
Implicit Computational Complexity

Simone Martini

Dipartimento di Scienze dell’Informazione
Università di Bologna

Italy

Bertinoro International Spring School

for Graduate Studies in Computer Science,

6–17 March, 2006

Outline: second part

Proof Theory

Intuitionistic Logic and the Curry Howard Isomorphism

Logic and Programming Languages

Challenges

Second Part: Proof theory techniques

We shift from function classes to logical systems

We investigate computational “built-in” mechanisms

And learn how to cut them down to interesting complexity classes

To say the truth...

Already our approach to Gödel’s T is not in the function algebra

style.

We defined T as a formal system where there is a built-in

computational mechanism (machine model): λ-calculus’ beta

reduction.

Next step will be to get rid of the base type of natural numbers

and use “bare” logical systems.

Second Order Intuitionistic Logic, Sequent calculus

A ` A (Ax)

Γ ` A A, ∆ ` B
Γ, ∆ ` B

(Cut)

Γ ` C
Γ, A ` C

(Weak.)
Γ, A,A ` B
Γ, A ` B

(Contr .)

Γ ` A B, ∆ ` C
Γ, A → B, ∆ ` C

(→,l)
Γ, A ` B

Γ ` A → B
(→,r)

Γ, A,B ` C
Γ, A ∧ B ` C

(∧,l)
Γ ` A ∆ ` B
Γ, ∆ ` A ∧ B

(∧,r)

Γ, T [S/t] ` C

Γ,8t.T ` C
(8,l)

Γ ` C
Γ ` 8t.C

t 62FV (Γ) (8,r)

The Curry-Howard correspondence: Annotated proofs

x : A ` x : A (Ax)

Γ ` M : A x : A, ∆ ` N : B
Γ, ∆ ` N[M/x] : B

(Cut)

Γ ` M : C
Γ, x : A ` M : C

(Weak.)
Γ, y : A, z : A ` M : B

Γ, x : A ` M[z/x , y/z] : B
(Contr .)

Γ ` M : A x : B, ∆ ` N : C
Γ, f : A → B, ∆ ` N[fM/x] : C

(→,l) Γ, x : A ` M : B
Γ ` λx .M : A → B

(→,r)

Γ, x : A, y : B ` M : C

Γ, z : A ∧ B ` M[fz/x , sz/y] : C
(∧,l)

Γ ` M : A ∆ ` N : B
Γ, ∆ ` hM,Ni : A ∧ B

(∧,r)

Γ, x : T [S/t] ` M : C

Γ, x : 8t.T ` M : C
(8,l)

Γ ` M : C
Γ ` M : 8t.C

t 62FV (Γ) (8,r)

The Curry-Howard correspondence: Computing with proofs

I Notion of normalization on proofs: cut elimination.

I We may annotate proofs with λ-terms.

I Normalization of proofs is β-reduction on λ-terms

I Expressiveness: Code natural numbers as a certain type TN;

then study the functions definable by terms with type

TN → TN

I Complexity: study the cost of normalizing a term

Comparison with the “function algebra” setting

I Function algebras
I Primitive notion: data types (binary strings) and the

operations on them;
I Control added as a form of rewriting

I Curry-Howard correspondence
I Primitive notion: logical proofs and their normalization;
I Datatypes added as specific formulas

Types and data in Second Order Intuitionistic Logic

I The annotated system is called System F

I Identity: λx t .x : 8t.t → t;

I Natural numbers: N = 8t.(t → t) → (t → t);

I The number 3: 3 = λf t→t .λx t .f (f (fx)) : N

These are the Church numerals. In general:

n = λf t→t .λx t .f nx : N

I Binary words: B = 8t.(t → t) → (t → t) → (t → t);

I The binary word 01 (that is: s0s1ε): λst→t
0 .λst→t

1 .λet .s0(s1e);

I In general: any “inductive” free algebra can be expressed in

this way (Berarducci & Böhm)

Computing with free algebras

I Elements of the free algebras behave like iterators over

arbitrary data

I Examples in N:
I Let T be any type and let F : T → T .
I For any a : T we have n F a → F (F � � � (Fa) � � �), with n

occurrences of F .
I iterT = λn.λf .λx .n f x : N → (T → T) → T → T .
I A doubling function:

double = λn.2n : N → N;
I An exponential function:

exp = λn.iterN n double 1 : N → N

Expressivity of System F

I Any term of System F is strongly normalizing (Girard, 1972);

I Very strong consistency result for second order arithmetic;

I An (extensional) function f from naturals to naturals is coded

with a term Mf : N → N iff f is provably total in second order

arithmetic.

I A huge class!

