Implicit Computational Complexity

Simone Martini

Dipartimento di Scienze dell'Informazione
Università di Bologna
Italy

Bertinoro International Spring School for Graduate Studies in Computer Science, 6-17 March, 2006

Outline: first part

Preliminaries
What is Implicit Computational Complexity
Complexity theory
Primitive recursion
Subrecursive classes
Grzegorczyk hierarchy
Heinemann hierarchy
Bounded recursion on notation
Safe and tiered recursion
Bellantoni and Cook: Safe recursion
Leivant: Predicative (or tiered) recursion
Higher-order calculi: subsystems of Gödel's T

Implicit Computational Complexity

- Standard Computational Complexity
- Study of complexity classes and their relations.
- Define first a machine model and its associated cost model(s) (for time, space, etc.)
- Define then complexity classes as sets of problems or functions, computable in a certain bound.
- Implicit Computational Complexity
- Describe complexity classes without explicit reference to a machine model and to cost bounds.
- It borrows techniques and results from Mathematical Logic
- Recursion Theory (Restriction of primitive recursion schema);
- Proof Theory (Curry-Howard correspondence);
- Model Theory (Finite model theory).
- It aims to define programming language tools (e.g., type-systems) enforcing resource bounds on the programs.

Complexity classes

- Standard machines: Turing automata.
- Crucial: constant time elementary step.
- Cost model: number of steps (time) or number of work cells (space).
- TM M works in bound f iff for any input $u, M(u)$ terminates using less than $f(|u|)$ resources.
- Complexity classes
- Sets of decision problems (functions with only 0 or 1 as values);
- Resource $[f(n)]=$ $\{P \mid$ there exists TM M deciding P and working in bound f;
- Some relevant classes
- LogSpace $=$ Space $[\log n]$;
- LinTime $=$ Time[n];
- PTime $=\cup_{i \in N}$ Time[$\left.n^{i}\right]$;
- PSpace $=\cup_{i \in N}$ Space[$\left.n^{i}\right]$;
- ExpTime $=\operatorname{Time[2n];~}$

Invariance

- Classes are invariant w.r.t. linear factors: $\operatorname{Resource}[f(n)]=\operatorname{Resource}[a f(n)+b]$;
- Under certain assumptions, different machine models differ only by a polynomial in their use of resources. E.g., if a problem P is solvable in bound f by a TM model, P is solved in at most f^{k} in another model.
- Therefore, under these assumptions, PTime and PSpace are very robust.

Coding of numbers

- Numbers must be coded into the TM alphabet.
- It is crucial that the coding of numbers be positional with base greater than one.
- With unary notation, the lenght of the input would be esponentially longer than the lenght in any other base. Therefore giving esponentially more resource to the computation. (Remember: the bound is a function of $|u|$).

Functional classes

- FPtime $=$
$\{f: \mathbb{N} \rightarrow \mathbb{N} \mid$
there exists TM M computing f in polynomial bound\};
- FLogSpace $=\ldots$;

Machine-free definitions of functions: Gödel-Kleene

Class of n -ary functions defined by closure.

- Base functions:
- Constant zero: $Z: \mathbb{N} \rightarrow \mathbb{N}, Z(y)=0$;
- Successor: $S: \mathbb{N} \rightarrow \mathbb{N}, S(y)=y+1$;
- Projections: for any $k \in \mathbb{N}$ and $i \leq k, \pi_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$, $\pi_{i}^{k}\left(y_{1}, \ldots, y_{k}\right)=y_{i}$.
- The function f is defined by composition from g, h_{1}, \ldots, h_{n} if

$$
f\left(y_{1}, \ldots, y_{k}\right)=g\left(h_{1}\left(y_{1}, \ldots, y_{k}\right), \ldots, h_{n}\left(y_{1}, \ldots, y_{k}\right)\right)
$$

- The function f is defined by primitive recursion from g and h if

$$
\begin{aligned}
f(0, \bar{y}) & =g(\bar{y}) \\
f(x+1, \bar{y}) & =h(x, \bar{y}, f(x, \bar{y}))
\end{aligned}
$$

Classes of recursive functions

- The primitive recursive functions is the least class of functions containing the base functions and closed under composition and primitive recursion.
- The function f is defined by minimization from g if

$$
f(\bar{y})=\text { the least } z \text { such that (i) } g(z, \bar{y})=0 \text { and }
$$

(ii) $g(x, \bar{y})$ is defined for all $x \leq z$

$$
\text { Notation }: \quad f(\bar{y})=\mu z \cdot g(z, \bar{y})=0
$$

- The (general) recursive functions is the least class of functions containing the base functions and closed under composition, (primitive recursion), and minimization.

Recursive functions as a machine model

- Original aim: define a class of functions in extenso.
- Natural operational interpretation as rewriting.
- However: no notion of constant time elementary step.
- Rewriting involves duplication of data of arbitrary size and of computations of arbitrary length.
- Need of non trivial data structures (stack) to (naïvely) implement primitive recursion.

Algebras for polynomial functions?

- We set out for a "closure-like" definition of FPTime.
- We first study some known subclasses of the primitive recursive functions.

The spine of primitive recursion

$$
\begin{aligned}
& f_{0}(x, y)=x+1 ; \\
& f_{1}(x, y)=x+y ; \\
& f_{2}(x, y)=x y ; \\
& f_{n+1}(x, 0)=1 ; \\
& f_{n+1}(x, y+1)=f_{n}\left(x, f_{n+1}(x, y)\right) \\
& f_{3}(x, y)=x^{y} ; \\
& \left.f_{4}(x, y)=x^{.}\right\}^{x} y \text { times } .
\end{aligned}
$$

Theorem
For any n and $x, y>2, f_{n}(x, y)<f_{n+1}(x, y)$.

