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Implicit Computational Complexity

I Standard Computational Complexity
I Study of complexity classes and their relations.
I Define first a machine model and its associated cost model(s)

(for time, space, etc.)
I Define then complexity classes as sets of problems or functions,

computable in a certain bound.

I Implicit Computational Complexity
I Describe complexity classes without explicit reference to a

machine model and to cost bounds.
I It borrows techniques and results from Mathematical Logic

I Recursion Theory (Restriction of primitive recursion schema);
I Proof Theory (Curry-Howard correspondence);
I Model Theory (Finite model theory).

I It aims to define programming language tools (e.g.,

type-systems) enforcing resource bounds on the programs.



Complexity classes

I Standard machines: Turing automata.
I Crucial: constant time elementary step.
I Cost model: number of steps (time) or number of work cells

(space).
I TM M works in bound f iff for any input u, M(u) terminates

using less than f (|u|) resources.

I Complexity classes
I Sets of decision problems (functions with only 0 or 1 as values);
I Resource[f (n)] =

{P | there exists TM M deciding P and working in bound f };

I Some relevant classes
I LogSpace = Space[log n];
I LinTime = Time[n];
I PTime = [i2NTime[ni ];
I PSpace = [i2NSpace[ni ];
I ExpTime = Time[2n];



Invariance

I Classes are invariant w.r.t. linear factors:

Resource[f (n)] =Resource[af (n) + b];

I Under certain assumptions, different machine models differ

only by a polynomial in their use of resources.

E.g., if a problem P is solvable in bound f by a TM model, P

is solved in at most f k in another model.

I Therefore, under these assumptions, PTime and PSpace are

very robust.



Coding of numbers

I Numbers must be coded into the TM alphabet.

I It is crucial that the coding of numbers be

positional with base greater than one.

I With unary notation, the lenght of the input would be

esponentially longer than the lenght in any other base.

Therefore giving esponentially more resource to the

computation. (Remember: the bound is a function of |u|).



Functional classes

I FPtime =

{f : N → N |

there exists TM M computing f in polynomial bound};

I FLogSpace = . . . ;

I . . .



Machine-free definitions of functions: Gödel-Kleene

Class of n-ary functions defined by closure.

I Base functions:
I Constant zero: Z : N → N, Z (y) = 0;
I Successor: S : N → N, S(y) = y + 1;
I Projections: for any k 2 N and i � k, πk

i : Nk → N,

πk
i (y1, . . . , yk) = yi .

I The function f is defined by composition from g , h1, . . . , hn if

f (y1, . . . , yk) = g(h1(y1, . . . , yk), . . . , hn(y1, . . . , yk))

I The function f is defined by primitive recursion from g and h if

f (0, y) = g(y)

f (x + 1, y) = h(x , y , f (x , y))



Classes of recursive functions

I The primitive recursive functions is the least class of functions

containing the base functions and closed under composition

and primitive recursion.

I The function f is defined by minimization from g if

f (y) = the least z such that (i) g(z , y) = 0 and

(ii) g(x , y) is defined for all x � z

Notation : f (y) = µz .g(z , y) = 0

I The (general) recursive functions is the least class of functions

containing the base functions and closed under composition,

(primitive recursion), and minimization.



Recursive functions as a machine model

I Original aim: define a class of functions in extenso.

I Natural operational interpretation as rewriting.

I However: no notion of constant time elementary step.

I Rewriting involves duplication of data of arbitrary size and of

computations of arbitrary length.

I Need of non trivial data structures (stack) to (näıvely)

implement primitive recursion.



Algebras for polynomial functions?

I We set out for a “closure-like” definition of FPTime.

I We first study some known subclasses of the primitive

recursive functions.



The spine of primitive recursion

f0(x , y) = x + 1;

f1(x , y) = x + y ;

f2(x , y) = xy ;

fn+1(x , 0) = 1;

fn+1(x , y + 1) = fn(x , fn+1(x , y))

f3(x , y) = xy ;

f4(x , y) = x �
��
x }

y times
.

Theorem

For any n and x , y > 2, fn(x , y) < fn+1(x , y).



Grzegorczyk

I Recursion causes bigger growth than composition:
I Define f k(x) = (f � � � f )(x), k times.
I For any n and any k, there exists x̂ such that, for any x > x̂ ,

fn+1(x , y) > f k
n (x , x).

