
A conceptual history of
programming languages

Simone Martini

séminaire Collegium – November 19, 2018

1 / 79

Informatics

What is it?

2 / 79

In limine

Informatics

A collection of artefacts (applications)

A technology making possible those artefacts

A science founding that technology

3 / 79

In limine

Unique

It concerns an immaterial good: information
Used to affect — and to which degree! — the material world

Young

First electronic computer: 1947

First computer science department in USA: 1962, Purdue

First computer science degree in France: 1968
Maitrises d’informatique, Orsay

First computer science degree in Italy: 1969, Pisa

4 / 79

Resistances, 1962

Most scientists thought that using a computer was simply
programming — that it didn’t involve any deep scientific thought
and that anyone could learn to program. So why have a degree?
They thought computers were vocational vs. scientific in nature.

[Conte, Computerworld magazines, 1999]

5 / 79

An epistemology?

1 What are the entities
with which the science of computation deals?

2 What kinds of facts
about these entities would we like to derive?

3 What are the basic assumptions from which we should start?

[John McCarthy, 1962]

Still in 1967:
A. Newell, A. Perlis, H. Simon: letter to Science on
“Computer Science”

6 / 79

An epistemology?

1 What are the entities
with which the science of computation deals?

2 What kinds of facts
about these entities would we like to derive?

3 What are the basic assumptions from which we should start?

[John McCarthy, 1962]

Still in 1967:
A. Newell, A. Perlis, H. Simon: letter to Science on
“Computer Science”

7 / 79

What kind of computer scientist am I?

8 / 79

CS subject areas, excerpt

1 Hardware

2 Systems and networks

3 Software and languages

4 Theory of computation

5 Information systems

6 Methodologies (including AI, simulations, graphics, etc.)

7 Security, privacy

8 Human-centered and applied computing
(including interfaces, ubiquitous. mobile, etc.)

9 / 79

CS subject areas, excerpt

1 Hardware

2 Systems and networks

3 Software and languages

4 Theory of computation

5 Information systems

6 Methodologies (including AI, simulations, graphics, etc.)

7 Security, privacy

8 Human-centered and applied computing
(including interfaces, ubiquitous. mobile, etc.)

10 / 79

The linguistic methaphor

From the end of the 50s

Programming: in artificial, formal languages

Tool of the trade

Object of study

Meta-language

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and cognition, 1986]

11 / 79

The linguistic methaphor

From the end of the 50s

Programming: in artificial, formal languages

Tool of the trade

Object of study

Meta-language

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and cognition, 1986]

12 / 79

Programming the first computer, ENIAC

13 / 79

Program correctness

From the middle of 60s

How to prove a program correct?

How to give semantics to a program

How to specify its intended behaviour

How to prove that the two match

It is reasonable to hope that the relationship between computation
and mathematical logic will be as fruitful in the next century as
that between analysis and physics in the last. [J. McCarthy, 1963]

14 / 79

Program correctness

From the middle of 60s

How to prove a program correct?

How to give semantics to a program

How to specify its intended behaviour

How to prove that the two match

It is reasonable to hope that the relationship between computation
and mathematical logic will be as fruitful in the next century as
that between analysis and physics in the last. [J. McCarthy, 1963]

15 / 79

The model seems to be. . .

Structural engineering

mathematical physics laws

empirical knowledge

to understand, predict, and calculate the stability, strength and
rigidity of structures for buildings.

McCarthy:

the relationship between computation and mathematical logic will
be as fruitful as that between analysis and physics.

16 / 79

The larger context

The quest for a “Mathematical Theory of Computation”

How does mathematical logic fit into this theory?

And for what purposes?

A mathematical theory is the entrance ticket to science

17 / 79

The larger context

The quest for a “Mathematical Theory of Computation”

How does mathematical logic fit into this theory?

And for what purposes?

A mathematical theory is the entrance ticket to science

18 / 79

The larger context

The quest for a “Mathematical Theory of Computation”

How does mathematical logic fit into this theory?

And for what purposes?

A mathematical theory is the entrance ticket to science

19 / 79

Computer Scientist

Education

PhD, 1988: Pisa

Post-doc, 1989-1990: Stanford

Junior faculty, 1988-1994: Pisa

Professor, 1994-2002: Udine

Professor and Head of CSE, 2002- : Bologna

Research

Foundations of programming languages

Theory and complexity of computation

20 / 79

Foundations

Use (and develop) theories, in:
I mathematical logic
I theory of categories
I very weak topological spaces
I formal systems

To help design better languages

To help prove a program correct

To help obtaining general properties, e.g. complexity

21 / 79

Publications

Some journals:

Theoretical Computer Science

Journal of Logic Programming

Mathematical Structures in CS

Archive for Mathematical Logic

Journal of Symbolic Logic

Information and Computation

ACM Transactions on Computational Logic

. . .

