
Implicit Computational Complexity

Simone Martini

Dipartimento di Scienze dell’Informazione
Università di Bologna

Italy

Bertinoro International Spring School

for Graduate Studies in Computer Science,

6–17 March, 2006

Outline: first part

Preliminaries

What is Implicit Computational Complexity

Complexity theory

Primitive recursion

Subrecursive classes

Grzegorczyk hierarchy

Heinemann hierarchy

Bounded recursion on notation

Safe and tiered recursion

Bellantoni and Cook: Safe recursion

Leivant: Predicative (or tiered) recursion

Higher-order calculi: subsystems of Gödel’s T

Implicit Computational Complexity

I Standard Computational Complexity
I Study of complexity classes and their relations.
I Define first a machine model and its associated cost model(s)

(for time, space, etc.)
I Define then complexity classes as sets of problems or functions,

computable in a certain bound.

I Implicit Computational Complexity
I Describe complexity classes without explicit reference to a

machine model and to cost bounds.
I It borrows techniques and results from Mathematical Logic

I Recursion Theory (Restriction of primitive recursion schema);
I Proof Theory (Curry-Howard correspondence);
I Model Theory (Finite model theory).

I It aims to define programming language tools (e.g.,

type-systems) enforcing resource bounds on the programs.

Complexity classes

I Standard machines: Turing automata.
I Crucial: constant time elementary step.
I Cost model: number of steps (time) or number of work cells

(space).
I TM M works in bound f iff for any input u, M(u) terminates

using less than f (|u|) resources.

I Complexity classes
I Sets of decision problems (functions with only 0 or 1 as values);
I Resource[f (n)] =

{P | there exists TM M deciding P and working in bound f };

I Some relevant classes
I LogSpace = Space[log n];
I LinTime = Time[n];
I PTime = [i2NTime[ni];
I PSpace = [i2NSpace[ni];
I ExpTime = Time[2n];

Invariance

I Classes are invariant w.r.t. linear factors:

Resource[f (n)] =Resource[af (n) + b];

I Under certain assumptions, different machine models differ

only by a polynomial in their use of resources.

E.g., if a problem P is solvable in bound f by a TM model, P

is solved in at most f k in another model.

I Therefore, under these assumptions, PTime and PSpace are

very robust.

Coding of numbers

I Numbers must be coded into the TM alphabet.

I It is crucial that the coding of numbers be

positional with base greater than one.

I With unary notation, the lenght of the input would be

esponentially longer than the lenght in any other base.

Therefore giving esponentially more resource to the

computation. (Remember: the bound is a function of |u|).

Functional classes

I FPtime =

{f : N → N |

there exists TM M computing f in polynomial bound};

I FLogSpace = . . . ;

I . . .

Machine-free definitions of functions: Gödel-Kleene

Class of n-ary functions defined by closure.

I Base functions:
I Constant zero: Z : N → N, Z (y) = 0;
I Successor: S : N → N, S(y) = y + 1;
I Projections: for any k 2 N and i � k, πk

i : Nk → N,

πk
i (y1, . . . , yk) = yi .

I The function f is defined by composition from g , h1, . . . , hn if

f (y1, . . . , yk) = g(h1(y1, . . . , yk), . . . , hn(y1, . . . , yk))

I The function f is defined by primitive recursion from g and h if

f (0, y) = g(y)

f (x + 1, y) = h(x , y , f (x , y))

Classes of recursive functions

I The primitive recursive functions is the least class of functions

containing the base functions and closed under composition

and primitive recursion.

I The function f is defined by minimization from g if

f (y) = the least z such that (i) g(z , y) = 0 and

(ii) g(x , y) is defined for all x � z

Notation : f (y) = µz .g(z , y) = 0

I The (general) recursive functions is the least class of functions

containing the base functions and closed under composition,

(primitive recursion), and minimization.

Recursive functions as a machine model

I Original aim: define a class of functions in extenso.

I Natural operational interpretation as rewriting.

I However: no notion of constant time elementary step.

I Rewriting involves duplication of data of arbitrary size and of

computations of arbitrary length.

I Need of non trivial data structures (stack) to (näıvely)

implement primitive recursion.

Algebras for polynomial functions?

I We set out for a “closure-like” definition of FPTime.

I We first study some known subclasses of the primitive

recursive functions.