Grzegorczyk

- Recursion causes bigger growth than composition:
- Define $f^{k}(x)=(f \circ \circ \circ f)(x), k$ times.
- For any n and any k, there exists \hat{x} such that, for any $x>\hat{x}$, $f_{n+1}(x, y)>f_{n}^{k}(x, x)$.
- The function f is defined by bounded primitive recursion from g, h and $/$ iff f is defined by primitive recursion from g, h and moreover, for any \bar{x},

$$
f(\bar{x})<I(\bar{x}) .
$$

- For $n \geq 0$ the class \mathcal{E}_{n} is the least class including the base functions, the spine component f_{n}, and closed under composition and bounded primitive recursion.

Grzegorczyk hierarchy and complexity of computation

- The hierarchy is proper: $\mathcal{E}_{n} \subset \mathcal{E}_{n+1}$.
- Its limit are the primitive recursive functions: $\cup_{n} \mathcal{E}_{n}=\mathcal{P} \mathcal{R}$.
- $f \in \mathcal{E}_{n}$ iff there exists a TM M computing f and a function $g \in \mathcal{E}_{n}$, such M works in time (space) bounded by g. (Unary notation used here).
- Hence the same holds for the primitive recursive functions.
- Do the classes \mathcal{E}_{n} correspond to natural complexity classes?

Theorem (Ritchie, 1961)

$$
\mathcal{E}_{2}=\text { FLinspace }
$$

- Ptime \neq FLinspace, but we do not know whether there is some inclusion between the two classes.

Many other hierarchies

- Many other hierarchies are definable, "structuring" recursion by levels.
- E.g., define the rank δ of a function definition:
- Initial functions have rank 0;
- f defined by composition from h, g_{1}, \ldots, g_{k} have rank $\max \left\{\delta(h), \delta\left(g_{1}\right), \ldots, \delta\left(g_{k}\right)\right\} ;$
- f defined by recursion from base g and step function h have rank $\max \{\delta(g), \delta(h)+1\}$.
- $\mathcal{D}_{n}=\{f \mid \delta(f) \leq n\}$
- For $n \geq 2, \mathcal{D}_{n}=\mathcal{E}_{n+1}$ (Schwichtenberg; Müller, for $n=2$).
- \mathcal{E}_{3} is an important class: the Kalmar elementary functions.
- But we are mainly interested in the lower classes...

One last result for the "bigger" classes: PSpace

PSPACE is the least classs containing:

- Base functions: Zero, projections, max, $x^{|x|}$;
- Closed by composition, and
- Bounded primitive recursion.

Moral:
Bounded recursion, or just limiting nested recursion is not enough if we are interested in the lower complexity classes, e.g. PTime. Indeed both PTime and ExpTime both lie in $\mathcal{D}_{2}=\mathcal{E}_{3}$, that is the elementary functions.

A closer look: a notational problem

- Usual recursion-from $f(n)$ to $f(n+1)$-is exponentially long on the size of the input n.
- This is why controlling recursion, per se, is not enough:
- A single recursion may cause exponential blow;
- Two nested recursions are enough to reach the elementary functions (recall: $\mathcal{D}_{2}=\mathcal{E}_{3}$).
- Move to binary representation for input (or, more generally, manipulate strings).

Recursion on Notation

- Data: binary strings
- Two "successors":
- s_{0}, adding 0 at the least significant position i.e., on the represented number $s_{0}(n)=2 n$;
- s_{1}, adding 1 at the least significant position i.e., on the represented number $s_{0}(n)=2 n+1$;
- Recursion on Notation:

$$
\begin{aligned}
f(0, \bar{y}) & =g_{0}(\bar{y}) \\
f(1, \bar{y}) & =g_{1}(\bar{y}) \\
f\left(s_{0}(x), \bar{y}\right) & =h_{0}(x, \bar{y}, f(x, \bar{y})) \\
f\left(s_{1}(x), \bar{y}\right) & =h_{1}(x, \bar{y}, f(x, \bar{y}))
\end{aligned}
$$

Recursion on Notation, examples

- Now recursion converges quickly to a base case: $f(n)$ involves at most $\log n$ recursive calls.
- Notation: we mix strings and numbers.
- Example: duplicating the length of the input As strings (. is concatenation):

$$
\begin{aligned}
d(0)=d(1) & =1 \\
d\left(s_{0}(x)\right) & =d(x) \cdot 00 \\
d\left(s_{1}(x)\right) & =d(x) \cdot 00
\end{aligned}
$$

As numbers ($*$ is multiplication):

$$
\begin{aligned}
d(0)=d(1) & =1 \\
d(n) & =4 * d(\lfloor x / 2\rfloor)
\end{aligned}
$$

That is, $d(n)=2^{2|n|}$, that is $|d(n)|=2|n|-1$.

Recursion on notation is too generous

Recall

$$
\begin{aligned}
d(0)=d(1) & =1 \\
d\left(s_{0}(x)\right) & =d(x) \cdot 00 \\
d\left(s_{1}(x)\right) & =d(x) \cdot 00
\end{aligned}
$$

And define

$$
\begin{aligned}
e(0)=e(1) & =1 \\
e\left(s_{0}(x)\right) & =d(e(x)) \\
e\left(s_{1}(x)\right) & =d(e(x))
\end{aligned}
$$

Now $e(x)$ has exponential lenght in $|x| \ldots$
Still too much growth...

Bounded recursion on notation

- Bennett (1962) and Cobham (1965).
- A function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is defined by bounded recursion on notation from $g_{0}, g_{1}: \mathbb{N}^{n} \rightarrow \mathbb{N}, h_{0}, h_{1}: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ and $k: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ if

$$
\begin{aligned}
f(0, \bar{y}) & =g_{0}(\bar{y}) \\
f(1, \bar{y}) & =g_{1}(\bar{y}) \\
f\left(s_{0}(x), \bar{y}\right) & =h_{0}(x, \bar{y}, f(x, \bar{y})) \\
f\left(s_{1}(x), \bar{y}\right) & =h_{1}(x, \bar{y}, f(x, \bar{y}))
\end{aligned}
$$

provided $f(x, \bar{y}) \leq k(x, \bar{y})$.

