
Types in Programming Languages
between Modelling, Abstraction, and Correctness

Simone Martini

Dipartimento di Informatica – Scienza e Ingegneria
Alma mater studiorum • Università di Bologna

and
INRIA Sophia / Bologna

CiE 2016

Paris, June 28, 2016

1 / 59

Trace the evolution of types in programming languages,
identifying some of the driving forces of this process,

(in dialogue with mathematical logic.)

First episode:
HaPOC 2015, Pisa
From 1955 to 1970 (circa)

2 / 59

Why types?

Modern programming languages:

control flow specification: small fraction

abstraction mechanisms to model application domains.

3 / 59

We today conflate:

Types as an implementation (representation) issue

Types as an abstraction mechanism

Types as a classification mechanism (from mathematical logic)

4 / 59

Prehistory

1949

5 / 59

H.B. Curry, 1949

Types for memory words:

containing instructions: orders

containing data: quantities

Memoranda of Naval Ordnance Laboratory
[see De Mol, Carlé, and Bullyinck, JLC 2015]

Mathematical theory of programs
Theorems in the “well-typed expressions do not go wrong” style

G.W. Patterson’s review on JSL 22(01), 1957, 102-103
No known subsequent impact

6 / 59

Types as an implementation issue

7 / 59

1950s and 1960s

Type based distinctions for compilation: always present

“Type” as a technical term: Algol 58

(Almost) stable since Algol 60

Mode
- in Algol 68, d’après early Fortran usage
- “types (or modes)”, still in Reynolds 1975

8 / 59

1950s and 1960s

Type based distinctions for compilation: always present

“Type” as a technical term: Algol 58

(Almost) stable since Algol 60

Mode
- in Algol 68, d’après early Fortran usage
- “types (or modes)”, still in Reynolds 1975

9 / 59

The word: “type”

The use of ‘type,’ as in ‘x is of type real,’ was analogous to that
employed in logic.

Both programming language design and logic dipped into the
English language and came up with the same word for
roughly the same purpose.

[A. Perlis, The American side of the development of Algol, 1981]

10 / 59

OT Intermezzo:
Perlis on the Algol Report

Nicely organized, tantalizingly incomplete, slightly ambiguous,
difficult to read, consistent in format, and brief, it was a perfect
canvas for a language that possessed those same properties.

Like the Bible, it was meant not merely to be read, but to be
interpreted.

[A. Perlis, The American side of the development of Algol, 1981]

11 / 59

OT Intermezzo:
Perlis on the Algol Report

Nicely organized, tantalizingly incomplete, slightly ambiguous,
difficult to read, consistent in format, and brief, it was a perfect
canvas for a language that possessed those same properties.

Like the Bible, it was meant not merely to be read, but to be
interpreted.

[A. Perlis, The American side of the development of Algol, 1981]

12 / 59

These types:

guide the compiler

are a reasonable abstraction over implementation details
(with many exceptions)

However:

no provision for other data, but integer, real, Boolean

13 / 59

Types as an abstraction mechanism

14 / 59

The needs:

1 from simple to structured values

2 a general modelling tool

3 user definable “extensions”

4 robust abstractions over the representation

15 / 59

The arrival point

Type structure is a syntactic discipline
for enforcing levels of abstraction [John Reynolds, 1983]

16 / 59

The two champions:

Tony Hoare

Ole-Johan Dahl and Kristen Nygaard

17 / 59

The two champions:

Records

Objects

18 / 59

The two champions for data abstraction:

Abstract data encapsulation

Procedural encapsulation

19 / 59

Hoare:
records and references AB21 p. 39

A B 2 1 . 3 . 6 R E C O R D HANDLING

C. A. R . H o a r e

E n t i a non s u n t m u l t i p l i c a n d a p r a e t e r n e c e s s i t a t e m -

William of Occam.

