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From Logic to Programming Languages

I How can a host machine assure the amount of resource

needed to run a mobile program? A resource-aware type

system or program-logic would provide implicit and verifiable

certificates.

I In the realm of (first-order) term-rewriting systems, techniques

like quasi interpretations have been shown to be useful for

inferring complexity properties of programs (Bonfante et al.).

I Type-systems derived from non-size increasing computations

have been exploited in the context of mobile resource

guarantees (Hofmann et al., Beringer et al.).

I Enforcing resource-awareness in programming languages is not

an easy task. The additional control provided cannot come at

the price of unacceptable restrictions to programs.



Inferring Linear Bounds on Heap Size – Hofmann & Jost

I Language: first-order functional programming language with

recursion; explicit memory management with freelist.

I Type-system: simple types, including lists, with resource

annotations.

I Goal of the resource annotation is to derive a linear relation

between the memory used to represent the input and the

memory needed to complete the task.

I Example: Consider a program P : string list -> unit

I We want a linear relation s(n) = an + b with the following

meaning:
I If we evaluate (the compiled) P on a input list of lenght n
I Then, the program will not get stuck from insufficient memory

availability
I Provided that we have a freelist containing initially at least

s(n) cells.



Inferring Linear Bounds on Heap Size, II

I The example of the previous slide would get a type

P : L(string,a),b -> unit

I “If the input list has lenght n, then P needs an + b cells in the

freelist”

I In general, we need memory assertions also in the result type

I Example: x : L(B, 2), 3 ` e : L(B, 4), 5
means
I if we evaluate e starting with x bound to a list [u1, . . . , um],
I and we have a free-list of at least 2m + 3 cells,
I then the computation will not get stuck from insufficient

memory availability;
I moreover, if the result is a list [v1, . . . , vn], then at the end the

free-list will have at least 4n + 5 cells.



Inferring Linear Bounds on Heap Size, II

I Type-system: Contraction can only be done splitting the

corresponding resource annotations: for example, from

x : L(B,3), y : L(B,6) ` e : C , 7

we can derive

z : L(B,9) ` e{z/x , z/y } : C , 7

I Decorations: given a skeleton of a type derivation (types, but

not resource annotations) for e,

a set of linear inequalities L(e) is derived.

Solutions to L(e) are in one-to-one correspondence with valid

type derivations for e.



An example: Mobile Resource Guarantees

I In 2002-2005 a EU funded project tried to embed some of the

techniques we discussed in a software architecture.

I MRG, a joint Edinburgh / LMU Munich project funded under

the Global Computing pro-active initiative

I Based on the notion of proof carrying code (Necula, 1997):
I A high-level functional language with a type system ensuring

certain bounds on resources
I A certifying compiler maps programs and their type annotation

to a target language, packaging together the code and a

(compact version of the) proof that it satifies the required

bounds
I Such packages are unforgeable and tamper evident
I Clients of the code (e.g., over an untrusted network) receive

the package and check the proof before executing the code
I Checking proof is simple (vs building the proof, which may be

hard)
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Camelot

I Camelot is a high-level functional language, based on OCaml

I Polymorphic types à la ML

I Compiled (through Grail) into standard Java bytecode

I Memory model: freelist, managed directly by the compiled

code (as opposed to just rely on garbage collection)

I Programs in Camelot are subjected to space analysis, to

express heap usage and linear relations between input/output

memory usage



Example

type iList = !Nil | Cons of int ∗ iList

let ins a l = match l with
Nil −> Cons(a,Nil)

| Cons(x,t)@ −> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with
Nil −> Nil

| Cons(a,t) −> ins a (sort t)

let show list0 l = match l with
Nil −> ””

| Cons(h,t) −> begin
match t with

Nil −> string of int h
| Cons(h0,t0) −> (string of int h) ˆ ”, ” ˆ (show list0 t)

end

let show list l = ”[” ˆ (show list0 l) ˆ ”]”

let stringList to intList ss =
match ss with

[] −> Nil
| (h::t) −> Cons((int of string h),(stringList to intList t))

let start args =
let l1 = (stringList to intList args)

in let = print string (”\nInput list :\n l1 = ” ˆ (show list l1))
in let l2 = sort l1
in let = print string (”\nResult list:\n l2 = ” ˆ (show list l2))
in ()

Fig. 1. A standalone Camelot program

ins : 1, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;
int of string : 0, string −> int, 0;
print string : 0, string −> unit, 0;
show list : 0, iList [0| int,#,0] −> string, 0;
show list0 : 0, iList [0| int,#,0] −> string, 0;
sort : 0, iList [0| int,#,1] −> iList[0|int,#,0], 0;
start : 0, list 1 [string,#,2|0] −> unit, 0;
stringList to intList : 0, list 1 [string,#,2|0] −> iList[0|int,#,1], 0;
string of int : 0, int −> string, 0;

Fig. 2. Output of space analysis on the program in Fig. 1
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Grail

I It is the target of the Camelot compiler, which performs a

resource exact compilation

That is, compilation preserves non only meaning, but also

resource behaviour.

I It is the vehicle for proof-carrying code:
I It is the basis to which to attach the resource assertions
I It is amenable to formal proofs about resource usage
I It is the format for sending and receiving guaranteed code

I It can be assembled to (and dissambled from) standard JVM

classfiles



Bytecode logic of resources

I The logic allowing to state and prove that the Grail bytecode

satify the resource usage

I The construction of proofs uses the type annotations

I Verification is much easier

I But we are not concerned here with this issues...



At the end of this series of lectures...

Many challenges remain. . .



Challenges

I The area of implicit computational complexity appears very

fragmented, with many different proposals.

I It is very difficult to compare relative intensional expressive

power.

I It is not usually the case a system can be extended with new

features preserving its quantitative properties

I Defining just another characterization of polynomial time is

not enough.

I Importing these results into the design of (even academic)

programming languages is extremely difficult (especially for

time bounds).

I Deep, foundational results are extremely needed.
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