Cobham characterization of FPTIME

- However, the basic functions Zero, projections and successor do not grow enough...
- Let $x \# y=2^{|x| \cdot|y|}$ (note: $|x|^{k}=|x| \# \cdots \#|x|$).

Theorem (Cobham)

$\mathcal{F} P$ TIME is the least class containing: Zero, the projections, the two successors on strings, \#; and closed under composition and bounded recursion on notation.

- Proof: $\mathcal{F P}$ TIME $\subseteq \mathcal{C O B}$: Code TMs as functions of the algebra. The iteration of the transition function is representable because a priori polynomially bounded. $\mathcal{C O B} \subseteq \mathcal{F}$ PTIME: By induction on the length of the definition, show that any function is computable by a polynomially bounded TM, exploiting the bound on the recursive definition.

Variations on a theme

- Logspace is an important measure. Logspace reductions are crucial to study the structure of Ptime, e.g. the existence of complete problems.
- A function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is defined by strict bounded recursion on notation from $g_{0}, g_{1}: \mathbb{N}^{n} \rightarrow \mathbb{N}$, $h_{0}, h_{1}: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ and $k: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ if

$$
\begin{aligned}
f(0, \bar{y}) & =g_{0}(\bar{y}) \\
f(1, \bar{y}) & =g_{1}(\bar{y}) \\
f\left(s_{0}(x), \bar{y}\right) & =h_{0}(x, \bar{y}, f(x, \bar{y})) \\
f\left(s_{1}(x), \bar{y}\right) & =h_{1}(x, \bar{y}, f(x, \bar{y}))
\end{aligned}
$$

provided $f(x, \bar{y}) \leq|k(x, \bar{y})|$.

Logspace

Theorem (Lind;Clote \& Takeuti)

\mathcal{F} LOGSPACE is the least class containing: Zero, projections, successors, length functions, bit selection, \#; and closed under composition, strict bounded recursion on notation, and concatenation recursion on notation.
where Concatenation Recursion on Notation (CRN) from g, h_{0}, h_{1} $\left(h_{i}(x, \bar{y}) \leq 1\right)$ is

$$
\begin{aligned}
f(0, \bar{y}) & =g_{0}(\bar{y}) \\
f(1, \bar{y}) & =g_{1}(\bar{y}) \\
f\left(s_{0}(x), \bar{y}\right) & =s_{h_{0}(x, \bar{y})}(f(x, \bar{y})) \\
f\left(s_{1}(x), \bar{y}\right) & =s_{h_{1}(x, \bar{y})}(f(x, \bar{y}))
\end{aligned}
$$

A critique on Cobham characterization

- Cobham's paper is the birth of computational complexity as a respected theory.
- It characterized Ptime as a mathematically meaningful class.
- From the implicit computational complexity perspective, however...
- It is not as implicit as it seems
- It uses an explicit a priori bound on the construction
- It "throws in" the polynomials (i.e., the \# function) in the recipe, in order to make it work.
- We had to wait until the '80s to get a more "implicit" characterization of Ptime...

Safe Recursion: idea

- Unbounded recursion schema to control the growth of functions
- Function arguments are partioned into two separate classes.
- Function definitions are constrained to respect this partition.
- The arguments to a function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ are partitioned into $m \leq n$ normal arguments and $n-m$ safe arguments:

$$
f\left(x_{1}, \ldots, x_{m} ; x_{m+1}, \ldots, x_{n}\right) .
$$

- Idea: calls to functions obtained by recursion can only appear in the safe zone.
- Need to modify the composition, in order to respect the distinction normal/safe.

Safe Recursion and Composition

- The function f is defined by safe composition from $g, h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}$ if

$$
f(\bar{x} ; \bar{y})=g\left(h_{1}(\bar{x} ;), \ldots, h_{n}(\bar{x} ;) ; k_{1}(\bar{x} ; \bar{y}), \ldots, k_{m}(\bar{x} ; \bar{y})\right) .
$$

- The function f is defined by safe recursion on notation from $g_{0}, g_{1}, h_{0}, h_{1}$ if

$$
\begin{aligned}
f(0, \bar{x} ; \bar{y}) & =g_{0}(\bar{x} ; \bar{y}) \\
f(1, \bar{x} ; \bar{y}) & =g_{1}(\bar{x} ; \bar{y}) \\
f\left(s_{0}(x), \bar{x} ; \bar{y}\right) & =h_{0}(x, \bar{x} ; \bar{y}, f(x, \bar{x} ; \bar{y})) \\
f\left(s_{1}(x), \bar{x} ; \bar{y}\right) & =h_{1}(x, \bar{x} ; \bar{y}, f(x, \bar{x} ; \bar{y}))
\end{aligned}
$$

Understanding safe composition and recursion

- The key clause:

$$
f\left(s_{i}(x), \bar{x} ; \bar{y}\right)=h_{i}(x, \bar{x} ; \bar{y}, f(x, \bar{x} ; \bar{y}))
$$

- If f is defined by safe recursion:
- it takes the recursion input $s_{i}(x)$ from the normal part;
- but the recursive value $f(x, \bar{x} ; \bar{y})$ is substituted into a safe position of h
- then this recursive value will stay in a safe position, because of safe composition

$$
f(\bar{x} ; \bar{y})=g\left(h_{1}(\bar{x} ;), \ldots, h_{n}(\bar{x} ;) ; k_{1}(\bar{x} ; \bar{y}), \ldots, k_{m}(\bar{x} ; \bar{y})\right) .
$$

and will not be copied back into a normal position.

- Intuitively, the depth of sub-recursions which h_{i} performs on y or \bar{y} cannot depend on the value being recursively computed.