The spine of primitive recursion

f0(x , y) = x + 1;

f1(x , y) = x + y ;

f2(x , y) = xy ;

fn+1(x , 0) = 1;

fn+1(x , y + 1) = fn(x , fn+1(x , y))

f3(x , y) = xy ;

f4(x , y) = x �
��
x }

y times
.

Theorem

For any n and x , y > 2, fn(x , y) < fn+1(x , y).

Grzegorczyk

I Recursion causes bigger growth than composition:
I Define f k(x) = (f � � � f)(x), k times.
I For any n and any k, there exists x̂ such that, for any x > x̂ ,

fn+1(x , y) > f k
n (x , x).

I The function f is defined by bounded primitive recursion from

g , h and l iff f is defined by primitive recursion from g , h and

moreover, for any x ,

f (x) < l(x).

I For n � 0 the class En is the least class including the base

functions, the spine component fn, and closed under

composition and bounded primitive recursion.

Grzegorczyk hierarchy and complexity of computation

I The hierarchy is proper: En � En+1.

I Its limit are the primitive recursive functions: [nEn = PR.

I f 2 En iff there exists a TM M computing f and a function

g 2 En, such M works in time (space) bounded by g . (Unary

notation used here).

I Hence the same holds for the primitive recursive functions.

I Do the classes En correspond to natural complexity classes?

Theorem (Ritchie, 1961)

E2 = FLinspace

I Ptime 6= FLinspace, but we do not know whether there is

some inclusion between the two classes.

Many other hierarchies

I Many other hierarchies are definable, “structuring” recursion

by levels.

I E.g., define the rank δ of a function definition:
I Initial functions have rank 0;
I f defined by composition from h, g1, . . . , gk have rank

max{δ(h), δ(g1), . . . , δ(gk)};
I f defined by recursion from base g and step function h have

rank max{δ(g), δ(h) + 1}.

I Dn = {f | δ(f) � n}

I For n � 2, Dn = En+1 (Schwichtenberg; Müller, for n = 2).

I E3 is an important class: the Kalmar elementary functions.

I But we are mainly interested in the lower classes...

One last result for the “bigger” classes: PSpace

PSpace is the least classs containing:

I Base functions: Zero, projections, max, x |x |;

I Closed by composition, and

I Bounded primitive recursion.

Moral:

Bounded recursion, or just limiting nested recursion is not enough

if we are interested in the lower complexity classes, e.g. PTime.

Indeed both PTime and ExpTime both lie in D2 = E3, that is

the elementary functions.

A closer look: a notational problem

I Usual recursion—from f (n) to f (n + 1)—is exponentially long

on the size of the input n.

I This is why controlling recursion, per se, is not enough:
I A single recursion may cause exponential blow;
I Two nested recursions are enough to reach the elementary

functions (recall: D2 = E3).

I Move to binary representation for input (or, more generally,

manipulate strings).

Recursion on Notation

I Data: binary strings

I Two “successors”:
I s0, adding 0 at the least significant position

i.e., on the represented number s0(n) = 2n;
I s1, adding 1 at the least significant position

i.e., on the represented number s0(n) = 2n + 1;

I Recursion on Notation:

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = h0(x , y , f (x , y))

f (s1(x), y) = h1(x , y , f (x , y))

Recursion on Notation, examples

I Now recursion converges quickly to a base case:

f (n) involves at most log n recursive calls.

I Notation: we mix strings and numbers.

I Example: duplicating the length of the input

As strings (� is concatenation):

d(0) = d(1) = 1

d(s0(x)) = d(x) � 00

d(s1(x)) = d(x) � 00

As numbers (� is multiplication):

d(0) = d(1) = 1

d(n) = 4 � d(bx/2c)

That is, d(n) = 22|n|, that is |d(n)| = 2|n| − 1.

Recursion on notation is too generous

Recall

d(0) = d(1) = 1

d(s0(x)) = d(x) � 00

d(s1(x)) = d(x) � 00

And define

e(0) = e(1) = 1

e(s0(x)) = d(e(x))

e(s1(x)) = d(e(x))

Now e(x) has exponential lenght in |x |. . .

Still too much growth. . .

Bounded recursion on notation

I Bennett (1962) and Cobham (1965).

I A function f : Nn+1 → N is defined by bounded recursion on

notation from g0, g1 : Nn → N, h0, h1 : Nn+2 → N and

k : Nn+1 → N if

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = h0(x , y , f (x , y))

f (s1(x), y) = h1(x , y , f (x , y))

provided f (x , y) � k(x , y).