I The function f is defined by bounded primitive recursion from

g , h and l iff f is defined by primitive recursion from g , h and

moreover, for any x ,

f (x) < l(x).

I For n � 0 the class En is the least class including the base

functions, the spine component fn, and closed under

composition and bounded primitive recursion.



Grzegorczyk hierarchy and complexity of computation

I The hierarchy is proper: En � En+1.

I Its limit are the primitive recursive functions: [nEn = PR.

I f 2 En iff there exists a TM M computing f and a function

g 2 En, such M works in time (space) bounded by g . (Unary

notation used here).

I Hence the same holds for the primitive recursive functions.

I Do the classes En correspond to natural complexity classes?

Theorem (Ritchie, 1961)

E2 = FLinspace

I Ptime 6= FLinspace, but we do not know whether there is

some inclusion between the two classes.



Many other hierarchies

I Many other hierarchies are definable, “structuring” recursion

by levels.

I E.g., define the rank δ of a function definition:
I Initial functions have rank 0;
I f defined by composition from h, g1, . . . , gk have rank

max{δ(h), δ(g1), . . . , δ(gk)};
I f defined by recursion from base g and step function h have

rank max{δ(g), δ(h) + 1}.

I Dn = {f | δ(f ) � n}

I For n � 2, Dn = En+1 (Schwichtenberg; Müller, for n = 2).

I E3 is an important class: the Kalmar elementary functions.

I But we are mainly interested in the lower classes...



One last result for the “bigger” classes: PSpace

PSpace is the least classs containing:

I Base functions: Zero, projections, max, x |x |;

I Closed by composition, and

I Bounded primitive recursion.

Moral:

Bounded recursion, or just limiting nested recursion is not enough

if we are interested in the lower complexity classes, e.g. PTime.

Indeed both PTime and ExpTime both lie in D2 = E3, that is

the elementary functions.



A closer look: a notational problem

I Usual recursion—from f (n) to f (n + 1)—is exponentially long

on the size of the input n.

I This is why controlling recursion, per se, is not enough:
I A single recursion may cause exponential blow;
I Two nested recursions are enough to reach the elementary

functions (recall: D2 = E3).

I Move to binary representation for input (or, more generally,

manipulate strings).



Recursion on Notation

I Data: binary strings

I Two “successors”:
I s0, adding 0 at the least significant position

i.e., on the represented number s0(n) = 2n;
I s1, adding 1 at the least significant position

i.e., on the represented number s0(n) = 2n + 1;

I Recursion on Notation:

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = h0(x , y , f (x , y))

f (s1(x), y) = h1(x , y , f (x , y))



Recursion on Notation, examples

I Now recursion converges quickly to a base case:

f (n) involves at most log n recursive calls.

I Notation: we mix strings and numbers.

I Example: duplicating the length of the input

As strings (� is concatenation):

d(0) = d(1) = 1

d(s0(x)) = d(x) � 00

d(s1(x)) = d(x) � 00

As numbers (� is multiplication):

d(0) = d(1) = 1

d(n) = 4 � d(bx/2c)

That is, d(n) = 22|n|, that is |d(n)| = 2|n| − 1.



Recursion on notation is too generous

Recall

d(0) = d(1) = 1

d(s0(x)) = d(x) � 00

d(s1(x)) = d(x) � 00

And define

e(0) = e(1) = 1

e(s0(x)) = d(e(x))

e(s1(x)) = d(e(x))

Now e(x) has exponential lenght in |x |. . .

Still too much growth. . .



Bounded recursion on notation

I Bennett (1962) and Cobham (1965).

I A function f : Nn+1 → N is defined by bounded recursion on

notation from g0, g1 : Nn → N, h0, h1 : Nn+2 → N and

k : Nn+1 → N if

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = h0(x , y , f (x , y))

f (s1(x), y) = h1(x , y , f (x , y))

provided f (x , y) � k(x , y).



Cobham characterization of FPtime

I However, the basic functions Zero, projections and successor

do not grow enough. . .

I Let x#y = 2|x |�|y | (note: |x |k = |x |# � � �#|x |).

Theorem (Cobham)

FPTIME is the least class containing: Zero, the projections, the

two successors on strings, #; and closed under composition and

bounded recursion on notation.