Projections

- We have projections from both normal and safe zones

$$
\pi_{j}^{n+m}\left(x_{1}, \ldots x_{n} ; x_{n+1}, \ldots x_{n+m}\right)=x_{j} \quad 1 \leq j \leq n+m
$$

- Now we can move arguments from safe to normal (but not vice-versa)
- Assume we have $f(x ; y, z)$.
- Define $f^{\prime}(x, y ; z)$ same as f but with y "demoted" to normal
- $f^{\prime}(x, y ; z)=f\left(\pi_{1}^{2}(x, y ;) ; \pi_{2}^{3}(x, y ; z), \pi_{3}^{3}(x, y ; z)\right)$

Controlling recursion by safeness

Successors are safe: $s_{0}(; x), s_{1}(; x)$
We have projections from both normal and safe zones
Recall the function

$$
\begin{aligned}
d(0)=d(1) & =1 \\
d\left(s_{0}(x)\right)=d\left(s_{1}(x)\right) & =d(x) \cdot 00
\end{aligned}
$$

Define:

$$
\begin{aligned}
d(0 ;)=d(1 ;)= & 1 \\
d\left(s_{0}(x) ;\right)=d\left(s_{1}(x) ;\right)= & s_{0}\left(; s_{0}(; d(x ;))\right) \\
& \text { where formally the step function } h \text { is } \\
h(x ; z)= & \pi_{2}^{2}\left(x ; s_{0}\left(; s_{0}\left(; \pi_{2}^{2}(x ; z)\right)\right)\right.
\end{aligned}
$$

Controlling recursion by safeness, II

Recall now the exponential function

$$
\begin{aligned}
e(0)=e(1) & =1 \\
e\left(s_{0}(x)\right)=e\left(s_{1}(x)\right) & =d(e(x))
\end{aligned}
$$

We cannot define e by safe recursion:

$$
\begin{aligned}
e(0 ;)=e(1 ;) & =1 \\
e\left(s_{0}(x) ;\right)=e\left(s_{1}(x) ;\right) & =? d(e(x)) ?
\end{aligned}
$$

The safe recursion schema requires $h(z ; y)=d(; y)$, but d is instead defined as $d(y ;)$.

Polytime and safe recursion

Let \mathcal{B} be the function algebra containing

- successors: $s_{0}(; x), s_{1}(; x)$;
- projections, from normal and safe arguments;
- predecessor: $p(; 0)=0$ and $p\left(; s_{i}(x)\right)=x$;
- conditional:

$$
C(; x, y, z)= \begin{cases}y & \text { if } x=s_{0}(v) \\ z & \text { if } x=s_{1}(v)\end{cases}
$$

and closed under safe composition and recursion.

Theorem (Bellantoni and Cook)

The polynomial time computable functions are exactly those functions of \mathcal{B} having only normal inputs.

Proof of BC's theorem

- Soundness: Any function in \mathcal{B} is polytime.
- Derive first a bound on the computed value: Let $f \in \mathcal{B}$. There is a polynomial q_{f} such that

$$
|f(\bar{x} ; \bar{y})| \leq q_{f}(|\bar{x}|)+\max \left(y_{1}, \ldots, y_{n}\right)
$$

- Observe that such q_{f} 's are definable in Cobham's class.
- Therefore, any instance of Safe recursion is an instance of Bounded rec. on notation.
- Completeness: Any polytime function is in \mathcal{B}.
- Use Cobham characterization via bounded recursion on notation.
- By induction on derivation on Cobham's system, show that for any polytime $f(\bar{y})$ there exists a function $f^{\prime} \in \mathcal{B}$ and a polynomial p_{f} such that $f^{\prime}(w ; \bar{y})=f(\bar{y})$, for all \bar{y} and all $w \geq p_{f}(|\bar{y}|)$
- Now construct a function b in \mathcal{B} such that $b(\bar{x} ;) \geq p_{f}(|\bar{x}|)$
- Set $f(\bar{x} ;)=f^{\prime}(b(\bar{x} ;) ; \bar{x})$.

Variations: Safe Affine Composition

- In safe composition a safe argument may be used several times

$$
f(\bar{x} ; \bar{y})=g\left(h_{1}(\bar{x} ;), \ldots, h_{n}(\bar{x} ;) ; k_{1}(\bar{x} ; \bar{y}), \ldots, k_{m}(\bar{x} ; \bar{y}) .\right.
$$

- If we are interested in Logspace, we must limit reuse of resources, imposing some kind of lineary constraint: any safe argument should be used at most once.
- The function f is defined by safe affine composition from $g, h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}$ if

$$
f(\bar{x}: \bar{y})=g\left(h_{1}(\bar{x}:), \ldots, h_{n}(\bar{x}:): k_{1}\left(\bar{x}: \bar{Y}_{1}\right), \ldots, k_{m}\left(\bar{x}: \bar{Y}_{m}\right)\right)
$$

where any y_{1}, \ldots, y_{k} of \bar{y} occurs at most once in any $\bar{Y}_{1}, \ldots, \bar{Y}_{m}$.

Safe Affine Recursion: Logarithmic Space

- The function f is defined by safe affine course-of-value recursion on notation from $g_{0}, g_{1}, h_{0}, h_{1}$ if

$$
\begin{aligned}
f(0, \bar{x}: \bar{y}) & =g_{0}(\bar{x}: \bar{y}) \\
f(1, \bar{x}: \bar{y}) & =g_{1}(\bar{x}: \bar{y}) \\
f\left(s_{0}(x), \bar{x}: \bar{y}\right) & =h_{0}\left(x, \bar{x}: f\left(x^{\prime}, \bar{x}: \bar{y}\right)\right) \\
f\left(s_{1}(x), \bar{x}: \bar{y}\right) & =h_{1}\left(x, \bar{x}: f\left(x^{\prime \prime}, \bar{x}: \bar{y}\right)\right) \text { with } x^{\prime}, x^{\prime \prime} \leq x
\end{aligned}
$$

Theorem (Mairson and Neergaard, 2003)
The set of logaritmic space functions equals the set of functions definable by safe affine course-of-value recursion, safe affine composition, and containing the base functions of BC.