22 / 79

Publications

Some journals:

Theoretical Computer Science

Journal of Logic Programming

Mathematical Structures in CS

Archive for Mathematical Logic

Journal of Symbolic Logic

Information and Computation

ACM Transactions on Computational Logic

. . .

23 / 79

CS and Logic

24 / 79

The big project

Reflect and trace the interaction of mathematical logic
and programming (languages),

identifying some of the driving forces of this process.

First episode: Types

25 / 79

Why types?

Modern programming languages:

control flow specification: small fraction

abstraction mechanisms to model application domains.

• Types are a crucial building block of these abstractions

• And they are a mathematical logic concept, aren’t they?

26 / 79

Why types?

Modern programming languages:

control flow specification: small fraction

abstraction mechanisms to model application domains.

• Types are a crucial building block of these abstractions

• And they are a mathematical logic concept, aren’t they?

27 / 79

Modelling tool

In the simulation of complex situations in the real world, it is
necessary to construct in the computer analogues of the objects of
the real world, so that procedures representing types of [data] may
operate upon them in a realistic fashion.

[Tony Hoare, 1964] (page 46, and, more generally, all Section 4)

28 / 79

Types in programming languages

A (data) type is a collection of (effectively presented) values,
together with (effective) operations on those values.

29 / 79

Types in programming languages

A (data) type is a collection of (effectively presented) values,
together with (effective) operations on those values.

integer numbers
with +, -, ×, div, mod

strings of characters
with concatenation, selection of an element, . . .

rational numbers
with +, -, ×, /,

√
,. . .

Reals: no effective presentation is possible.

30 / 79

Types in programming languages

A (data) type is a collection of (effectively presented) values,
together with (effective) operations on those values.

“Collections of other values” (arrays, records, . . .)
With their operations.

Functions between two types
With their operations.

31 / 79

Types for. . .

At the level of:

Project: conceptual organisation of data

Programming: support for correction

Translation: support for implementation

32 / 79

Types for implementation

Not much interested here

An integer is coded with 32 bits, in two’s complement
A rational is coded in IEEE 754 floating point, . . .

Crucial information for the translator/interpreter

The type of the FORTRAN language (1956 and ff)

33 / 79

Types for correctness

Correctness

“minimal”: we don’t add integers and strings

“sufficient”: for a certain class of errors

“conservative”: “correct” phrases may be type-incorrect

34 / 79

Minimal correctness

In physics: dimensional control

an acceleration must be m/sec2

of course “wrong” formulas may have the right dimension

35 / 79

Sufficient correctness

For a certain class of errors:

“well typed expressions do not go wrong”

guarantee that some errors will not happen

e.g., an integer will never be used as a memory address

36 / 79

Conservative correctness

Evaluation “does not go wrong”
But the program is ill-typed

37 / 79

In the great tradition:

[Types] forbid certain inferences which would otherwise be valid,
but [do] not permit any which would otherwise be invalid.

[Whitehead and Russell, Principia Mathematica, 1910]

We shall now introduce a type system which, in effect, singles out
a decidable subset of those wfes that are safe; i.e., cannot given
rise to ERRORs. This will disqualify certain wfes which do not, in
fact, cause ERRORS and thus reduce the expressive power of the
language.

[Morris, PhD thesis, 1968]

38 / 79

In the great tradition:

[Types] forbid certain inferences which would otherwise be valid,
but [do] not permit any which would otherwise be invalid.

[Whitehead and Russell, Principia Mathematica, 1910]

We shall now introduce a type system which, in effect, singles out
a decidable subset of those wfes that are safe; i.e., cannot given
rise to ERRORs. This will disqualify certain wfes which do not, in
fact, cause ERRORS and thus reduce the expressive power of the
language.

[Morris, PhD thesis, 1968]

39 / 79

Principia Mathematica

Types

Stratify the universe to avoid paradoxes

No set can be a member of itself

“The barber who shaves those and only those
who do not shave by themselves”

40 / 79

However

Not all the circular definitions are dangerous, and it is a task for
the logician to isolate the good ones.

[Dmitry Mirimanoff, 1917]

There are perfectly fine sets which belong to themselves

Non well-founded set-theories

41 / 79

In foundations of mathematics, types:

never supposed to be used by the working mathematician

in principle could be used, to avoid paradoxes

In programming languages, types:

are used everyday, by everyone

should be made more “expressive”, “flexible”

42 / 79

In foundations of mathematics, types:

are perceived as constraints
(they “forbid” something, as in Russell’s quote).

