
Implicit Computational Complexity

Simone Martini

Dipartimento di Scienze dell’Informazione
Università di Bologna

Italy

Bertinoro International Spring School

for Graduate Studies in Computer Science,

6–17 March, 2006

Outline: third part

Logic and Programming Languages

Challenges

From Logic to Programming Languages

I How can a host machine assure the amount of resource

needed to run a mobile program? A resource-aware type

system or program-logic would provide implicit and verifiable

certificates.

I In the realm of (first-order) term-rewriting systems, techniques

like quasi interpretations have been shown to be useful for

inferring complexity properties of programs (Bonfante et al.).

I Type-systems derived from non-size increasing computations

have been exploited in the context of mobile resource

guarantees (Hofmann et al., Beringer et al.).

I Enforcing resource-awareness in programming languages is not

an easy task. The additional control provided cannot come at

the price of unacceptable restrictions to programs.

Inferring Linear Bounds on Heap Size – Hofmann & Jost

I Language: first-order functional programming language with

recursion; explicit memory management with freelist.

I Type-system: simple types, including lists, with resource

annotations.

I Goal of the resource annotation is to derive a linear relation

between the memory used to represent the input and the

memory needed to complete the task.

I Example: Consider a program P : string list -> unit

I We want a linear relation s(n) = an + b with the following

meaning:
I If we evaluate (the compiled) P on a input list of lenght n
I Then, the program will not get stuck from insufficient memory

availability
I Provided that we have a freelist containing initially at least

s(n) cells.

Inferring Linear Bounds on Heap Size, II

I The example of the previous slide would get a type

P : L(string,a),b -> unit

I “If the input list has lenght n, then P needs an + b cells in the

freelist”

I In general, we need memory assertions also in the result type

I Example: x : L(B, 2), 3 ` e : L(B, 4), 5
means
I if we evaluate e starting with x bound to a list [u1, . . . , um],
I and we have a free-list of at least 2m + 3 cells,
I then the computation will not get stuck from insufficient

memory availability;
I moreover, if the result is a list [v1, . . . , vn], then at the end the

free-list will have at least 4n + 5 cells.

Inferring Linear Bounds on Heap Size, II

I Type-system: Contraction can only be done splitting the

corresponding resource annotations: for example, from

x : L(B,3), y : L(B,6) ` e : C , 7

we can derive

z : L(B,9) ` e{z/x , z/y } : C , 7

I Decorations: given a skeleton of a type derivation (types, but

not resource annotations) for e,

a set of linear inequalities L(e) is derived.

Solutions to L(e) are in one-to-one correspondence with valid

type derivations for e.

An example: Mobile Resource Guarantees

I In 2002-2005 a EU funded project tried to embed some of the

techniques we discussed in a software architecture.

I MRG, a joint Edinburgh / LMU Munich project funded under

the Global Computing pro-active initiative

I Based on the notion of proof carrying code (Necula, 1997):
I A high-level functional language with a type system ensuring

certain bounds on resources
I A certifying compiler maps programs and their type annotation

to a target language, packaging together the code and a

(compact version of the) proof that it satifies the required

bounds
I Such packages are unforgeable and tamper evident
I Clients of the code (e.g., over an untrusted network) receive

the package and check the proof before executing the code
I Checking proof is simple (vs building the proof, which may be

hard)

The architecture of MRG
Implementation

Code producer Code consumer

Camelot
Resource

policy

JVM

Grail
Proof

checker
Grail

Java

classfile

Java

classfile
OK?

Camelot

I Camelot is a high-level functional language, based on OCaml

I Polymorphic types à la ML

I Compiled (through Grail) into standard Java bytecode

I Memory model: freelist, managed directly by the compiled

code (as opposed to just rely on garbage collection)