Tiering

- Related to safe recursion is the notion of predicative recurrence, or tiering [Leivant, 1993].
- Any function and argument position comes with a tier.
- Equivalently: we have an infinite number of copies of the base data: $\mathbb{N}^{0}, \mathbb{N}^{1}, \mathbb{N}^{2}, \ldots$
- Functions have a type of the form $f: \mathbb{N}^{i} \times \cdots \times \mathbb{N}^{j} \rightarrow \mathbb{N}^{k}$
- Base functions are available at any tier.
- Composition is tier-preserving: $f^{i} \circ g^{i}=h^{i}$.

Predicative Recurrence - I

- Recursion is possible only over a variable with tier greater than that of the function:

$$
\begin{aligned}
f(0, y)^{i} & =g_{0}\left(y^{k}\right)^{i} \\
f(1, y)^{i} & =g_{1}\left(y^{k}\right)^{i} \\
f\left(s_{0}(x)^{\prime}, y\right)^{i} & =h_{0}\left(x^{\prime}, y^{k}, f(x, y)^{i}\right)^{i} \\
f\left(s_{1}(x)^{\prime}, y\right)^{i} & =h_{1}\left(x^{\prime}, y^{k}, f(x, y)^{i}\right)^{i} \text { with } I>i
\end{aligned}
$$

- In other words:
- When defining inductively

$$
f\left(s_{b}(x), y\right)=h_{b}(x, y, f(x, y))
$$

- we must have
$h_{b}: \mathbb{N}^{\prime} \times \mathbb{N} \times \mathbb{N}^{i} \rightarrow \mathbb{N}^{i}$
with $I>i$, and we obtain
$f: \mathbb{N}^{\prime} \times \mathbb{N} \rightarrow \mathbb{N}^{i}$

Examples of predicative recurrence

Recall: $\ln f\left(s_{b}(x)^{\prime}, y\right)^{i}=h_{b}\left(x^{\prime}, y^{k}, f(x, y)^{i}\right)^{i}, I>i$.

- Flat recurrence: the stratification is vacuous, because the recursion argument is absent $p\left(s_{b}(x)\right)=x$
- Concatenation:

$$
\begin{aligned}
\oplus(\epsilon, y) & =y \\
\oplus\left(s_{b}(x), y\right) & =s_{b}(\oplus(x, y))
\end{aligned}
$$

Imposing stratification:
$\oplus\left(s_{b}(x)^{\prime}, y^{j}\right)^{i}=s_{b}\left(\oplus\left(x^{\prime}, y^{j}\right)^{i}\right)$ with $I>i$
Take $I=1, i=0$ (and j whatever, say 0):
$\oplus: \mathbb{N}^{1} \times \mathbb{N}^{0} \rightarrow \mathbb{N}^{0}$

Examples of predicative recurrence - II

We can apply predicative recurrence on any constructor algebra: numbers in unary or binary notation, trees, etc.

- Addition in unary notation:

$$
\begin{aligned}
+(0, y) & =0 \\
+(s(x), y) & =s(+(x, y))
\end{aligned}
$$

Imposing stratification:
$+\left(s(x)^{1}, y^{0}\right)^{1}=s\left(+\left(x^{1}, y^{0}\right)^{1}\right)$
$+: \mathbb{N}^{1} \times \mathbb{N}^{0} \rightarrow \mathbb{N}^{0}$

- Multiplication in unary notation:

$$
\begin{aligned}
*(0, y) & =0 \\
*(s(x), y) & =+(y, *(x, y))
\end{aligned}
$$

Impose the stratification for + :
$*(s(x), y)=+\left(y^{1}, *(x, y)^{0}\right)^{0}$
and propagate; everything is OK: $*: \mathbb{N}^{1} \times \mathbb{N}^{1} \rightarrow \mathbb{N}^{0}$

A non predicative recurrence

Recall: $\ln f\left(s(x)^{\prime}, y\right)^{i}=h\left(x^{\prime}, y^{k}, f(x, y)^{i}\right)^{i}, I>i$.

- Powers of two $P 2(n)=2^{n}$:

$$
\begin{aligned}
P 2(0) & =1 \\
P 2(s(x)) & =+(P 2(x), P 2(x))
\end{aligned}
$$

Recall that $+: \mathbb{N}^{1} \times \mathbb{N}^{0} \rightarrow \mathbb{N}^{0}$
and impose this stratification:
$P 2\left(s(x)^{?}\right)^{? ?}=+\left(P 2(x)^{1}, P 2(x)^{0}\right)^{0}$
The first input to + must have level greater than the output From the output of + we would get ?? = 0
From the first input to + we would get $? ?=1$.
Impossible under any assignment.

Predicative recurrence and polynomial time

Theorem (Leivant, 1993)

Let W be a free algebra, f a function over W. The following are equivalent:

1. f is computable in time polynomial in the maximal height of the inputs.
2. f is definable by predicative recursion over A^{0} and A^{1}.
3. f is definable by predicative recursion over arbitrary A^{i} 's, $i \geq 0$.

Compare to Bellantoni and Cook: no initial functions. Same idea...

Tiering and Safe recursion

- Tiering and safeness are equivalent
- From a tiered $f\left(x_{1}^{I_{1}}, \ldots, x_{n}^{I_{n}}, y_{1}^{i}, \ldots y_{m}^{i}\right)^{i}$ where $I_{1}, \ldots, I_{n}>i$ we get $f\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)$
- From a safe definition $f\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)$ for any tier i, there is a tiered definition of f in which $f\left(x_{1}^{l_{1}}, \ldots, x_{n}^{I_{n}}, y_{1}^{i}, \ldots y_{m}^{i}\right)^{i}$ with $I_{1}, \ldots, I_{n}>i$

Tiering and Safe recursion: same idea

It is forbidden to iterate a function which is itself defined by recursion.

More formally, in a recursive definition

$$
f(s(x), y)=h(x, y, f(x, y))
$$

the step function h is not allowed to recurse on the result of a previous function call, but may, however, recurse on other parameters.