In programming languages, types:

are experienced as an enabling feature (Voevodsky),
allowing simpler writing of programs,

and better verification of their correctess.

43 / 79

Types for. . .

At the level of:

Project : conceptual organisation of data

Programming : support for correction

Translation : support for implementation

44 / 79

Conceptual organisation

In the simulation of complex situations in the real world, it is
necessary to construct in the computer analogues of the objects of
the real world, so that procedures representing types of [data] may
operate upon them in a realistic fashion.

[Tony Hoare, 1964] (page 46, and, more generally, all Section 4)

Type structure is a syntactic discipline
for enforcing levels of abstraction [John Reynolds, 1983]

45 / 79

Conceptual organisation

In the simulation of complex situations in the real world, it is
necessary to construct in the computer analogues of the objects of
the real world, so that procedures representing types of [data] may
operate upon them in a realistic fashion.

[Tony Hoare, 1964] (page 46, and, more generally, all Section 4)

Type structure is a syntactic discipline
for enforcing levels of abstraction [John Reynolds, 1983]

46 / 79

“Programming” languages

What we insist in calling programming languages

Are powerful tools to organize, make coherent, and model
reality

I data models
I procedural models
I interaction models
I synchronization models
I organization models
I . . .

47 / 79

We today conflate:

Types as an implementation (representation) issue

Types as an abstraction mechanism

Types as a classification mechanism (from mathematical logic)

One of the goals:
separate them and identify when they arrive in the PL literature

48 / 79

We today conflate:

Types as an implementation (representation) issue

Types as an abstraction mechanism

Types as a classification mechanism (from mathematical logic)

One of the goals:
separate them and identify when they arrive in the PL literature

49 / 79

The word: “type”

50 / 79

Types in early Fortran?

Two types of constants are permissible: fixed points (restricted to
integers) and floating points

32 types of statement
[The FORTRAN automatic coding system, 1956]

Any fixed point (floating point) constant, variable, or subscripted
variable is an expression of the same mode.

[ibidem]

51 / 79

Algol 58:
types

Type declarations serve to declare certain variables, or functions, to
represent quantities of a given class, such as the class of integers
or class of Boolean values.
[Perlis and Samelson. Preliminary report: International algebraic language. Commun. ACM 1(12), December 1958.]

52 / 79

No types
in the preparatory papers!

A data symbol falls in one of the following classes:
a) Integer b) Boolean c) General

The symbol classification statements are:
INTEGER (s1, . . . , sn)
BOOLEAN (s1, . . . , sn)

[Backus et al. Proposal for a programming language. ACM Ad Hoc Committee on Languages, 1958.]

53 / 79

Algol 60:
maturity

Integers are of type integer. All other numbers are of type real.

The various “types” (integer, real, Boolean) basically denote
properties of values.

[Backus et al. Report on the algorithmic language ALGOL 60. Commun. ACM 3(5), May 1960.]

54 / 79

1950s and 1960s

Type based distinctions for compilation: always present

“Type” as a technical term: Algol 58

(Almost) stable since Algol 60

Mode
- in Algol 68, d’après early Fortran usage
- “types (or modes)”, still in Reynolds 1975

55 / 79

1950s and 1960s

Type based distinctions for compilation: always present

“Type” as a technical term: Algol 58

(Almost) stable since Algol 60

Mode
- in Algol 68, d’après early Fortran usage
- “types (or modes)”, still in Reynolds 1975

56 / 79

The word: “type”

The technical term “type”:

appears to be a semantical shift from the generic term

no role of the “type” from mathematical logic

The use of ‘type,’ as in ‘x is of type real,’ was analogous to that
employed in logic.

Both programming language design and logic dipped into the
English language and came up with the same word for
roughly the same purpose.

[A. Perlis, The American side of the development of Algol, 1981]

57 / 79

Types from mathematical logic

58 / 79

certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.

59 / 79

certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.

60 / 79

certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.

61 / 79

The formidable middleman:

λ-calculus

The catalist:

Curry-Howard isomorphism, (1969); 1980

62 / 79

The formidable middleman:

λ-calculus

The catalist:

Curry-Howard isomorphism, (1969); 1980

63 / 79

The explicit recognition:

Per Martin-Löf.
Constructive mathematics and computer programming.

(1979); 1982.

1 62 P. MARTIN-LOF

but also, and this is the reading which is most natural when the language is
thought of as a programming language,

A is a problem (task).

Correlatively, the third form of judgment may be read not only

u is an object of type (element of the set) A ,

a is a proof of the proposition A ,

but also
u is a program for the problem (task) A .