I Proof: FPTIME � COB: Code TMs as functions of the

algebra. The iteration of the transition function is

representable because a priori polynomially bounded.

COB � FPTIME : By induction on the length of the

definition, show that any function is computable by a

polynomially bounded TM, exploiting the bound on the

recursive definition.



Variations on a theme

I Logspace is an important measure. Logspace reductions

are crucial to study the structure of Ptime, e.g. the existence

of complete problems.

I A function f : Nn+1 → N is defined by strict bounded

recursion on notation from g0, g1 : Nn → N,

h0, h1 : Nn+2 → N and k : Nn+1 → N if

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = h0(x , y , f (x , y))

f (s1(x), y) = h1(x , y , f (x , y))

provided f (x , y) � |k(x , y)|.



Logspace

Theorem (Lind;Clote & Takeuti)

FLOGSPACE is the least class containing: Zero, projections,

successors, length functions, bit selection, #; and closed under

composition, strict bounded recursion on notation, and

concatenation recursion on notation.

where Concatenation Recursion on Notation (CRN) from g , h0, h1

(hi (x , y) � 1) is

f (0, y) = g0(y)

f (1, y) = g1(y)

f (s0(x), y) = sh0(x ,y)(f (x , y))

f (s1(x), y) = sh1(x ,y)(f (x , y))



A critique on Cobham characterization

I Cobham’s paper is the birth of computational complexity as a

respected theory.

I It characterized Ptime as a mathematically meaningful class.

I From the implicit computational complexity perspective,
however. . .
I It is not as implicit as it seems
I It uses an explicit a priori bound on the construction
I It “throws in” the polynomials (i.e., the # function) in the

recipe, in order to make it work.

I We had to wait until the ’80s to get a more “implicit”

characterization of Ptime. . .



Safe Recursion: idea

I Unbounded recursion schema to control the growth of

functions

I Function arguments are partioned into two separate classes.

I Function definitions are constrained to respect this partition.

I The arguments to a function f : Nn → N are partitioned into

m � n normal arguments and n − m safe arguments:

f (x1, . . . , xm; xm+1, . . . , xn).

I Idea: calls to functions obtained by recursion can only appear

in the safe zone.

I Need to modify the composition, in order to respect the

distinction normal/safe.



Safe Recursion and Composition

I The function f is defined by safe composition from

g , h1, . . . , hn, k1, . . . , km if

f (x ; y) = g(h1(x ; ), . . . , hn(x ; ); k1(x ; y), . . . , km(x ; y)).

I The function f is defined by safe recursion on notation from

g0, g1, h0, h1 if

f (0, x ; y) = g0(x ; y)

f (1, x ; y) = g1(x ; y)

f (s0(x), x ; y) = h0(x , x ; y , f (x , x ; y))

f (s1(x), x ; y) = h1(x , x ; y , f (x , x ; y))



Understanding safe composition and recursion

I The key clause:

f (si (x), x ; y) = hi (x , x ; y , f (x , x ; y))

I If f is defined by safe recursion:
I it takes the recursion input si (x) from the normal part;
I but the recursive value f (x , x ; y) is substituted into a safe

position of h
I then this recursive value will stay in a safe position, because of

safe composition

f (x ; y) = g(h1(x ; ), . . . , hn(x ; ); k1(x ; y), . . . , km(x ; y)).

and will not be copied back into a normal position.

I Intuitively, the depth of sub-recursions which hi performs on y

or y cannot depend on the value being recursively computed.



Projections

I We have projections from both normal and safe zones

πn+m
j (x1, . . . xn; xn+1, . . . xn+m) = xj 1 � j � n + m

I Now we can move arguments from safe to normal (but not
vice-versa)
I Assume we have f (x ; y , z).
I Define f 0(x , y ; z) same as f but with y “demoted” to normal
I f 0(x , y ; z) = f (π2

1(x , y ; ); π3
2(x , y ; z), π3

3(x , y ; z))



Controlling recursion by safeness

Successors are safe: s0(; x), s1(; x)

We have projections from both normal and safe zones

Recall the function

d(0) = d(1) = 1

d(s0(x)) = d(s1(x)) = d(x) � 00

Define:

d(0; ) = d(1; ) = 1

d(s0(x); ) = d(s1(x); ) = s0(; s0(; d(x ;)))

where formally the step function h is

h(x ; z) = π2
2(x ; s0(; s0(;π

2
2(x ; z)))



Controlling recursion by safeness, II

Recall now the exponential function

e(0) = e(1) = 1

e(s0(x)) = e(s1(x)) = d(e(x))

We cannot define e by safe recursion:

e(0; ) = e(1; ) = 1

e(s0(x); ) = e(s1(x); ) = ? d(e(x)) ?