Cobham characterization of FPtime

I However, the basic functions Zero, projections and successor

do not grow enough. . .

I Let x#y = 2|x |�|y | (note: |x |k = |x |# � � �#|x |).

Theorem (Cobham)

FPTIME is the least class containing: Zero, the projections, the

two successors on strings, #; and closed under composition and

bounded recursion on notation.

I Proof: FPTIME � COB: Code TMs as functions of the

algebra. The iteration of the transition function is

representable because a priori polynomially bounded.

COB � FPTIME : By induction on the length of the

definition, show that any function is computable by a

polynomially bounded TM, exploiting the bound on the

recursive definition.

Variations on a theme

I Logspace is an important measure. Logspace reductions

are crucial to study the structure of Ptime, e.g. the existence

of complete problems.

I A function f : Nn+1 → N is defined by strict bounded

recursion on notation from g0, g1 : Nn → N,

h0, h1 : Nn+2 → N and k : Nn+1 → N if

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = h0(x , y , f (x , y))

f (s1(x), y) = h1(x , y , f (x , y))

provided f (x , y) � |k(x , y)|.

Logspace

Theorem (Lind;Clote & Takeuti)

FLOGSPACE is the least class containing: Zero, projections,

successors, length functions, bit selection, #; and closed under

composition, strict bounded recursion on notation, and

concatenation recursion on notation.

where Concatenation Recursion on Notation (CRN) from g , h0, h1

(hi (x , y) � 1) is

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = sh0(x ,y)(f (x , y))

f (s1(x), y) = sh1(x ,y)(f (x , y))

A critique on Cobham characterization

I Cobham’s paper is the birth of computational complexity as a

respected theory.

I It characterized Ptime as a mathematically meaningful class.

I From the implicit computational complexity perspective,
however. . .
I It is not as implicit as it seems
I It uses an explicit a priori bound on the construction
I It “throws in” the polynomials (i.e., the # function) in the

recipe, in order to make it work.

I We had to wait until the ’80s to get a more “implicit”

characterization of Ptime. . .

Safe Recursion: idea

I Unbounded recursion schema to control the growth of

functions

I Function arguments are partioned into two separate classes.

I Function definitions are constrained to respect this partition.

I The arguments to a function f : Nn → N are partitioned into

m � n normal arguments and n − m safe arguments:

f (x1, . . . , xm; xm+1, . . . , xn).

I Idea: calls to functions obtained by recursion can only appear

in the safe zone.

I Need to modify the composition, in order to respect the

distinction normal/safe.

Safe Recursion and Composition

I The function f is defined by safe composition from

g , h1, . . . , hn, k1, . . . , km if

f (x ; y) = g(h1(x ;), . . . , hn(x ;); k1(x ; y), . . . , km(x ; y)).

I The function f is defined by safe recursion on notation from

g0, g1, h0, h1 if

f (0, x ; y) = g0(x ; y)

f (1, x ; y) = g1(x ; y)

f (s0(x), x ; y) = h0(x , x ; y , f (x , x ; y))

f (s1(x), x ; y) = h1(x , x ; y , f (x , x ; y))

Understanding safe composition and recursion

I The key clause:

f (si (x), x ; y) = hi (x , x ; y , f (x , x ; y))

I If f is defined by safe recursion:
I it takes the recursion input si (x) from the normal part;
I but the recursive value f (x , x ; y) is substituted into a safe

position of h
I then this recursive value will stay in a safe position, because of

safe composition

f (x ; y) = g(h1(x ;), . . . , hn(x ;); k1(x ; y), . . . , km(x ; y)).

and will not be copied back into a normal position.

I Intuitively, the depth of sub-recursions which hi performs on y

or y cannot depend on the value being recursively computed.

Projections

I We have projections from both normal and safe zones

πn+m
j (x1, . . . xn; xn+1, . . . xn+m) = xj 1 � j � n + m

I Now we can move arguments from safe to normal (but not
vice-versa)
I Assume we have f (x ; y , z).
I Define f 0(x , y ; z) same as f but with y “demoted” to normal
I f 0(x , y ; z) = f (π2

1(x , y ;); π3
2(x , y ; z), π3

3(x , y ; z))

Controlling recursion by safeness

Successors are safe: s0(; x), s1(; x)

We have projections from both normal and safe zones

Recall the function

d(0) = d(1) = 1

d(s0(x)) = d(s1(x)) = d(x) � 00

Define:

d(0;) = d(1;) = 1

d(s0(x);) = d(s1(x);) = s0(; s0(; d(x ;)))

where formally the step function h is

h(x ; z) = π2
2(x ; s0(; s0(;π

2
2(x ; z)))

Controlling recursion by safeness, II

Recall now the exponential function

e(0) = e(1) = 1

e(s0(x)) = e(s1(x)) = d(e(x))

We cannot define e by safe recursion:

e(0;) = e(1;) = 1

e(s0(x);) = e(s1(x);) = ? d(e(x)) ?