1. I n t r o d u c t i o n

A m e t h o d is p r o p o s e d f o r the r e p r e s e n t a t i o n in a c o m p u t e r of
c o m p l e x s t r u c t u r e d o b j e c t s , and f o r t h e i r m a n i p u l a t i o n b y a p r o g r a m
w r i t t e n in a g e n e r a l p u r p o s e l a n g u a g e , wh ich i s h e r e a s s u m e d to be an
e x t e n s i o n of A L G O L 60. The p r o p e r t i e s of s u c h ob j ec t s can be
r e p r e s e n t e d b y g roups of the f a m i l i a r B o o l e a n and a r i t h m e t i c q u a n t i t i e s .
F u r t h e r m o r e , a r b i t r a r i l y c o m p l e x n e t w o r k s of r e l a t i o n s h i p s h o l d i n g
b e t w e e n the ob j ec t s c a n be r e p r e s e n t e d and m a n i p u l a t e d b y the p r o g r a m .

The m a i n r e c o m m e n d a t i o n f o r the p r o p o s a l i s t ha t i t e x t e n d s the
s c o p e of a g e n e r a l p u r p o s e p r o g r a m m i n g l a n g u a g e to m a n y f i e l d s of
a p p l i c a t i o n wh ich have h i t h e r t o b e e n r e g a r d e d as the p r e s e r v e of s p e c i a l
p u r p o s e l a n g u a g e s . T h i s s u g g e s t s t h a t the p r o p o s a l i s no a r b i t r a r y
e x t e n s i o n to an e x i s t i n g l a n g u a g e , but r e p r e s e n t s a genu ine a b s t r a c t i o n
of s o m e f e a t u r e w h i c h i s f u n d a m e n t a l to the a r t o r s c i e n c e of c o m p u t a t i o n .

A f u r t h e r r e c o m m e n d a t i o n m a y be found in the f r u i t f u l w a y in
w h i c h the b a s i c n u c l e u s of e s s e n t i a l f a c i l i t i e s s u g g e s t s a n u m b e r of
e l e g a n t and u s e f u l e x t e n s i o n s , s o m e of which a r e s u m m a r i s e d in
s e c t ion 7.

2. S u m m a r y

2 .1 R e c o r d s and R e c o r d C l a s s e s

The p r o p o s a l e n v i s a g e s the e x i s t e n c e i n s i d e the c o m p u t e r
d u r i n g the e x e c u t i o n of the p r o g r a m , of an a r b i t r a r y n u m b e r of r e c o r d s ,
e a c h of wh ich r e p r e s e n t s s o m e ob jec t wh ich i s of p a s t , p r e s e n t o r
f u t u r e i n t e r e s t to the p r o g r a m m e r . The p r o g r a m k e e p s d y n a m i c
c o n t r o l of the n u m b e r of r e c o r d s in e x i s t e n c e , and c a n c r e a t e new r e c o r d s
o r d e s t r o y e x i s t i n g ones in a c c o r d a n c e wi th the r e q u i r e m e n t s of the t a s k
in hand .

E a c h r e c o r d in the c o m p u t e r m u s t b e l o n g to one of a l i m i t e d
n u m b e r of d i s j o i n t r e c o r d c l a s s e s ; the p r o g r a m m e r m a y d e c l a r e as
m a n y r e c o r d c l a s s e s as he r e q u i r e s , and he a s s o c i a t e s wi th e a c h

1964:

ordered collection of named fields: record classes

typed references (like pointers, but no operations)

non stack-based, dynamically allocated structures

20 / 59

Dahl and Nygaard:
objects ante litteram

around 1962:

record class: activity;

record: process;

record field: local variable of a process

a “process” encapsulates both data objects and their
operators: a closure

21 / 59

They both make into languages

Algol W, circa 1970 (and then Pascal, and then . . .)

Simula 67

Never seen as rivals (on the contrary: many collaborations)

Are the records to have immediate impact

Records beat Objects

1-0

22 / 59

They both make into languages

Algol W, circa 1970 (and then Pascal, and then . . .)