The safe recursion schema requires h(z ; y) = d(; y),

but d is instead defined as d(y ; ).



Polytime and safe recursion

Let B be the function algebra containing

I successors: s0(; x), s1(; x);

I projections, from normal and safe arguments;

I predecessor: p(; 0) = 0 and p(; si (x)) = x ;

I conditional:

C (; x , y , z) =

{
y if x = s0(v)

z if x = s1(v).

and closed under safe composition and recursion.

Theorem (Bellantoni and Cook)

The polynomial time computable functions are exactly those

functions of B having only normal inputs.



Proof of BC’s theorem

I Soundness: Any function in B is polytime.
I Derive first a bound on the computed value: Let f 2 B. There

is a polynomial qf such that

|f (x ; y)| � qf (|x |) + max(y1, . . . , yn)
I Observe that such qf ’s are definable in Cobham’s class.
I Therefore, any instance of Safe recursion is an instance of

Bounded rec. on notation.

I Completeness: Any polytime function is in B.
I Use Cobham characterization via bounded recursion on

notation.
I By induction on derivation on Cobham’s system, show that for

any polytime f (y) there exists a function f 0 2 B and a

polynomial pf such that f 0(w ; y) = f (y), for all y and all

w � pf (|y |)
I Now construct a function b in B such that b(x ; ) � pf (|x |)
I Set f (x ; ) = f 0(b(x ; ); x).



Variations: Safe Affine Composition

I In safe composition a safe argument may be used several times

f (x ; y) = g(h1(x ; ), . . . , hn(x ; ); k1(x ; y), . . . , km(x ; y).

I If we are interested in Logspace, we must limit reuse of

resources, imposing some kind of lineary constraint: any safe

argument should be used at most once.

I The function f is defined by safe affine composition from

g , h1, . . . , hn, k1, . . . , km if

f (x : y) = g(h1(x :), . . . , hn(x :) : k1(x : Y 1), . . . , km(x : Y m))

where any y1, . . . , yk of y occurs at most once in any

Y 1, . . . , Y m.



Safe Affine Recursion: Logarithmic Space

I The function f is defined by safe affine course-of-value

recursion on notation from g0, g1, h0, h1 if

f (0, x : y) = g0(x : y)

f (1, x : y) = g1(x : y)

f (s0(x), x : y) = h0(x , x : f (x 0, x : y))

f (s1(x), x : y) = h1(x , x : f (x 00, x : y)) with x 0, x 00 � x

Theorem (Mairson and Neergaard, 2003)

The set of logaritmic space functions equals the set of functions

definable by safe affine course-of-value recursion, safe affine

composition, and containing the base functions of BC.



Tiering

I Related to safe recursion is the notion of predicative

recurrence, or tiering [Leivant, 1993].

I Any function and argument position comes with a tier.

I Equivalently: we have an infinite number of copies of the base

data:

N0,N1,N2, . . .

I Functions have a type of the form

f : Ni � � � � � Nj → Nk

I Base functions are available at any tier.

I Composition is tier-preserving: f i � g i = hi .



Predicative Recurrence - I

I Recursion is possible only over a variable with tier greater

than that of the function:

f (0, y)i = g0(y
k)i

f (1, y)i = g1(y
k)i

f (s0(x)l , y)i = h0(x
l , yk , f (x , y)i )i

f (s1(x)l , y)i = h1(x
l , yk , f (x , y)i )i with l > i

I In other words:
I When defining inductively

f (sb(x), y) = hb(x , y , f (x , y))
I we must have

hb : Nl � N� Ni → Ni

with l > i , and we obtain

f : Nl � N → Ni



Examples of predicative recurrence

Recall: In f (sb(x)l , y)i = hb(x
l , yk , f (x , y)i )i , l > i .