Exploiting predicative recursion

Tiering has been used to characterize:

- Polynomial Time (Leivant)
- Polynomial Space (Leivant and Marion, Oitavem)
- Alternating Logarithmic Time (Leivant and Marion)

Higher-order functions

- A (programming) language has higher-order (functions) when functions can be both input and output of other functions.
- In presence of higher-order functions, we have exponential growth even without "recursion on recursive values" (which is what is forbidded by safe/tiered recursion).
- Consider the following higher-order function:

$$
\begin{aligned}
g(\epsilon) & =s_{0} \\
g\left(s_{0}(x)\right) & =g(x) \circ g(x) \\
g\left(s_{1}(x)\right) & =g(x) \circ g(x) \\
g\left(b_{k} \cdots b_{3} b_{2} b_{1}\right) & =g\left(b_{k} \cdots b_{3} b_{2}\right) \circ g\left(b_{k} \cdots b_{3} b_{2}\right) \\
& =g\left(b_{k} \cdots b_{3}\right) \circ g\left(b_{k} \cdots b_{3}\right) \circ g\left(b_{k} \cdots b_{3} b_{2}\right) \\
& =\cdots \\
& =g(\epsilon) \circ \cdots \circ g(\epsilon) \quad 2^{k} \text { times }
\end{aligned}
$$

Exponential growth with higher-order

- We have defined

$$
\begin{aligned}
g(\epsilon) & =s_{0} \\
g\left(s_{0}(x)\right)=g\left(s_{1}(x)\right) & =g(x) \circ g(x)
\end{aligned}
$$

- $g(x)=s_{0} \circ \cdots \circ s_{0}, 2^{|x|}$ times
- As numbers: $h(n)(y)=2^{|x|} \cdot y$.
- Here there is no recursion on results of recursive calls...
- The problem seems to be in the reuse of an argument
- Here the step function is $h(z)=z \circ z$
- Impose some kind of linearity constraint.

Preliminaries: λ-calculus

- The language:

$$
M, N::=x|\lambda x . M|(M N)
$$

- Notation:
- $\lambda x_{1} x_{2} \cdot M$ is $\lambda x_{1} \cdot\left(\lambda x_{2} \cdot M\right)$
- MNP is $((M N) P)$
- $M[N / x]$: the substitution of N for the free occurrences of x in M
- Beta contraction: $(\lambda x . M) N \rightarrow_{\beta} M[N / x]$
- Reduction (\rightarrow) is context, reflexive and transitive closure of beta contraction

Types for λ-terms

- The language of types:

$$
T, S::=o \mid T \rightarrow S
$$

- Typing rules

$$
\begin{aligned}
& \quad x: T \vdash x: T(A x) \\
& \frac{\Gamma, x: S \vdash M: T}{\Gamma \vdash \lambda x \cdot M: S \rightarrow T}(\mathcal{I} \rightarrow) \quad \frac{\Gamma \vdash M: S \rightarrow T \quad \Gamma \vdash N: S}{\Gamma \vdash M N: T}(\mathcal{E} \rightarrow)
\end{aligned}
$$

Fundamental properties

- This typed calculus is a very well behaved system.
- "subject reduction" (i.e., preservation of types under reduction): $\Gamma \vdash M: T$ and $M \rightarrow^{*} N$, then $\Gamma \vdash N: T$;
- Confluence: $M \rightarrow^{*} N_{1}$ and $M \rightarrow^{*} N_{2}$, then there exists P such that $N_{1} \rightarrow^{*} P$ and $N_{2} \rightarrow^{*} P$;
- Hence we have unicity of normal forms;
- Strong normalization: Any term has a normal form, which is obtained under any reduction strategy.

Add a base type for natural numbers

- The language of types:

$$
T, S::=\mathbb{N} \mid T \rightarrow S
$$

- Terms: add new constants. E.g., $0, s$, cond
- Typing rules: add type axioms for the new constants. E.g.,

$$
\begin{aligned}
& \Gamma \vdash 0: \mathbb{N} \quad \Gamma \vdash s: \mathbb{N} \rightarrow \mathbb{N} \\
& \Gamma \vdash \text { cond }: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

- Reduction: add contraction rules for the new constants. E.g.,

$$
\begin{aligned}
& \text { cond } 0 M P \rightarrow_{\delta} M \\
& \text { cond }(s N) M P \rightarrow_{\delta} P
\end{aligned}
$$

A higher-order version of Cobham: $P V^{\omega}$

- Cook \& Urquhart 1993
- Typed λ-calculus over base type \mathbb{N};
- Constants on \mathbb{N} :
- Zero: $0: \mathbb{N}$;
- successors $s_{0}, s_{1}: \mathbb{N} \rightarrow \mathbb{N}$;
- division by $2 p: \mathbb{N} \rightarrow \mathbb{N}, p(n)=\lfloor n / 2\rfloor$;
- smash $\#(x)(y)=2^{|x| \cdot|y| ; ~}$
- pad (shift left): $\operatorname{pad}(x)(y)=x \cdot 2^{|y|}$;
- chop (shift right): $\operatorname{chop}(x)(y)=\left\lfloor x / 2^{|y|}\right\rfloor$;
- conditional: cond $(x)(y)(z)=y$ if $x=0$; otherwise $=z$.
- Bounded recursion: for $z, x: \mathbb{N}, h: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}, k: \mathbb{N} \rightarrow \mathbb{N}$ $f(x)=\operatorname{rec}(z, h, k, x)$ is the function defined as

$$
\begin{aligned}
f(0) & =\min (k(0), z) \\
f(x) & =\min (k(x), h(x, f(p(x))))
\end{aligned}
$$

- Prove by induction that for any $f\left(x_{1}, \ldots, x_{n}\right)$ in Cobham there is a term $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ computing f.
- Being a typed lambda-calculus, it allows for direct definitions of higher-order functions.
- Example: $\exists:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ $\exists(f)(x)$ is the least $i \leq x$ s.t. $f(i)=0$, if it exists, otherwise is $f(x)$.
$\exists=\lambda f \cdot \lambda x \cdot \operatorname{rec}(f(0), \lambda u \cdot \lambda v \cdot \operatorname{cond}(v, 0, f(|x|)))$

Theorem

If $M: \mathbb{N}^{n} \rightarrow \mathbb{N}$ in $P V^{\omega}$, then the function computed by M is computable in polytime.