I Normalizing a term in System F requires hyperexponential

time.

Harnessing the power of System F, I

I Restrict the language of types and/or the rules to compute

with them.

I Ban the second order (i.e., polymorphic) types.

The simply typed lambda-calculus

I With simple types, the class of representable functions is
strongly influenced by the underlying coding scheme:
I If we fix normal forms for N0 = (α → α) → (α → α) to be the

only legal encoding of numerals, then the class of representable

functions is very small (the extended polynomials of

Schwichtenberg 1976)
I We may relax this constraint, allowing for instances of N0

I In general, even inside the simply-typed λ-calculus,

normalization is costly: it is not even Kalmar elementary in the

size of the term being normalized (Statman 1979).

Harnessing the power of System F, II

I A better approach is to change the underlining logical

machinery

I In particular: limit the arbitrary duplication in a computation

(proof)

I That is: control the contraction rule.

I The drastic removal of contraction and weakening gives as

(multiplicative) Linear Logic (LL)

I LL has a fast (polytime) normalization procedure

I It has, however, too little expressive power.

I Hence, reintroduce controlled duplication in the form of

modal annotations on formulas to be contracted.

Intuitionistic Multiplicative Linear Logic: IMLL

A ` A (Ax)

Γ ` A A, ∆ ` B
Γ, ∆ ` B

(Cut)

Γ, A ` B
Γ ` A(B

((,r)
Γ ` A B, ∆ ` C
Γ, A(B, ∆ ` C

((,l)

Γ, A,B ` C
Γ, A
 B ` C

(
i ,l)
Γ ` A ∆ ` B
Γ, ∆ ` A
 B

(
,r)

Γ, T [S/t] ` C

Γ,8t.T ` C
(8,l)

Γ ` C
Γ ` 8t.C

t 62FV (Γ) (8,r)

Proof-nets for Multiplicative Linear Logic

I Proof-nets are a graph notation for (sequent) proofs.

I Normalization is a simple local procedure of graph-rewriting,

at least in the multiplicative case.

I In the multiplicative case the normalization is polynomial

(actually linear in the size of the graph).

I But multiplicative logic is not expressive enough. . .

I

I Details on proof nets at recitation?

Adding Exponentials: I(ME)LL

A ` A (Ax)

Γ ` A A, ∆ ` B
Γ, ∆ ` B

(Cut)

Γ ` C
Γ, !A ` C

(Weak.)
Γ, !A, !A ` B

Γ, !A ` B
(Contr .)

Γ, A ` B
Γ ` A(B

((,r)
Γ ` A B, ∆ ` C
Γ, A(B, ∆ ` C

((,l)

Γ, A,B ` C
Γ, A
 B ` C

(
i ,l)
Γ ` A ∆ ` B
Γ, ∆ ` A
 B

(
,r)

Γ, A ` B
Γ, !A ` B

(!,l)
!A1, . . . , !An ` B
!A1, . . . , !An ` !B

(!,r)

Γ, T [S/t] ` C

Γ,8t.T ` C
(8,l)

Γ ` C
Γ ` 8t.C

t 62FV (Γ) (8,r)

Proof nets for Multiplicative Exponential Linear Logic

Something at recitation?

A variant

A ` A (Ax)

Γ ` A A, ∆ ` B
Γ, ∆ ` B

(Cut)

Γ ` C
Γ, !A ` C

(Weak.)
Γ, !A, !A ` B

Γ, !A ` B
(Contr .)

Γ, A ` B
Γ ` A(B

((,r)
Γ ` A B, ∆ ` C
Γ, A(B, ∆ ` C

((,l)

Γ, A,B ` C
Γ, A
 B ` C

(
i ,l)
Γ ` A ∆ ` B
Γ, ∆ ` A
 B

(
,r)

A1, . . . , An ` B
!A1, . . . , !An ` !B

(!)

Γ, A ` B
Γ, !A ` B

(ε)
Γ, !!A ` B
Γ, !A ` B

(δ)

Γ, T [S/t] ` C

Γ,8t.T ` C
(8,l)

Γ ` C
Γ ` 8t.C

t 62FV (Γ) (8,r)

Expressivity of IMELL

I Intuitionistic logic (IL) can be interpreted inside Linear Logic

with exponentials (LL)

I ()� : IL → LL

I Γ `IL A iff !Γ� `LL A�

I It is actually a map on proofs

I Several interpretations have been studied, to establish

properties also on their computational properties (i.e., under

normalization/cut-elimination)

I Therefore: from our point of view LL is still way too

expressive!

Fine control of duplication

I How are we allowed to use the duplicated resources (i.e.,

!-marked formulas)?