I Flat recurrence: the stratification is vacuous, because the

recursion argument is absent

p(sb(x)) = x

I Concatenation:

�(ε, y) = y

�(sb(x), y) = sb(�(x , y))

Imposing stratification:

�(sb(x)l , y j)i = sb(�(x l , y j)i ) with l > i

Take l = 1, i = 0 (and j whatever, say 0):

� : N1 � N0 → N0



Examples of predicative recurrence - II

We can apply predicative recurrence on any constructor algebra:

numbers in unary or binary notation, trees, etc.

I Addition in unary notation:

+(0, y) = 0

+(s(x), y) = s(+(x , y))

Imposing stratification:

+(s(x)1, y0)1 = s(+(x1, y0)1)

+ : N1 � N0 → N0

I Multiplication in unary notation:

�(0, y) = 0

�(s(x), y) = +(y , �(x , y))

Impose the stratification for +:

�(s(x), y) = +(y1, �(x , y)0)0

and propagate; everything is OK: � : N1 � N1 → N0



A non predicative recurrence

Recall: In f (s(x)l , y)i = h(x l , yk , f (x , y)i )i , l > i .

I Powers of two P2(n) = 2n:

P2(0) = 1

P2(s(x)) = +(P2(x),P2(x))

Recall that + : N1 � N0 → N0

and impose this stratification:

P2(s(x)?)?? = +(P2(x)1,P2(x)0)0

The first input to + must have level greater than the output

From the output of + we would get ?? = 0

From the first input to + we would get ?? = 1.

Impossible under any assignment.



Predicative recurrence and polynomial time

Theorem (Leivant, 1993)

Let W be a free algebra, f a function over W . The following are

equivalent:

1. f is computable in time polynomial in the maximal height of

the inputs.

2. f is definable by predicative recursion over A0 and A1.

3. f is definable by predicative recursion over arbitrary Ai ’s,

i � 0.

Compare to Bellantoni and Cook: no initial functions.

Same idea. . .



Tiering and Safe recursion

I Tiering and safeness are equivalent

I From a tiered f (x l1
1 , . . . , x ln

n , y i
1, . . . y

i
m)i where l1, . . . , ln > i

we get f (x1, . . . , xn; y1, . . . , ym)

I From a safe definition f (x1, . . . , xn; y1, . . . , ym)

for any tier i , there is a tiered definition of f in which

f (x l1
1 , . . . , x ln

n , y i
1, . . . y

i
m)i with l1, . . . , ln > i



Tiering and Safe recursion: same idea

It is forbidden to iterate a function which is itself defined by

recursion.

More formally, in a recursive definition

f (s(x), y) = h(x , y , f (x , y))

the step function h is not allowed to recurse on the result of a

previous function call, but may, however, recurse on other

parameters.



Exploiting predicative recursion

Tiering has been used to characterize:

I Polynomial Time (Leivant)

I Polynomial Space (Leivant and Marion, Oitavem)

I Alternating Logarithmic Time (Leivant and Marion)



Higher-order functions

I A (programming) language has higher-order (functions) when

functions can be both input and output of other functions.

I In presence of higher-order functions, we have exponential

growth even without “recursion on recursive values” (which is

what is forbidded by safe/tiered recursion).

I Consider the following higher-order function:

g(ε) = s0

g(s0(x)) = g(x) � g(x)

g(s1(x)) = g(x) � g(x)

g(bk � � � b3b2b1) = g(bk � � � b3b2) � g(bk � � � b3b2)

= g(bk � � � b3) � g(bk � � � b3) � g(bk � � � b3b2)

= . . .

= g(ε) � � � � � g(ε) 2k times



Exponential growth with higher-order

I We have defined

g(ε) = s0

g(s0(x)) = g(s1(x)) = g(x) � g(x)

I g(x) = s0 � � � � � s0, 2|x | times

I As numbers: h(n)(y) = 2|x | � y .

I Here there is no recursion on results of recursive calls. . .

I The problem seems to be in the reuse of an argument

I Here the step function is h(z) = z � z

I Impose some kind of linearity constraint.



