
Can we define what
an algorithm is?

Simone Martini
Dipartimento di Informatica – Scienza e Ingegneria

A pre-mathematical concept

A sequence of rules, where
each rule
the way they are composed

are "effective"

The intuitive notion is the ”touchstone" of any formal definition

Its formalisation will always loose (or add)
some nuance in relation to the intuitive sense

Turing, 1936

It does not deal with the notion of algorithm
It defines the notion of effective, i.e. mechanically computable

effective = there is an algorithm that can compute it

But for a single effective function, there are many distinct algorithms

Many other systems for computable functions:
- Post systems, lambda-calculus, Gödel’s general recursive functions
- All programming languages: e.g. C, Java, Python

They are all equivalent to each other: the Church-Turing thesis

Equivalence between formalisms for computability

The equivalence holds "modulo coding" (à codage près)

Let S be a system for computability (lambda-calculus, Post systems, Python, etd.)

1. In S we may "code" the integers: [n]
2. For every (Turing-) computable functions over the integers f, there is a term F
in S which "computes" f

F[n] è [f(n)]

No guarantees on the preservation of algorithms!

The “parallel or”

Computable : evaluate "in parallel" x and y

Brief Article

The Author

June 17, 2022

por(x, y) =

⇢
0 if x terminates or y terminates
it does not terminate otherwise

1

The “parallel or” in the lambda-calculus

Computable : evaluate "in parallel" x and y

G. Berry : there is no lambda-term P which, for any pair of lambda terms M,N:
P N M has a normal form if and only if
(at least) one of the two terms M and N has a normal form

And yet, the lambda calculus is Turing-complete!

Brief Article

The Author

June 17, 2022

por(x, y) =

⇢
0 if x terminates or y terminates
it does not terminate otherwise

1

The “parallel or” in the lambda-calculus

Equivalence is "modulo coding":
- Each lambda term M is coded by another lambda term [M]
- We have a term Eval which encode the procedure of reduction
- There is a term[OR]
such that
Eval [OR] [M] [N]
has a normal form if and only if one of M and N has a normal form

Brief Article

The Author

June 17, 2022

por(x, y) =

⇢
0 if x terminates or y terminates
it does not terminate otherwise

1

Algorithms and abstraction levels

An algorithm is only well defined "modulo one level of abstraction" [Gurevich]

Palindromicity of a sequence: rêver, radar, kayak

Algorithms and abstraction levels

An algorithm is only well defined "modulo one level of abstraction" [Gurevich]

Palindromicity of a sequence: rêver, radar, kayak
KAYAK
KAYAK
KAYAK
KAYAK
KAYAK

Elementary operation: “select a generic element from a sequence”
Complexity: length(’KAYAK’)/2

Algorithms and abstraction levels

Palindromicity of a sequence: rêver, radar, kayak

Elementary operation: “select a generic element from a sequence”
Complexity: length(’KAYAK’)/2

A Turing machine cannot ““select a generic element from a sequence” !

Back and forth every time!

RESSASSER

Complexity: length(’RESSASSER’)2

Algorithms and programs

At the limit, one risks identifying algorithms and programs

For computer science, they are different concepts:
- the generic description of a process;
- its “translation”, its ”coding", in a programming language

And yet,
two languages never have the same set of elementary operations

Algorithms and programs: Quicksort

Quicksort [Hoare, 1961]

Algorithms and programs: Quicksort

Python:
def QuickSort(L):

if L==[]: return L
pivot = L[0]
return QuickSort([x for x in L[1:] if x < pivot])

+ [pivot] +
QuickSort([x for x in L[1:] if x >= pivot])

Algorithms and programs: Quicksort

JAVA:
public static void quickSort(int[] arr, int start, int end){

int partition = partition(arr, start, end);
if(partition-1>start) {

quickSort(arr, start, partition - 1);
}
if(partition+1<end) {

quickSort(arr, partition + 1, end);
}

}
public static int partition(int[] arr, int start, int end){

int pivot = arr[end];

for(int i=start; i<end; i++){
if(arr[i]<pivot){

int temp= arr[start];
arr[start]=arr[i];
arr[i]=temp;
start++;

}
}
int temp = arr[start];
arr[start] = pivot;
arr[end] = temp;
return start;

}

Python:
def QuickSort(L):

if L==[]: return L
pivot = L[0]
return QuickSort([x for x in L[1:] if x < pivot])

+ [pivot] +
QuickSort([x for x in L[1:] if x >= pivot])

Algorithms and programs: Quicksort

JAVA:
public static void quickSort(int[] arr, int start, int end){

int partition = partition(arr, start, end);
if(partition-1>start) {

quickSort(arr, start, partition - 1);
}
if(partition+1<end) {

quickSort(arr, partition + 1, end);
}

}
public static int partition(int[] arr, int start, int end){

int pivot = arr[end];

for(int i=start; i<end; i++){
if(arr[i]<pivot){

int temp= arr[start];
arr[start]=arr[i];
arr[i]=temp;
start++;

}
}
int temp = arr[start];
arr[start] = pivot;
arr[end] = temp;
return start;

}

Python:
def QuickSort(L):

if L==[]: return L
pivot = L[0]
return QuickSort([x for x in L[1:] if x < pivot])

+ [pivot] +
QuickSort([x for x in L[1:] if x >= pivot])

Are they really two
different encodings of
the same algorithm?

programs/algorithms of learning on neural networks

Two actors:
- the learning algorithm (generic)
- the learning outcome

(the behaviour of the network, after learning)

Learning specialises (through training)
a generic network into a specific function

programs/algorithms of learning on neural networks

Two actors:
- the learning algorithm (generic)
- the learning outcome

(the behaviour of the network, after learning)

programs/algorithms of learning on neural networks

Two actors:
- the learning algorithm (generic)
- the learning outcome

(the behaviour of the network, after learning)

programs/algorithms of learning on neural networks

Learning specialises (through training)
a generic network into a specific function

The whole learning outcome is contained in the network weights

“classic” algorithm: the choices made by the algorithm are explicit
“neural” algorithm: everything is ”opaque", hidden in the weights

An issue of accountability…

algorithms that do not terminate

Classical algorithms: termination, “the outcome”, the “result”

An operating system: an infinite loop which does things through interaction
with the actors of computation (resources, processes, environment, people,
ecc.)

Not transformation of input data into a result,
but interaction, which is a function of data, time, human actors…

the message of this lecture

An intuitive concept: normative, touchstone
a sequence of effective steps

There is not a single formalisation
of the algorithm concept
of the same algorithm

There are various formalisations
at different abstraction levels
each one accounts for some aspects, and loses others

the message of this lecture

the plurality of formal approaches

even, cum grano salis, their disagreeement

is good

how is good the pluralism of ideas in a healthy democratic society

algorithms in our daily life

- knowledge: the algorithm must be public!

- responsability: who is responsible for decisions?

- understanding: what skills are needed?

E.g., Maël Pégny, Issam Ibnouhsein.
Quelle transparence pour les algorithmes d’apprentissage machine?
Rev. d'Intelligence Artif. 32(4): 447-478 (2018).

www.unibo.it

Simone Martini

Dipartimento di
Informatica – Scienza e Ingegneria

simone.martini@unibo.it

