them. J

27 /52

Restrict the calculus

@ Linear \-term
Normalization is PTIME-complete (Mairson, JFP 2004)
The calculus has little expressivity

@ Move to weak reductions
i.e., never reduce under a \:
Ax.M is always a normal form (in fact, a value)

28 /52

Weak A-calculus

e —, is weak call-by-value

@ —, is weak call-by-name

29 /52

Weak call-by-value A-calculus

e Terms M= x| Ax.M | MM
o Values Vi=x| .M

@ Weak call-by-value reduction

M—, N M—, N
(Ax.-M)V —, M{V /x} ML —, NL LM —, LN

30/52

Explicit representation:
the difference cost model

o If terms are represented explicitly as strings

@ In particular, we want to print the result as a string

e Difference cost model:
for each step M —, N, count max{1, |N|— |[M|}

The difference cost model is polynomially invariant. J

(Dal Lago and M., CiE 2006)

31/52

Intermezzo 3

@ Under the difference cost model, we have super-efficient

interpreters

@ Indeed, we have constant overhead interpreters

{Eval}((V, U))
Time({Eval}({V, U)))

<

{vi(U)
¢+ Time({U}(V))

32 /52

Implicit representation:
the unitary cost model

o If we allow shared (graph) representation for terms

@ In particular, the result could be a shared graph

@ Unitary cost model:
for each step M —, N, count 1

The unitary cost model is polynomially invariant. J

(Sands, Gustavsson, and Moran, 2002

Dal Lago and M., ICALP 2009)

33/52

The unitary cost model
Call-by-name

@ Unitary cost model:
for each step M —, N, count 1

The unitary cost model accounts no more than TMs.

Most probably, it is also invariant
(that is, we can code TMs with a poly overhead).

(Dal Lago and M., ICALP 2009)

34/52

Why we do not say
“It is invariant” 7

35/52

Why we do not say
“It is invariant” ?

In call-by-value:
Given a TM M in time g, code it as Nyy.
Naq works in time O(g).

Now apply a CPS translation, obtaining [Na]
which, in call-by-name, simulates N,
and work in time...77

36 /52

A needed ICC in-the-small result

What is the overhead of a CPS translation ?)

37/52

Intermezzo 4

Let (A, -) be a combinatory algebra.
For any expression E built on A and variables, Curry's abstraction
algorithm gives an expression [x]E such that

[X]E-M —* E[M/x]
Hence: a translation ()y of A-calculus into Combinatory Logic:

()\X.M)H = [X]MH

38 /52

Intermezzo 4

Let (A, -) be a combinatory algebra.
For any expression E built on A and variables, Curry's abstraction
algorithm gives an expression [x]E such that

[X]E-M —* E[M/x]
Hence: a translation ()y of A-calculus into Combinatory Logic:

()\X.M)H = [X]MH

What is the overhead of this translation 7)

Orthogonal term rewriting

Signature: for function symbols

Patterns: terms over functions and variables

Rules: f(p1y.--,pn) o=t
f is a function symbol; p1,..., p, are patterns; t is a (general)
term.

Orthogonal: no rule overlapping; left-linear

Innermost: the reduced redex does not contain any other
redex

Outermost: the reduced redex is not contained in any other
redex

40 /52

Orthogonal Term rewriting
Unitary cost model

@ Unitary cost model:
for each step t — s, count 1

The unitary cost model is polynomially invariant,
both for innermost and outermost reduction.

(Dal Lago and M., ICALP and FOPARA 2009)

41/52

The proof

From A to constructor rewriting:
M—0N

[]oI ¥
t

Mo —"

From constructor rewriting to A:

f(tl,...,th)4>”u

[]/\[« » [

[FIat) - - (tn) — 3" ()

42 /52

First simulation:
From A to constructor rewriting

Idea: full defunctionalization
Any A-abstraction becomes a constructor

Xlo = x;
Ax.Mlo = com(xi,...,xn), where FV(Ax.M) = x1,..., Xn;
[MN]e = app([M]o, [N]s).

o Constructors: ¢, for any M and any x.
e Functions: app.

@ Reduction rules:

app(cx,M(Xla 000 7Xn)7 X) — [M]¢’

43 /52

Second simulation:
From constructor rewriting to A

First: Encode data, i.e. constructor terms

@ Use Scott numerals-like encoding:

(=)

=)\Xl .)\XQ.Xl

= Ax1.Ax2.n

[y

n-+

@ Here: (())a : constructor terms — A-terms

For constructors cy, ..., Cg:

<<C,‘(t1 ce tn)>>/\ = AX1..... AXg.)\y.X,'«tl»/\ ce <<tn>>/\.

o L=Xxq..... AXg.\y.y denotes an error value

44 /52

Derivational complexity

Derivational complexity (= unitary cost model) is an invariant costJ
model.

45 /52

Main tool
Term Graph Rewriting

a(b(x) x)))

/@\ %

1l=a

J_ \3

\v//

46 /52

Graph reducibility

For every orthogonal term rewrite system R over ¥ and for every
term t over X:

Theorem (Outermost Graph-Reducibility)
Q t —] u, where u is in normal form; iff
Q [t]lg =7 G, where G is in normal form and (G)r = u.

Moreover, m < n.

Theorem (Innermost Graph Reducibility)

Q t —7 u, where u is in normal form; iff

Q [tlg =7 G, where G is in normal form and (G)r = u.

47 /52

Complexity

Theorem

For every orthogonal, constructor term rewriting system R, there
is a polynomial p : N> — N such that for every term t the normal
form of [t]g can be computed:

e in time at most p(|t|, Costi(t)) in outermost reduction;

e in time p(|t|, Cost1(t)) in innermost reduction.

That is:
derivational complexity is a polynomially invariant cost model for
orthogonal constructor term rewriting.

48 /52

Part Il

Conclusions

49 /52

General theorems for complexity results, hiding the complexity
argument.

Logical, abstract notions of computation used as an actual cost
measures.

Many basic results still missing.)

50 /52

As a conclusion

this the kind of results that, belonging to
the so called “folklore™ of these subjects, cannot be properly quoted
or elaborated. We hope someone will assume soon or later the bur-
den to formally prove these important properties, and also hope that
the scientific community will be so wise to accept these contribu-
tions.

[Asperti, Popl 2008]

51/52

As a conclusion

this the kind of results that, belonging to
the so called “folklore™ of these subjects, cannot be properly quoted
or elaborated. We hope someone will assume soon or later the bur-
den to formally prove these important properties, and also hope that
the scientific community will be so wise to accept these contribu-
tions.

[Asperti, Popl 2008]

Ditto. J

52 /52

	In-the-small ?
	Some results in Recursion Theory
	Cost models for rule based languages

	Cost models for rule based languages
	Conclusions

	Conclusions