I Look at the various rules!

I Write A � B for A(B and B (A

I The most fundamental property is !A � !A
 !A

I It is obtained from rules (C), (W) and (!) (check it!)

I But in LL (in order to interpret IL) we have more properties...

I !A(A, from (ε) (“dereliction”)

I !A(!!A, from (δ) (“digging”)

I The interplay between these rules is the main source for

complexity of normalization and expressivity

I From a modal logic perspective: ! in LL is like � in modal

logic S4. . .

Subsystems of Linear Logic

!A(!!A !A(A !A ∼= !A
 !A

ELL NO NO YES

LLL NO NO YES

SLL NO !A(A
 . . .
 A

...and their expressive power

ELL Elementary Time

LLL Polynomial Time

SLL Polynomial Time

Subsystems of Linear Logic, II

As rules:

(!) (δ) (ε) (C) (mplex) (u!)

ELL YES NO NO YES NO derivable

LLL NO NO NO YES NO YES + (§)

SLL YES NO NO NO YES derivable

where

Γ, !A, !A ` B
Γ, !A ` B

(C)
A1, . . . , An ` B

!A1, . . . , !An ` !B
(!)

Γ, A ` B
Γ, !A ` B

(ε)
Γ, !!A ` B
Γ, !A ` B

(δ)

Γ, A,A] ` C

Γ, !A ` C
(mplex)

A ` C
!A ` !C

u!

Subsystems of Linear Logic, III

I ELL has an elementary time cut-elimination procedure and
represents (all) the elementary time functions.
I Recall: elementary means to belong to E3 in Grzegorczyk

hierarchy;
I we have all the fixed-height towers of exponentials, but not the

variable-height one

I SLL and LLL have a polytime cut-elimination procedure and

represents (all) the polytime computable functions.

I We will consider (technically easier) “affine” variants of this

logics, that is systems where full weakening is allowed.

We proceed in this way

I We introduce annotated sequent calculus of EAL/LAL (“A”

stands for “affine”)

I We argue (well: we just state) that the normal form of these

lambda terms can be computed by considering their

associated proof nets as intermediate calculus.

I In this intermediate calculus there are certain parameters of

the nets that can be used to express the cost of normalization.

Elementary Affine Logic as an annotated sequent calculus

x : A ` x : A (Ax)

Γ ` M : A x : A, ∆ ` N : B
Γ, ∆ ` N[M/x] : B

(Cut)

Γ ` M : C
Γ, x : A ` M : C

(Weak.)
Γ, x : !A, x : !A ` M : B

Γ, x : !A ` M : B
(Contr .)

Γ ` N : A x : B, ∆ ` M : C
Γ, f : A(B, ∆ ` M[(f N)/x] : C

((,l) Γ, x : A ` M : B
Γ ` λx .M : A(B

((,r)

x1 : A1, . . . , xn : An ` M : B
x1 : !A1, . . . , xn : !An ` M : !B

(!)

Γ, x : T [S/t] ` M : C

Γ, x : 8t.T ` M : C
(8,l)

Γ ` M : 8C
Γ ` M : 8t.C

t 62FV (Γ) (8,r)

Data types in EAL

I Data types can be defined as in System F, but with some “!”

in the middle, to mark “reuse”

I Natural numbers (unary notation)

N � 8t.!(t (t)(!(t (t)

I Binary words

B = 8t.!(t (t)(!(t (t)(!(t (t)

I Operations on such data also get some “!” in their types
For instance, on Church numerals:
I Multiplication: mul � λn.λm.λf .n(m f) : N (N (N;
I Squaring: sqr � λn.mul n n : !N (!N

I These additional !s make it difficult to program in these

systems. . .

Proof nets for EAL

I EAL-typed λ-calculus is not too well behaved. Even

preservation of typing under reduction (“subject reduction”)

fails, in general.

I The real machine model to be used are proof nets

I Proof nets for EAL are the same as for LL, but with less

normalization rules, because EAL have less rules concerning !

I Crucial points:
I For any arc e in a proof-net, let de be the number of boxes

containing e (this is the depth of the arc.)
I For any proof net Π, let dΠ, be the maximum of all the de ’s,

for e varying on all the arcs (this is the depth of the proof net.)
I During reduction, the depth of any arc do not changes.

This is specific to EAL. It is false for LL: dereliction (ε) will

make it decrease; digging (δ) will make it increase.

Simulation lemma

To be more specific, proof nets can be used as an intermediate

language in view of the following result:

Lemma

Let Γ ` M : A and let ΠM the proof net associated to this proof.