The safe recursion schema requires h(z ; y) = d(; y),

but d is instead defined as d(y ;).

Polytime and safe recursion

Let B be the function algebra containing

I successors: s0(; x), s1(; x);

I projections, from normal and safe arguments;

I predecessor: p(; 0) = 0 and p(; si (x)) = x ;

I conditional:

C (; x , y , z) =

{
y if x = s0(v)

z if x = s1(v).

and closed under safe composition and recursion.

Theorem (Bellantoni and Cook)

The polynomial time computable functions are exactly those

functions of B having only normal inputs.

Proof of BC’s theorem

I Soundness: Any function in B is polytime.
I Derive first a bound on the computed value: Let f 2 B. There

is a polynomial qf such that

|f (x ; y)| � qf (|x |) + max(y1, . . . , yn)
I Observe that such qf ’s are definable in Cobham’s class.
I Therefore, any instance of Safe recursion is an instance of

Bounded rec. on notation.

I Completeness: Any polytime function is in B.
I Use Cobham characterization via bounded recursion on

notation.
I By induction on derivation on Cobham’s system, show that for

any polytime f (y) there exists a function f 0 2 B and a

polynomial pf such that f 0(w ; y) = f (y), for all y and all

w � pf (|y |)
I Now construct a function b in B such that b(x ;) � pf (|x |)
I Set f (x ;) = f 0(b(x ;); x).

Variations: Safe Affine Composition

I In safe composition a safe argument may be used several times

f (x ; y) = g(h1(x ;), . . . , hn(x ;); k1(x ; y), . . . , km(x ; y).

I If we are interested in Logspace, we must limit reuse of

resources, imposing some kind of lineary constraint: any safe

argument should be used at most once.

I The function f is defined by safe affine composition from

g , h1, . . . , hn, k1, . . . , km if

f (x : y) = g(h1(x :), . . . , hn(x :) : k1(x : Y 1), . . . , km(x : Y m))

where any y1, . . . , yk of y occurs at most once in any

Y 1, . . . , Y m.

Safe Affine Recursion: Logarithmic Space

I The function f is defined by safe affine course-of-value

recursion on notation from g0, g1, h0, h1 if

f (0, x : y) = g0(x : y)

f (1, x : y) = g1(x : y)

f (s0(x), x : y) = h0(x , x : f (x 0, x : y))

f (s1(x), x : y) = h1(x , x : f (x 00, x : y)) with x 0, x 00 � x

Theorem (Mairson and Neergaard, 2003)

The set of logaritmic space functions equals the set of functions

definable by safe affine course-of-value recursion, safe affine

composition, and containing the base functions of BC.

Tiering

I Related to safe recursion is the notion of predicative

recurrence, or tiering [Leivant, 1993].

I Any function and argument position comes with a tier.

I Equivalently: we have an infinite number of copies of the base

data:

N0,N1,N2, . . .

I Functions have a type of the form

f : Ni � � � � � Nj → Nk

I Base functions are available at any tier.

I Composition is tier-preserving: f i � g i = hi .

Predicative Recurrence - I

I Recursion is possible only over a variable with tier greater

than that of the function:

f (0, y)i = g0(y
k)i

f (1, y)i = g1(y
k)i

f (s0(x)l , y)i = h0(x
l , yk , f (x , y)i)i

f (s1(x)l , y)i = h1(x
l , yk , f (x , y)i)i with l > i

I In other words:
I When defining inductively

f (sb(x), y) = hb(x , y , f (x , y))
I we must have

hb : Nl � N� Ni → Ni

with l > i , and we obtain

f : Nl � N → Ni

Examples of predicative recurrence

Recall: In f (sb(x)l , y)i = hb(x
l , yk , f (x , y)i)i , l > i .