Preliminaries: λ-calculus

I The language:

M,N ::= x | λx .M | (MN)

I Notation:
I λx1x2.M is λx1.(λx2.M)
I MNP is ((MN)P)
I M[N/x ]: the substitution of N for the free occurrences of x in

M

I Beta contraction: (λx .M)N →β M[N/x ]

I Reduction (→) is context, reflexive and transitive closure of

beta contraction



Types for λ-terms

I The language of types:

T ,S ::= o | T → S

I Typing rules

x : T ` x : T (Ax)

Γ, x : S ` M : T
Γ ` λx .M : S → T

(I→)
Γ ` M : S → T Γ ` N : S

Γ ` MN : T
(E→)



Fundamental properties

I This typed calculus is a very well behaved system.

I “subject reduction” (i.e., preservation of types under

reduction): Γ ` M : T and M →� N, then Γ ` N : T ;

I Confluence: M →� N1 and M →� N2, then there exists P

such that N1 →� P and N2 →� P;

I Hence we have unicity of normal forms;

I Strong normalization: Any term has a normal form, which is

obtained under any reduction strategy.



Add a base type for natural numbers

I The language of types:

T ,S ::= N | T → S

I Terms: add new constants. E.g.,

0, s, cond

I Typing rules: add type axioms for the new constants. E.g.,

Γ ` 0 : N Γ ` s : N → N

Γ ` cond : N → N → N → N

I Reduction: add contraction rules for the new constants. E.g.,

cond 0 M P →δ M

cond (sN) M P →δ P



A higher-order version of Cobham: PV ω

I Cook & Urquhart 1993

I Typed λ-calculus over base type N;

I Constants on N:
I Zero: 0 : N;
I successors s0, s1 : N → N;
I division by 2 p : N → N, p(n) = bn/2c;
I smash #(x)(y) = 2|x |�|y |;
I pad (shift left): pad(x)(y) = x � 2|y |;
I chop (shift right): chop(x)(y) = bx/2|y |c;
I conditional: cond(x)(y)(z) = y if x = 0; otherwise = z .

I Bounded recursion: for z , x : N, h : N → N → N, k : N → N

f (x) = rec(z , h, k, x) is the function defined as

f (0) = min(k(0), z)

f (x) = min(k(x), h(x , f (p(x))))



PV ω

I Prove by induction that for any f (x1, . . . , xn) in Cobham there

is a term Mf : Nn → N computing f .

I Being a typed lambda-calculus, it allows for direct definitions

of higher-order functions.

I Example: 9 : (N → N) → N → N

9(f )(x) is the least i � x s.t. f (i) = 0, if it exists, otherwise

is f (x).

9 = λf .λx .rec(f (0), λu.λv .cond(v , 0, f (|x |)))

Theorem

If M : Nn → N in PV ω, then the function computed by M is

computable in polytime.

I Same critique as for Cobham: can we do the same without

initial polynomial functions and without explicit counting

during recursion?



Typed Lambda-Calculi: Higher-Order Recursion

I Higher-order generalizations of Leivant’s ramified recurrence

captures elementary time computable functions (Leivant,

Bellantoni Niggl Schwichtenberg, Dal Lago Martini Roversi)

I Polynomial time can be retrived by constraining higher-order

variables to be used in a linear way (Hofmann).

I Non-size increasing polytime computation is a calculus for

polynomial time functions which uses a stricter notion of

linearity, but without any ramification condition (Hofmann).

I Characterizations of major complexity classes can be obtained

using syntactical constraints on lambda-calculi with

higher-type recursion (Leivant).



Other higher-order systems

We will see the non size increasing calculus on Friday



Uniform approach, tailoring Gödel’s T

I Gödel’s System T is a well known typed λ-calculus with N as

base type and explicit recursion.

I Introduced for foundational purposes: to prove the consistency

of Peano Arithmetic (the Dialectica interpretation, 1959).

I The terms in T with type N → N have huge computational

power.

Theorem

M : N → N in T iff M computes a function provably total in Peano

Arithmetic.

I We will see simple syntactic restrictions on T giving rise to

interesting computational classes (Dal Lago, 2005).

I This summarizes many previous results into a single uniform

setting.



Base types: free algebras

I A free algebra A: constants (constructors) with their arity

(given as a function RA). Examples:

I Unary naturals: U = {0, s}; RU(0) = 0 and RU(S) = 1;
I Binary naturals: B = {ε, s0, s1}; RB(ε) = 0 and RB(si ) = 1;
I Binary trees: C = {ε, c}; RC(ε) = 0 and RC(c) = 2;

I U and B are examples of word algebras.