Now let ΠM → Π 0 in normal form. Then Π 0 corresponds to a proof

of Γ ` M 0 : A, with M → M 0 and M 0 in normal form.

That is, normalization (i.e., computation) on proof nets, simulates

normalization of the λ-term.

Complexity bounds for EAL

Theorem

Let Π be a proof net of depth dΠ. Then Π can be reduced to

normal form in less than 2�
��
|Π| }

dΠ times
.

Theorem

Let f be any elementary function (that is, f 2 E3). Then there is a

λ-term typeable in EAL (with type N (!kN) defining f .

Getting Light Affine Logic from EAL

I Take out the rule

x1 : A1, . . . , xn : An ` M : B
x1 : !A1, . . . , xn : !An ` M : !B

(!)

I Instead, add its restricted version

x : A ` M : B
x : !A ` M : !B

(u!)

(the rule may be applied also without environment x : A).

I To compensate for the loss, add a new modality, §, with rule

x1 : A1, . . . , xn : An, y : C1, . . . , y : Cm ` M : B

x1 : !A1, . . . , xn : !An, y : §C1, . . . , y : §Cm ` M : §B
(§)

Data types in Light Affine Logic

I Data types can be defined as in EAL and System F, but with

some “!” and § in the middle

I Natural numbers (unary notation)

N � 8t.!(t (t)(§(t (t)

I Binary words

B = 8t.!(t (t)(!(t (t)(§(t (t)

I Operations on such data also get some “!” and some § in

their types
For instance, on Church numerals:
I Addition gets type N (N (N
I Multiplication gets type !N (N (§N

I These additional modalities make it difficult to compose and

iterate on these terms.

Complexity bounds for LAL

As for EAL, the actual computational engine are the proof nets.

This is required in order to get the polynomial bound.

Theorem

Let Π be a LAL proof net of depth d. Then Π can be reduced to

normal form in less than O((d + 1) � |Π|2
d+1

)

When the depth is fixed, this is a polynomial in |Π|.

Theorem

Let f be any polytime computable function. Then there is a

λ-term typeable in LAL (with type B(§k
B) defining f .

From Logic to Programming Languages

I How can a host machine assure the amount of resource

needed to run a mobile program? A resource-aware type

system or program-logic would provide implicit and verifiable

certificates.

I In the realm of (first-order) term-rewriting systems, techniques

like quasi interpretations have been shown to be useful for

inferring complexity properties of programs (Bonfante et al.).

I Type-systems derived from non-size increasing computations

have been exploited in the context of mobile resource

guarantees (Hofmann et al., Beringer et al.).

I Enforcing resource-awareness in programming languages is not

an easy task. The additional control provided cannot come at

the price of unacceptable restrictions to programs.

Inferring Linear Bounds on Heap Size – Hofmann & Jost

I Language: first-order functional programming language with

recursion.

I Type-system: simple types, including lists, with resource

annotations.

I Example: x : L(B, 2), 3 ` e : L(B, 4), 5
means
I if we evaluate e starting with x bound to a list [u1, . . . , um],
I and we have a free-list of at least 3 + 2m cells,
I then the computation will not get stuck from insufficient

memory availability;
I moreover, if the result is a list [v1, . . . , vn], then at the end the

free-list will have at least 5 + 4n cells.

Hofmann & Jost, II

I Type-system: Contraction can only be done splitting the

corresponding resource annotations: for example, from

x : L(B,3), y : L(B,6) ` e : C , 7

we can derive

z : L(B,9) ` e{z/x , z/y } : C , 7

I Decorations: given a skeleton of a type derivation (types, but

not resource annotations) for e,

a set of linear inequalities L(e) is derived.

Solutions to L(e) are in one-to-one correspondence with valid

type derivations for e.

From Logic to Computational Complexity

I Programming languages can be designed so that functions

computable by acceptable programs extensionally correspond

to certain computation complexity classes.

I If the underlying programming language is reasonably

abstract, the system is then a machine-free characterization of

a complexity class and can be used to infer properties of that

same class.

I If we want to infer properties of a complexity class from

properties of a certain system (which exactly characterizes it),

we should keep the system as simple as possible, without

emphasizing issues such as programming flexibility.

Challenges

I The area of implicit computational complexity appears very

fragmented, with many different proposals.

I It is very difficult to compare relative intensional expressive

power.

I It is not usually the case a system can be extended with new

features preserving its quantitative properties

I Defining just another characterization of polynomial time is

not enough.

I Deep, foundational results are extremely needed.

That’s it, folks

	Proof Theory
	Intuitionistic Logic and the Curry Howard Isomorphism

	Logic and Programming Languages
	Challenges