I Flat recurrence: the stratification is vacuous, because the

recursion argument is absent

p(sb(x)) = x

I Concatenation:

�(ε, y) = y

�(sb(x), y) = sb(�(x , y))

Imposing stratification:

�(sb(x)l , y j)i = sb(�(x l , y j)i) with l > i

Take l = 1, i = 0 (and j whatever, say 0):

� : N1 � N0 → N0

Examples of predicative recurrence - II

We can apply predicative recurrence on any constructor algebra:

numbers in unary or binary notation, trees, etc.

I Addition in unary notation:

+(0, y) = 0

+(s(x), y) = s(+(x , y))

Imposing stratification:

+(s(x)1, y0)1 = s(+(x1, y0)1)

+ : N1 � N0 → N0

I Multiplication in unary notation:

�(0, y) = 0

�(s(x), y) = +(y , �(x , y))

Impose the stratification for +:

�(s(x), y) = +(y1, �(x , y)0)0

and propagate; everything is OK: � : N1 � N1 → N0

A non predicative recurrence

Recall: In f (s(x)l , y)i = h(x l , yk , f (x , y)i)i , l > i .

I Powers of two P2(n) = 2n:

P2(0) = 1

P2(s(x)) = +(P2(x),P2(x))

Recall that + : N1 � N0 → N0

and impose this stratification:

P2(s(x)?)?? = +(P2(x)1,P2(x)0)0

The first input to + must have level greater than the output

From the output of + we would get ?? = 0

From the first input to + we would get ?? = 1.

Impossible under any assignment.

Predicative recurrence and polynomial time

Theorem (Leivant, 1993)

Let W be a free algebra, f a function over W . The following are

equivalent:

1. f is computable in time polynomial in the maximal height of

the inputs.

2. f is definable by predicative recursion over A0 and A1.

3. f is definable by predicative recursion over arbitrary Ai ’s,

i � 0.

Compare to Bellantoni and Cook: no initial functions.

Same idea. . .

Tiering and Safe recursion

I Tiering and safeness are equivalent

I From a tiered f (x l1
1 , . . . , x ln

n , y i
1, . . . y

i
m)i where l1, . . . , ln > i

we get f (x1, . . . , xn; y1, . . . , ym)

I From a safe definition f (x1, . . . , xn; y1, . . . , ym)

for any tier i , there is a tiered definition of f in which

f (x l1
1 , . . . , x ln

n , y i
1, . . . y

i
m)i with l1, . . . , ln > i

Tiering and Safe recursion: same idea

It is forbidden to iterate a function which is itself defined by

recursion.

More formally, in a recursive definition

f (s(x), y) = h(x , y , f (x , y))

the step function h is not allowed to recurse on the result of a

previous function call, but may, however, recurse on other

parameters.

Exploiting predicative recursion

Tiering has been used to characterize:

I Polynomial Time (Leivant)

I Polynomial Space (Leivant and Marion, Oitavem)

I Alternating Logarithmic Time (Leivant and Marion)

Higher-order functions

I A (programming) language has higher-order (functions) when

functions can be both input and output of other functions.

I In presence of higher-order functions, we have exponential

growth even without “recursion on recursive values” (which is

what is forbidded by safe/tiered recursion).

I Consider the following higher-order function:

g(ε) = s0

g(s0(x)) = g(x) � g(x)

g(s1(x)) = g(x) � g(x)

g(bk � � � b3b2b1) = g(bk � � � b3b2) � g(bk � � � b3b2)

= g(bk � � � b3) � g(bk � � � b3) � g(bk � � � b3b2)

= . . .

= g(ε) � � � � � g(ε) 2k times

Exponential growth with higher-order

I We have defined

g(ε) = s0

g(s0(x)) = g(s1(x)) = g(x) � g(x)

I g(x) = s0 � � � � � s0, 2|x | times

I As numbers: h(n)(y) = 2|x | � y .

I Here there is no recursion on results of recursive calls. . .

I The problem seems to be in the reuse of an argument

I Here the step function is h(z) = z � z

I Impose some kind of linearity constraint.

Preliminaries: λ-calculus

I The language:

M,N ::= x | λx .M | (MN)

I Notation:
I λx1x2.M is λx1.(λx2.M)
I MNP is ((MN)P)
I M[N/x]: the substitution of N for the free occurrences of x in

M

I Beta contraction: (λx .M)N →β M[N/x]

I Reduction (→) is context, reflexive and transitive closure of

beta contraction

Types for λ-terms

I The language of types:

T ,S ::= o | T → S

I Typing rules

x : T ` x : T (Ax)

Γ, x : S ` M : T
Γ ` λx .M : S → T

(I→)
Γ ` M : S → T Γ ` N : S

Γ ` MN : T
(E→)

Fundamental properties

I This typed calculus is a very well behaved system.