The equivalence of the first two readings is the by now well-known cor-
respondence between propositions and types discovered by CURRY (1 958,
pp. 312-315) and HOWARD (1969), whereas the transition from the second
to the third is the KOLMOGOROV (1932) interpretation of propositions as
problems or tasks (Ger. Aufgube).

The four forms of judgment used in the theory of types should be com-
pared with the three forms of judgment used (although usually not so called)
in standard presentations of first order predicate calculus, whether classical
or intuitionistic, namely

A is a formula ,
A is true ,
a is an individual term,

The first of these corresponds to the form A is a type (proposition),
the second is obtained from the form u is an object of type (a proof of the
proposition) A by suppressing a, and the third is again obtained from the
form a is an object of type A, this time by choosing for A the type of
individuals.

In explaining what a judgment of one of the above four forms means,
I shall first limit myself to assumption free judgments. Once it has been
explained what meanings they carry, the explanations can readily be
extended so as to cover hypothetical judgments as well.

A canonical type A is defined by prescribing how a canonical object of
type A is formed as well as how two equal canonical objects of type A are
formed. There is no limitation on this prescription except that the relation
of equality which it defines between canonical objects of type A must be
reflexive, symmetric and transitive. If the rules for forming canonical objects

64 / 79

Why this is interesting

Our programming languages are also
(a huge part of) the metalanguage
in which we express the discipline.

65 / 79

“Programming” languages

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris : Le Seuil 1969;
and to: Ecriture et Iconographie. Paris : Vrin 1973.

What we call programming languages are both such a founding
language and one of the very objects of the discipline.

66 / 79

“Programming” languages

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris : Le Seuil 1969;
and to: Ecriture et Iconographie. Paris : Vrin 1973.

What we call programming languages are both such a founding
language and one of the very objects of the discipline.

67 / 79

The study of programming languages, and of their “conceptual”
history, could become a blueprint for a more general
epistemological investigation.

68 / 79

An example

The unstoppable march of object-oriented programming

ADT: simple concept with clear mathematical semantics,
1975ff

Object: complex concept with opaque (mathematical?)
semantics

Objects rule the world, not ADTs !
Contrary to what one would expect.

69 / 79

An example

The unstoppable march of object-oriented programming

ADT: simple concept with clear mathematical semantics,
1975ff

Object: complex concept with opaque (mathematical?)
semantics

Objects rule the world, not ADTs !
Contrary to what one would expect.

70 / 79

Conclusion

The history of computer science is innervated by the continuous
tension between formal beauty and technological effectiveness.

Types in programming languages are an evident example of this
dialectics.

We always exploited what we found useful for the design of more
elegant, economical, usable artefacts.

71 / 79

The project for the Collegium de Lyon

Lyon 3: IRPHIL
ENS: LIP/PLUME

72 / 79

At the Collegium. . .

Next steps?

Continuation passing transformation (van Wijngaarden, 1964)

Exceptions handlers (PL/I: resume-based; etc.)

Pinpoint the impact of the Curry-Howard isomorphism

. . .

73 / 79

Methodology

History and Philosophy of Computing: HAPOC

Across disciplines:
for adding to the maturity of computing in general.

Bring together:
computer scientists, historians, and philosophy scholars.

Narrow the gap between a technology and its professional history.

Perspective:
useful for the technician of today, for a better science.

74 / 79

Side paths

Computational thinking: not just coding

Programming as interaction (Smalltalk, Logo,. . . , Scratch, etc.)

Program as inscriptions (Latour)

Is the “traditional” Mathematical theory of computation still
useful?

75 / 79

Thank you

Université de Lyon and the Collegium

for the support and the opportunity

76 / 79

Let us follow Latour. . .

“Programs” are:

mobile

immutable when they move

flat

“their scale may be changed at will”:
phenomena can be dominated with the eyes and held by hands

reproduced and communicated at little cost

may be reshuffled and recombined

may be made part of a written text

they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of
(and for) inscriptions.

77 / 79

Let us follow Latour. . .

“Programs” are:

mobile

immutable when they move

flat

“their scale may be changed at will”:
phenomena can be dominated with the eyes and held by hands

reproduced and communicated at little cost

may be reshuffled and recombined

may be made part of a written text

they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of
(and for) inscriptions.

78 / 79

Let us follow Latour. . .

“Programs” are:

mobile

immutable when they move

flat

“their scale may be changed at will”:
phenomena can be dominated with the eyes and held by hands

reproduced and communicated at little cost

may be reshuffled and recombined

may be made part of a written text

they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of
(and for) inscriptions.

79 / 79