I Fix a finite family A of free algebras {A1, . . . ,An}, including

U,B and C.



Terms and reduction

I Terms over A

M ::= x | c | MM | λx .M | M {{M, . . . , M}} | M hhM, . . . , Mii

c ranges over the constants of A ; {{. . .}} is conditional; hh. . .ii

is recursion (after Matthes and Joachimsky, 2003).

I Reduction rules:

(λx .M)V → M{V /x}

ci (t1, . . . , tR(ci )){{Mc1 , . . . ,Mck }} → Mci t1 � � � tR(ci )

ci (t1, . . . , tR(ci ))hhMc1 , . . . , Mck ii → Mci t1 � � � tR(ci )

(t1 hhMc1 , . . . , Mck ii)

� � �

(tR(ci ) hhMc1 , . . . , Mck ii)

I Reduction is not allowed:

under abstractions, or inside {{ }} and hh ii.



The simple case of B

I Conditional and recursion for the binary naturals:

B = {ε, s0, s1}; RB(ε) = 0 and RB(si ) = 1

I Conditional:

ε {{Mε,M0,M1}} → Mε

s0t {{Mε,M0,M1}} → M0t

s1t {{Mε,M0,M1}} → M1t

I Recursion:

ε hhMε,M0,M1ii → Mε

s0t hhMε,M0,M1ii → M0t (t hhMε,M0,M1ii)

s1t hhMε,M0,M1ii → M1t (t hhMε,M0,M1ii)



Types

A ::= A
n | A( A

where n ranges over N and A ranges over A . Indexing base types

is needed to define tiering conditions.

x : A ` x : A
A

Γ ` M : B
Γ, x : A ` M : B

W
Γ, x : A, y : A ` M : B

Γ, z : A ` M{z/x , z/y } : B
C

Γ, x : A ` M : B
Γ ` λx .M : A( B

I(
Γ ` M : A( B ∆ ` N : A

Γ, ∆ ` MN : B
E(

n 2 N c 2 CA

` c : An
RA(c)
( An

Ic Γi ` McAi
: Am

RA(cAi )
( C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L {{Mc1 � � �Mck }} : C
EC
(

Γi ` McAi
: Am

RA(cAi )
( C

RA(cAi )
( C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L hhMc1 � � �Mck ii : C
ER
(



Expressive power

I Without restriction it is equivalent to Gödel’s T (over free

algebras)

I Indeed, if we take the only algebra U of unary naturals, this is

Gödel’s T

I Restrictions. Two dimensions:
I Tiering/stratification/ramification on the recursion rule, to

ensure low computational power at first-order;
I Linearity (i.e., contraction rule), to control the higher-order

features.



Tiering constraints

In the rule

Γi ` McAi
: Am

RA(cAi )
( C

RA(cAi )
( C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L hhMc1 � � �Mck ii : C
ER
(

add the constraint

m > V (C )

where V (C ) is the maximum tier of a base type in C .



Linearity constraints

I The contraction rule

Γ, x : A, y : A ` M : B

Γ, z : A ` M{z/x , z/y } : B
C

may be applied only to types in a class D � TA .

I In the recursion rule

Γi ` McAi
: Am

RA(cAi )
( C

RA(cAi )
( C ∆ ` L : Am

Γ1, . . . , Γn, ∆ ` L hhMc1 � � �Mck ii : C
ER
(

cod(Γi ) � D for every i 2 {1, . . . , n}.



Several possible systems

I The unrestricted system: H(TA )

I The system with contraction limited to D: H(D)

I The tiered (ramified) system: add R to the name of the

system; e.g., RH, RH(D).

I We investigate the following D’s:
I The purely linear system: D = ;;
I Contraction only on word algebras:

D = W = {An | A 2 A is a word algebra};
I Contraction only on base types (algebras):

D = A = {An | A 2 A }



And their expressive power

H(;) H(W) H(A)

no ramification Prim. Rec. Prim. Rec. Prim. Rec.

ramification PolyTime PolyTime ElementaryTime

RH(;) RH(W) RH(A)

I Any term of one of the systems can be normalized within the

associated time bound.

I For any function f of one of the complexity classes, there

exists a term Mf computing f which, in the associated

system, has type An → A.

I Recall that in H(TA ) we characterize all functions provably

total in Peano Arithmetic.
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