I Programs in Camelot are subjected to space analysis, to

express heap usage and linear relations between input/output

memory usage

Example

type iList = !Nil | Cons of int ∗ iList

let ins a l = match l with
Nil −> Cons(a,Nil)

| Cons(x,t)@ −> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with
Nil −> Nil

| Cons(a,t) −> ins a (sort t)

let show list0 l = match l with
Nil −> ””

| Cons(h,t) −> begin
match t with

Nil −> string of int h
| Cons(h0,t0) −> (string of int h) ˆ ”, ” ˆ (show list0 t)

end

let show list l = ”[” ˆ (show list0 l) ˆ ”]”

let stringList to intList ss =
match ss with

[] −> Nil
| (h::t) −> Cons((int of string h),(stringList to intList t))

let start args =
let l1 = (stringList to intList args)

in let = print string (”\nInput list :\n l1 = ” ˆ (show list l1))
in let l2 = sort l1
in let = print string (”\nResult list:\n l2 = ” ˆ (show list l2))
in ()

Fig. 1. A standalone Camelot program

ins : 1, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;
int of string : 0, string −> int, 0;
print string : 0, string −> unit, 0;
show list : 0, iList [0| int,#,0] −> string, 0;
show list0 : 0, iList [0| int,#,0] −> string, 0;
sort : 0, iList [0| int,#,1] −> iList[0|int,#,0], 0;
start : 0, list 1 [string,#,2|0] −> unit, 0;
stringList to intList : 0, list 1 [string,#,2|0] −> iList[0|int,#,1], 0;
string of int : 0, int −> string, 0;

Fig. 2. Output of space analysis on the program in Fig. 1

type iList = !Nil | Cons of int ∗ iList

let ins a l = match l with
Nil −> Cons(a,Nil)

| Cons(x,t)@ −> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with
Nil −> Nil

| Cons(a,t) −> ins a (sort t)

let show list0 l = match l with
Nil −> ””

| Cons(h,t) −> begin
match t with

Nil −> string of int h
| Cons(h0,t0) −> (string of int h) ˆ ”, ” ˆ (show list0 t)

end

let show list l = ”[” ˆ (show list0 l) ˆ ”]”

let stringList to intList ss =
match ss with

[] −> Nil
| (h::t) −> Cons((int of string h),(stringList to intList t))

let start args =
let l1 = (stringList to intList args)

in let = print string (”\nInput list :\n l1 = ” ˆ (show list l1))
in let l2 = sort l1
in let = print string (”\nResult list:\n l2 = ” ˆ (show list l2))
in ()

Fig. 1. A standalone Camelot program

ins : 1, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;
int of string : 0, string −> int, 0;
print string : 0, string −> unit, 0;
show list : 0, iList [0| int,#,0] −> string, 0;
show list0 : 0, iList [0| int,#,0] −> string, 0;
sort : 0, iList [0| int,#,1] −> iList[0|int,#,0], 0;
start : 0, list 1 [string,#,2|0] −> unit, 0;
stringList to intList : 0, list 1 [string,#,2|0] −> iList[0|int,#,1], 0;
string of int : 0, int −> string, 0;

Fig. 2. Output of space analysis on the program in Fig. 1

The architecture of MRG
Implementation

Code producer Code consumer

Camelot
Resource

policy

JVM

Grail
Proof

checker
Grail

Java

classfile

Java

classfile
OK?

Grail

I It is the target of the Camelot compiler, which performs a

resource exact compilation

That is, compilation preserves non only meaning, but also

resource behaviour.

I It is the vehicle for proof-carrying code:
I It is the basis to which to attach the resource assertions
I It is amenable to formal proofs about resource usage
I It is the format for sending and receiving guaranteed code

I It can be assembled to (and dissambled from) standard JVM

classfiles

Bytecode logic of resources

I The logic allowing to state and prove that the Grail bytecode

satify the resource usage

I The construction of proofs uses the type annotations

I Verification is much easier

I But we are not concerned here with this issues...

At the end of this series of lectures...

Many challenges remain. . .

Challenges

I The area of implicit computational complexity appears very

fragmented, with many different proposals.

I It is very difficult to compare relative intensional expressive

power.

I It is not usually the case a system can be extended with new

features preserving its quantitative properties

I Defining just another characterization of polynomial time is

not enough.

I Importing these results into the design of (even academic)

programming languages is extremely difficult (especially for

time bounds).

I Deep, foundational results are extremely needed.

	Logic and Programming Languages
	Challenges