Simula 67

Never seen as rivals (on the contrary: many collaborations)

Are the records to have immediate impact

Records beat Objects

1-0

23 / 59

Simula 67

Classes/Objects

Record class → Object class → Class

“declared quantity (class)” vs
“its dynamic offspring (objects)”

Subclasses

Hoare 1966, Villard-de-Lans Summer School:
- record subclasses
- dot notation
- ⇒ pure data abstraction

Simula 67: Prefixing (subclassing)
- code of the subclass is “permanently glued together” the
code of the superclass
- data and operations

24 / 59

Example

From Dahl’s recollection:

Queuable (“Link”):
next/precedessor in queue

Car
subclass of Queuable

Truck and Bus
both subclasses of Car

25 / 59

A further emerging need

Correctness of programs

Floyd, Assigning meanings to programs, 1967

Hoare, An axiomatic basis for computer programming, 1969

Burstall, Proving properties of programs by structural
induction, 1969

McCarthy and Painter, Correctness of a compiler for
arithmetic expressions, 1967

26 / 59

A further emerging need

Correctness of programs

Floyd, Assigning meanings to programs, 1967

Hoare, An axiomatic basis for computer programming, 1969

Burstall, Proving properties of programs by structural
induction, 1969

McCarthy and Painter, Correctness of a compiler for
arithmetic expressions, 1967

27 / 59

The Algol research program

Mark Priestly, A Science of Operations, Springer 2011

Algol 60 was not particularly successful in practical terms.
However. . .

A coherent and comprehensive research programme

Algol 60 report: a paradigmatic (à la Kuhn) achievement

First theoretical framework for studying:
- the design of programming languages,
- the process of software development.

28 / 59

Several attempts
towards general mechanisms for data definition

29 / 59

Extensible languages

Explicit definitions

Galler and Perlis, A proposal for definitions in ALGOL,
CACM 10, 1967

Schuman and Jorrand, Definition mechanisms in extensible
programming languages.
Proc. AFIPS, Vol. 37, 1970.

30 / 59

Standard Abstract Operations

Representation and representation independence

- Levels of systems, each represented on the other:
- ρ represents D onto D ′

- π procedure on D data
- The correspondence guarantees that representation and
implementation commute.

[Mealy, Another look at data. Proc. AFIPS, Vol. 31, 1967.]

We have, incidentally, slipped in a definition of
data item, which is an element of a data map. A data
element will be the set of all data items associated
with a given entity. List elements in IPL-V and
LISP are data elements, in this sense. The notion
of a logical record also corresponds to data element
in our sense, and field corresponds roughly to our
data item.

This explanation of data processing may seem
quite artificial, in view of our Platonistic feeling that
the "right" rule for assigning the value of a data item
should be independent of how we do our data process-
ing. My friend the nominalist would not be bothered
by this scruple - he did not claim that such a thing
as a "right" rule existed in the first place; data do
not necessarily represent facts with utter accuracy.
Data processing, he might say, is data's way of at-
tempting to adjust to the facts, if such there be.

Procedures

We have now noted the effect of a procedure-it
redefines one or more data maps or, what is the same
thing, changes the value part of certain data items.
The effect on D is to map it into a new subset of the
data maps. In other words, procedures are maps of
the form

Our idea about D is that it is the data at any given
moment of time, not the data for all time.

The import of our introduction of the auxiliary
entities was to effect a clean separation of structural
from other considerations. That is, we have set things
up so that any data map can be decomposed into a
structural data map followed by a non-structural data
map. The structural data maps are maps of E into E,
by definition. Our long-standing name for data items
in such maps is "pointers." This, in turn, suggests
an identification of list processing with procedures
which process structural data. A list processing
proceq.ure, hence, is any map of the form

This is a precise version of our vague notion that list
processing has something to do with pointers and data
structures.

Data storage and representation

The foregoing model obviously can be taken to
apply directly to physical storage media.3 To en-
tities correspond cells in storage (blocks, words,

Another Look at Data 529

characters, bits, registers,etc.). Maps specify attri-
butes of the storage cells (more properly, proper-
ties) such as content, structure, parity, ability to read
and/or write, address, protection key, and the like.
The structural maps and access functions clearly
correspond to our more usual notions of storage
structure and access.

If our data maps are an abstract theory of the real
world, we must do data processing with something
else; computers are, after all, not abstract objects.
However, the abstract theory is just as capable of
modeling computation as it is of providing models of
the real world-possibly even more so. We are con-
fronted, we might say, with three systems in any
specific situation. Each such system is composed of a
quadruple of entities, values, data maps, and pro-
cedures. The first system is, at least from a Platonist-
ic point of view, some part of the real world, the sec-
ond is our theory of the first, and the third is a ma-
chine representation of that theory. A representation
is, itself, now defined as a map establishing a corre-
spondence between two systems.