- Same critique as for Cobham: can we do the same without initial polynomial functions and without explicit counting during recursion?

Typed Lambda-Calculi: Higher-Order Recursion

- Higher-order generalizations of Leivant's ramified recurrence captures elementary time computable functions (Leivant, Bellantoni Niggl Schwichtenberg, Dal Lago Martini Roversi)
- Polynomial time can be retrived by constraining higher-order variables to be used in a linear way (Hofmann).
- Non-size increasing polytime computation is a calculus for polynomial time functions which uses a stricter notion of linearity, but without any ramification condition (Hofmann).
- Characterizations of major complexity classes can be obtained using syntactical constraints on lambda-calculi with higher-type recursion (Leivant).

Other higher-order systems

We will see the non size increasing calculus on Friday

Uniform approach, tailoring Gödel's T

- Gödel's System T is a well known typed λ-calculus with \mathbb{N} as base type and explicit recursion.
- Introduced for foundational purposes: to prove the consistency of Peano Arithmetic (the Dialectica interpretation, 1959).
- The terms in T with type $\mathbb{N} \rightarrow \mathbb{N}$ have huge computational power.

Theorem

$M: \mathbb{N} \rightarrow \mathbb{N}$ in T iff M computes a function provably total in Peano Arithmetic.

- We will see simple syntactic restrictions on T giving rise to interesting computational classes (Dal Lago, 2005).
- This summarizes many previous results into a single uniform setting.

Base types: free algebras

- A free algebra \mathbb{A} : constants (constructors) with their arity (given as a function $\mathcal{R}_{\mathbb{A}}$). Examples:
- Unary naturals: $\mathbb{U}=\{0, s\} ; \mathcal{R}_{\mathbb{U}}(0)=0$ and $\mathcal{R}_{\mathbb{U}}(S)=1$;
- Binary naturals: $\mathbb{B}=\left\{\epsilon, s_{0}, s_{1}\right\} ; \mathcal{R}_{\mathbb{B}}(\epsilon)=0$ and $\mathcal{R}_{\mathbb{B}}\left(s_{i}\right)=1$;
- Binary trees: $\mathbb{C}=\{\epsilon, c\} ; \mathcal{R}_{\mathbb{C}}(\epsilon)=0$ and $\mathcal{R}_{\mathbb{C}}(c)=2$;
- \mathbb{U} and \mathbb{B} are examples of word algebras.
- Fix a finite family \mathscr{A} of free algebras $\left\{\mathbb{A}_{1}, \ldots, \mathbb{A}_{n}\right\}$, including \mathbb{U}, \mathbb{B} and \mathbb{C}.

Terms and reduction

- Terms over \mathscr{A}

$$
M::=x|c| M M|\lambda x \cdot M| M\{M, \ldots, M\} \mid M\langle\langle M, \ldots, M\rangle\rangle
$$

c ranges over the constants of $\mathscr{A} ;\{\ldots\}$ is conditional; $\langle\langle\ldots\rangle\rangle$ is recursion (after Matthes and Joachimsky, 2003).

- Reduction rules:

$$
\begin{aligned}
(\lambda x . M) V & \rightarrow \\
c_{i}\left(t_{1}, \ldots, t_{\mathcal{R}\left(c_{i}\right)}\right)\left\{V M_{c_{1}}, \ldots, M_{c_{k}}\right\} & \rightarrow \\
c_{i}\left(t_{1}, \ldots, t_{\mathcal{R}\left(c_{i}\right)}\right)\left\langle\left\langle M_{c_{1}}, \ldots, t_{c_{k}}\right\rangle\right\rangle & \rightarrow t_{\mathcal{R}\left(c_{i}\right)} \\
& \\
& M_{c_{i}} t_{1} \cdots t_{\mathcal{R}\left(c_{i}\right)} \\
& \left(t_{1}\left\langle\left\langle M_{c_{1}}, \ldots, M_{c_{k}}\right\rangle\right\rangle\right) \\
& \cdots \\
& \left(t_{\mathcal{R}\left(c_{i}\right)}\left\langle\left\langle M_{c_{1}}, \ldots, M_{c_{k}}\right\rangle\right\rangle\right)
\end{aligned}
$$

- Reduction is not allowed:
under abstractions, or inside $\{\}$ and $\langle\rangle\rangle$.

The simple case of \mathbb{B}

- Conditional and recursion for the binary naturals:

$$
\mathbb{B}=\left\{\epsilon, s_{0}, s_{1}\right\} ; \mathcal{R}_{\mathbb{B}}(\epsilon)=0 \text { and } \mathcal{R}_{\mathbb{B}}\left(s_{i}\right)=1
$$

- Conditional:

$$
\begin{aligned}
\epsilon\left\{M_{\epsilon}, M_{0}, M_{1}\right\} & \rightarrow M_{\epsilon} \\
s_{0} t\left\{M_{\epsilon}, M_{0}, M_{1}\right\} & \rightarrow M_{0} t \\
s_{1} t\left\{M_{\epsilon}, M_{0}, M_{1}\right\} & \rightarrow M_{1} t
\end{aligned}
$$

- Recursion:

$$
\begin{aligned}
\epsilon\left\langle\left\langle M_{\epsilon}, M_{0}, M_{1}\right\rangle\right\rangle & \rightarrow M_{\epsilon} \\
s_{0} t\left\langle\left\langle M_{\epsilon}, M_{0}, M_{1}\right\rangle\right\rangle & \rightarrow M_{0} t\left(t\left\langle\left\langle M_{\epsilon}, M_{0}, M_{1}\right\rangle\right\rangle\right) \\
s_{1} t\left\langle\left\langle M_{\epsilon}, M_{0}, M_{1}\right\rangle\right\rangle & \rightarrow M_{1} t\left(t\left\langle\left\langle M_{\epsilon}, M_{0}, M_{1}\right\rangle\right\rangle\right)
\end{aligned}
$$