I “subject reduction” (i.e., preservation of types under

reduction): Γ ` M : T and M →� N, then Γ ` N : T ;

I Confluence: M →� N1 and M →� N2, then there exists P

such that N1 →� P and N2 →� P;

I Hence we have unicity of normal forms;

I Strong normalization: Any term has a normal form, which is

obtained under any reduction strategy.

Add a base type for natural numbers

I The language of types:

T ,S ::= N | T → S

I Terms: add new constants. E.g.,

0, s, cond

I Typing rules: add type axioms for the new constants. E.g.,

Γ ` 0 : N Γ ` s : N → N

Γ ` cond : N → N → N → N

I Reduction: add contraction rules for the new constants. E.g.,

cond 0 M P →δ M

cond (sN) M P →δ P

A higher-order version of Cobham: PV ω

I Cook & Urquhart 1993

I Typed λ-calculus over base type N;

I Constants on N:
I Zero: 0 : N;
I successors s0, s1 : N → N;
I division by 2 p : N → N, p(n) = bn/2c;
I smash #(x)(y) = 2|x |�|y |;
I pad (shift left): pad(x)(y) = x � 2|y |;
I chop (shift right): chop(x)(y) = bx/2|y |c;
I conditional: cond(x)(y)(z) = y if x = 0; otherwise = z .

I Bounded recursion: for z , x : N, h : N → N → N, k : N → N

f (x) = rec(z , h, k, x) is the function defined as

f (0) = min(k(0), z)

f (x) = min(k(x), h(x , f (p(x))))

PV ω

I Prove by induction that for any f (x1, . . . , xn) in Cobham there

is a term Mf : Nn → N computing f .

I Being a typed lambda-calculus, it allows for direct definitions

of higher-order functions.

I Example: 9 : (N → N) → N → N

9(f)(x) is the least i � x s.t. f (i) = 0, if it exists, otherwise

is f (x).

9 = λf .λx .rec(f (0), λu.λv .cond(v , 0, f (|x |)))

Theorem

If M : Nn → N in PV ω, then the function computed by M is

computable in polytime.

I Same critique as for Cobham: can we do the same without

initial polynomial functions and without explicit counting

during recursion?

Typed Lambda-Calculi: Higher-Order Recursion

I Higher-order generalizations of Leivant’s ramified recurrence

captures elementary time computable functions (Leivant,

Bellantoni Niggl Schwichtenberg, Dal Lago Martini Roversi)

I Polynomial time can be retrived by constraining higher-order

variables to be used in a linear way (Hofmann).

I Non-size increasing polytime computation is a calculus for

polynomial time functions which uses a stricter notion of

linearity, but without any ramification condition (Hofmann).

I Characterizations of major complexity classes can be obtained

using syntactical constraints on lambda-calculi with

higher-type recursion (Leivant).

Other higher-order systems

We will see the non size increasing calculus on Friday

Uniform approach, tailoring Gödel’s T

I Gödel’s System T is a well known typed λ-calculus with N as

base type and explicit recursion.

I Introduced for foundational purposes: to prove the consistency

of Peano Arithmetic (the Dialectica interpretation, 1959).

I The terms in T with type N → N have huge computational

power.

Theorem

M : N → N in T iff M computes a function provably total in Peano

Arithmetic.

I We will see simple syntactic restrictions on T giving rise to

interesting computational classes (Dal Lago, 2005).

I This summarizes many previous results into a single uniform

setting.

Base types: free algebras

I A free algebra A: constants (constructors) with their arity

(given as a function RA). Examples:

I Unary naturals: U = {0, s}; RU(0) = 0 and RU(S) = 1;
I Binary naturals: B = {ε, s0, s1}; RB(ε) = 0 and RB(si) = 1;
I Binary trees: C = {ε, c}; RC(ε) = 0 and RC(c) = 2;

I U and B are examples of word algebras.

I Fix a finite family A of free algebras {A1, . . . ,An}, including

U,B and C.