What criteria should a representation satisfy? Well,
consider a system in the above sense:

S=(E,V,D,P)
where P is the set of procedures. Further, let 7T be
any procedure in P, mapping D into a new set of data
maps D, and let p be a representation map which
maps S into S':

p:
For any object in S, we wish the representation to
assign a unique object in S', and vice versa. In other
words, p should be one-one onto. However, we desire
more than just this; in order to insure that anything
happening in the one system also happens in the other,
we require that the following diagram be commutative:

P
D D'

P D D'

or, in other words, that:
P7T=7T'p

This criterion can fail in two ways: (1) obviously,
when the map p is not one-one onto, and (2) when the
procedure 7T', chosen in the belief that it corresponds
to 7T, does not in fact so correspond. It might be
thought that the second alternative can happen only
by mistake, since we could presumably define the

From the collection of the Computer History Museum (www.computerhistory.org)

31 / 59

Standard Abstract Operations, 2

The programmer should be able to construct his program in terms
of the logical processing required without regard to either the
representation of data or the method of accessing and updating.
This concept we call “Dataless programming”.

[Balzer, Dataless programming. Proc. AFIPS, Vol. 31, 1967.]

Abstract procedures to handle representation:
create, access, modify, and destroy abstract data collections.

32 / 59

Information hiding

Parnas 1972

a stable interface towards the rest of the program

to protect those design choices which are bound to change

a general design methodology, which applies to types,
modules, packages, etc.

From the programming language community:

information hiding enforced by linguistic abstractions,
and not merely by a design methodology.

33 / 59

Information hiding

Parnas 1972

a stable interface towards the rest of the program

to protect those design choices which are bound to change

a general design methodology, which applies to types,
modules, packages, etc.

From the programming language community:

information hiding enforced by linguistic abstractions,
and not merely by a design methodology.

34 / 59

Towards ADTs

Morris, 1973 and Reynolds, 1974

The meaning of a syntactically-valid program in a “type-correct”
language should never depend upon the particular representation
used to implement its primitive types.

The main thesis of [Morris 1973] is that this property of
representation independence should hold for user-defined types as
well as primitive types.

[Reynolds, 1974]

35 / 59

A ready-made abstraction mechanism:

procedures
(closures)

36 / 59

Procedural encapsulation

Procedures, particularly procedures which can return procedures as
their result, are the proper mechanism for modularizing
both programs and data.

Procedural encapsulation: representing system components in
terms of one or more procedures such that interactions among
components are limited to procedure calls.

Similar to classes in SIMULA 67. Unlike SIMULA, however, the
local variables [. . .] are not made accessible outside the procedure
in which they are defined. [Zilles, 1973]

37 / 59

Moral, 1

From our perspective, post festam:

Simula’s classes,

extended with a visibility mechanism protecting local variables
from outside access,

provide a good encapsulation abstraction.

No need of a separate abstraction mechanisms:
use closures: code + environment

But this is not what happened back then. . .

38 / 59

Moral, 1

From our perspective, post festam:

Simula’s classes,

extended with a visibility mechanism protecting local variables
from outside access,

provide a good encapsulation abstraction.

No need of a separate abstraction mechanisms:
use closures: code + environment

But this is not what happened back then. . .

39 / 59

Abstract Data Types

Liskov and Zilles, 1974 ff

Public part:
I name complex
I operations create, add, get-x, get-y, equal

Private part:
I representation for type
I implementation of operations

Inside the private part: representation is accessible

Outside the private part: representation is inaccessible

40 / 59

A CLU cluster

complex = cluster is create , add , get -x, get -y, equal

rep = struct[x, y: real]

create = proc (x, y: real) returns (cvt)

return(rep$[x: x, y:y])

end create

add = proc (a, b: cvt) returns (cvt)

return(rep$[x: a.x + b.x, y: a.y + b.y])

end add

...

end complex

[CLU Reference Manual, LNCS 114, 1981]

41 / 59

Data encapsulation

A specific abstraction mechanism enforces information hiding,
and then guarantees representation independence.

42 / 59

Abstract types are intended to be very much like the built-in types
provided by a programming language.