Types

$$
A::=\mathbb{A}^{n} \mid A \multimap A
$$

where n ranges over \mathbb{N} and \mathbb{A} ranges over \mathscr{A}. Indexing base types is needed to define tiering conditions.

$$
\frac{\Gamma_{i} \vdash M_{c_{i}^{\mathbb{A}}}: \mathbb{A}^{m} \stackrel{\mathcal{R}_{\mathbb{A}}\left(c_{i}^{\mathbb{A}}\right)}{\rightarrow} C \stackrel{\mathcal{R}_{\mathbb{A}}\left(c_{i}^{\mathbb{A}}\right)}{{ }_{0}^{(}} C \Delta \vdash L: \mathbb{A}^{m}}{\Gamma_{1}, \ldots, \Gamma_{n}, \Delta \vdash L\left\langle\left\langle M_{c_{1}} \cdots M_{c_{k}}\right\rangle\right\rangle: C} E_{-0}^{R}
$$

$$
\begin{aligned}
& \overline{x: A \vdash x: A} A \quad \frac{\Gamma \vdash M: B}{\Gamma, x: A \vdash M: B} W \quad \frac{\Gamma, x: A, y: A \vdash M: B}{\Gamma, z: A \vdash M\{z / x, z / y\}: B} C \\
& \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \multimap B} I_{-} \quad \frac{\Gamma \vdash M: A \multimap B \quad \Delta \vdash N: A}{\Gamma, \Delta \vdash M N: B} E_{-}
\end{aligned}
$$

Expressive power

- Without restriction it is equivalent to Gödel's T (over free algebras)
- Indeed, if we take the only algebra \mathbb{U} of unary naturals, this is Gödel's T
- Restrictions. Two dimensions:
- Tiering/stratification/ramification on the recursion rule, to ensure low computational power at first-order;
- Linearity (i.e., contraction rule), to control the higher-order features.

Tiering constraints

In the rule

$$
\frac{\Gamma_{i} \vdash M_{c_{i}^{\mathbb{A}}}: \mathbb{A}^{m} \stackrel{\mathcal{R}_{\mathbb{A}}\left(c_{i}^{\mathbb{A}}\right)}{\rightarrow} C \stackrel{\mathcal{R}_{\mathbb{A}}\left(c_{i}^{\mathbb{A}}\right)}{\rightarrow} C \Delta \vdash L: \mathbb{A}^{m}}{\Gamma_{1}, \ldots, \Gamma_{n}, \Delta \vdash L\left\langle\left\langle M_{c_{1}} \cdots M_{c_{k}}\right\rangle\right\rangle: C} E_{-}^{R}
$$

add the constraint

$$
m>V(C)
$$

where $V(C)$ is the maximum tier of a base type in C.

Linearity constraints

- The contraction rule

$$
\frac{\Gamma, x: A, y: A \vdash M: B}{\Gamma, z: A \vdash M\{z / x, z / y\}: B} C
$$

may be applied only to types in a class $\mathrm{D} \subseteq \mathscr{T}_{\mathscr{A}}$.

- In the recursion rule

$$
\begin{aligned}
& \quad \frac{\Gamma_{i} \vdash M_{c_{i}^{\mathbb{A}}}: \mathbb{A}^{m} \stackrel{\mathcal{R}_{\mathbb{A}}\left(c_{i}^{\mathbb{A}}\right)}{\mathcal{O}_{0}} C \stackrel{\mathcal{R}_{\mathbb{A}}\left(c_{i}^{\mathbb{A}}\right)}{{ }_{0}} C \quad \Delta \vdash L: \mathbb{A}^{m}}{\Gamma_{1}, \ldots, \Gamma_{n}, \Delta \vdash L\left\langle\left\langle M_{c_{1}} \cdots M_{c_{k}}\right\rangle\right\rangle: C} E_{-0}^{R} \\
& \operatorname{cod}\left(\Gamma_{i}\right) \subseteq \mathbf{D} \text { for every } i \in\{1, \ldots, n\} .
\end{aligned}
$$

Several possible systems

- The unrestricted system: $\mathbf{H}\left(\mathscr{T}_{\mathscr{A}}\right)$
- The system with contraction limited to $\mathbf{D}: \mathbf{H}(\mathbf{D})$
- The tiered (ramified) system: add \mathbf{R} to the name of the system; e.g., RH, RH(D).
- We investigate the following D's:
- The purely linear system: $\mathbf{D}=\emptyset$;
- Contraction only on word algebras:

$$
\mathbf{D}=\mathbf{W}=\left\{\mathbb{A}^{n} \mid \mathbb{A} \in \mathscr{A} \text { is a word algebra }\right\} ;
$$

- Contraction only on base types (algebras):
$\mathbf{D}=\mathbf{A}=\left\{\mathbb{A}^{n} \mid \mathbb{A} \in \mathscr{A}\right\}$

And their expressive power

	$\mathbf{H}(\emptyset)$	$\mathbf{H}(\mathbf{W})$	$\mathbf{H}(\mathbf{A})$
no ramification	Prim. Rec.	Prim. Rec.	Prim. Rec.
ramification	PolyTime	PolyTime	ElementaryTime
	$\mathbf{R H}(\emptyset)$	$\mathbf{R H}(\mathbf{W})$	$\mathbf{R H}(\mathbf{A})$

- Any term of one of the systems can be normalized within the associated time bound.
- For any function f of one of the complexity classes, there exists a term M_{f} computing f which, in the associated system, has type $\mathbb{A}^{n} \rightarrow \mathbb{A}$.
- Recall that in $\mathbf{H}\left(\mathscr{T}_{\mathscr{A}}\right)$ we characterize all functions provably total in Peano Arithmetic.