Terms and reduction

I Terms over A

M ::= x | c | MM | λx .M | M {{M, . . . , M}} | M hhM, . . . , Mii

c ranges over the constants of A ; {{. . .}} is conditional; hh. . .ii

is recursion (after Matthes and Joachimsky, 2003).

I Reduction rules:

(λx .M)V → M{V /x}

ci (t1, . . . , tR(ci)){{Mc1 , . . . ,Mck }} → Mci t1 � � � tR(ci)

ci (t1, . . . , tR(ci))hhMc1 , . . . , Mck ii → Mci t1 � � � tR(ci)

(t1 hhMc1 , . . . , Mck ii)

� � �

(tR(ci) hhMc1 , . . . , Mck ii)

I Reduction is not allowed:

under abstractions, or inside {{ }} and hh ii.

The simple case of B

I Conditional and recursion for the binary naturals:

B = {ε, s0, s1}; RB(ε) = 0 and RB(si) = 1

I Conditional:

ε {{Mε,M0,M1}} → Mε

s0t {{Mε,M0,M1}} → M0t

s1t {{Mε,M0,M1}} → M1t

I Recursion:

ε hhMε,M0,M1ii → Mε

s0t hhMε,M0,M1ii → M0t (t hhMε,M0,M1ii)

s1t hhMε,M0,M1ii → M1t (t hhMε,M0,M1ii)

Types

A ::= A
n | A(A

where n ranges over N and A ranges over A . Indexing base types

is needed to define tiering conditions.

x : A ` x : A
A

Γ ` M : B
Γ, x : A ` M : B

W
Γ, x : A, y : A ` M : B

Γ, z : A ` M{z/x , z/y } : B
C

Γ, x : A ` M : B
Γ ` λx .M : A(B

I(
Γ ` M : A(B ∆ ` N : A

Γ, ∆ ` MN : B
E(

n 2 N c 2 CA

` c : An
RA(c)
(An

Ic Γi ` McAi
: Am

RA(cAi)
(C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L {{Mc1 � � �Mck }} : C
EC
(

Γi ` McAi
: Am

RA(cAi)
(C

RA(cAi)
(C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L hhMc1 � � �Mck ii : C
ER
(

Expressive power

I Without restriction it is equivalent to Gödel’s T (over free

algebras)

I Indeed, if we take the only algebra U of unary naturals, this is

Gödel’s T

I Restrictions. Two dimensions:
I Tiering/stratification/ramification on the recursion rule, to

ensure low computational power at first-order;
I Linearity (i.e., contraction rule), to control the higher-order

features.

Tiering constraints

In the rule

Γi ` McAi
: Am

RA(cAi)
(C

RA(cAi)
(C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L hhMc1 � � �Mck ii : C
ER
(

add the constraint

m > V (C)

where V (C) is the maximum tier of a base type in C .

Linearity constraints

I The contraction rule

Γ, x : A, y : A ` M : B

Γ, z : A ` M{z/x , z/y } : B
C

may be applied only to types in a class D � TA .

I In the recursion rule

Γi ` McAi
: Am

RA(cAi)
(C

RA(cAi)
(C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L hhMc1 � � �Mck ii : C
ER
(

cod(Γi) � D for every i 2 {1, . . . , n}.

Several possible systems

I The unrestricted system: H(TA)

I The system with contraction limited to D: H(D)

I The tiered (ramified) system: add R to the name of the

system; e.g., RH, RH(D).

I We investigate the following D’s:
I The purely linear system: D = ;;
I Contraction only on word algebras:

D = W = {An | A 2 A is a word algebra};
I Contraction only on base types (algebras):

D = A = {An | A 2 A }

And their expressive power

H(;) H(W) H(A)

no ramification Prim. Rec. Prim. Rec. Prim. Rec.

ramification PolyTime PolyTime ElementaryTime

RH(;) RH(W) RH(A)

I Any term of one of the systems can be normalized within the

associated time bound.

I For any function f of one of the complexity classes, there

exists a term Mf computing f which, in the associated

system, has type An → A.

I Recall that in H(TA) we characterize all functions provably

total in Peano Arithmetic.

	Preliminaries
	What is Implicit Computational Complexity
	Complexity theory
	Primitive recursion

	Subrecursive classes
	Grzegorczyk hierarchy
	Heinemann hierarchy

	Bounded recursion on notation
	Safe and tiered recursion
	Bellantoni and Cook: Safe recursion
	Leivant: Predicative (or tiered) recursion

	Higher-order calculi: subsystems of Gödel's T