An ADT defines a class of abstract objects which is completely
characterized by the operations available on those objects. This
means that an abstract data type can be defined by defining the
characterizing operations for that type. [Liskov and Zilles, 1974]

43 / 59

Semantics of ADTs: Algebras

An ADT is an abstract algebra, where “abstract” means
unique up to isomorphism.

A representation is a concrete many sorted algebra

The presentation of an abstract algebra, is the initial algebra
in a certain class.

44 / 59

Initial algebras

J. Goguen, Some remarks on data structures,
unpublished notes of ETH course, 1973.

ADJ, Abstract data types as initial algebras (. . .),
IEEE 1975 ff

J. Guttag, PhD thesis Toronto, 1975

Equations would give correctness constraints

Freeness ensures abstraction

Freeness allows proofs by (structural) induction

45 / 59

The seemingly unstoppable
march of ADTs

ADTs beat Objects

2-0

46 / 59

Meanwhile,
in the opposite camp

Smalltalk

Alan Kay, from 1972

Simula concept of class and objects

In a new metaphor and design methodology

To use for “open” systems

47 / 59

The “official” computer science world started to regard Simula as a
possible vehicle for defining abstract data types.
To put it mildly, we were quite amazed at this.

What Simula had whispered was something much stronger than
simply reimplementing a weak and ad hoc idea.

You could now replace bindings and assignment with goals.

The objects should be presented as sites of higher level behaviors
more appropriate for use as dynamic components.

[Kay, The early history of Smalltalk, 1993]

48 / 59

Someone noticed, though

John Reynolds:

User-defined types and procedural data structures as
complementary approaches to data abstraction
in New Directions in Algorithmic Languages, 1975

User-defined types = ADTs
Procedural data structures = Procedural encapsulation

(= Objects)

Do not cite Simula
Cites Hoare and Dahl; Balzer’s Dataless programming

49 / 59

ADTs vs Procedural abstraction

ADTs

Centralized implementation

All operations defined together with implementation

Procedural abstraction

Decentralized implementation: each value is independent

Operations are attached to the value they act upon

Procedural approaches: easier to extend !

50 / 59

ADTs vs Procedural abstraction

ADTs

Centralized implementation

All operations defined together with implementation

Procedural abstraction

Decentralized implementation: each value is independent

Operations are attached to the value they act upon

Procedural approaches: easier to extend !

51 / 59

ADTs, extension, compatibility

type C{

fun m(c:C){}

}

type D{

fun m(d:D){ modified wrt to C}

fun op(d:D){}

}

Clearly D<:C (by “Liskov substitution principle”).
Hence for any d:D, we have d:C.

We process a list L of elements of type C:

L : list(C)

foreach e in L:

m(e)

When e:D this breaks abtraction.

52 / 59

Objects, extension, compatibility

class C{

meth m(c:C){}

}

class D{

meth m(d:D){ modified wrt to C}

meth op(d:D){}

}

We process a list L of elements of type C:

L : list(C)

foreach e in L:

m(e)

Late binding: which m is called depends on the actual class of e

53 / 59

Object oriented languages

The key ingredients

Abstraction: to pack data and code

Inheritance: reuse of implementations

Subtyping: compatibility of interfaces

Late binding: to reconcile all of them

54 / 59

Objects

A research question:

Both Simula and Smalltalk were designed for specific application
domains.

How this influenced their characteristics?

55 / 59

The 80s and 90s

Objects beat ADTs

3-2

C++ (C with classes, 1979, after Simula)
Java (Oak, 1991)
Javascript (Mocha, 1995)

56 / 59

The 80s and 90s

Objects beat ADTs

3-2

C++ (C with classes, 1979, after Simula)
Java (Oak, 1991)
Javascript (Mocha, 1995)

57 / 59

In programming language design, types:

are proposed as an enabling feature (Voevodsky),
allowing simpler writing of programs,
and better verification of their correctess.

The Algol research program is still at work. . . :-)

58 / 59

Sipario

The history of computer science is innervated by the continuous
tension between formal beauty and technological effectiveness.

Types in programming languages are an evident example of this
dialectics.

We always exploited what we found useful for the design of more
elegant, economical, usable artefacts.

59 / 59

