Implicit Computational Complexity: An Introduction to Non-size-increasing Computation

Ugo Dal Lago

Dipartimento di Scienze dell’Informazione
Università di Bologna

BISS, March 10th 2006
Outline

Motivations

LFPL_ω

LFPL_T

Conclusions
Extensional vs. Intensional

- Many systems in ICC are both intensionally sound and extensionally complete w.r.t. a given complexity class C:
 - Any program can be executed according to the definition of C;
 - Any function in C is representable.
- But what does representable mean?
 - A function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is representable if there is a program p which computes f.
 - But there are many programs computing the same function...
- This is definitely a mismatch.
An Example - Sorting

- Let \(\text{sort} : \mathbb{N}^* \rightarrow \mathbb{N}^* \) be a function which receives as input a finite sequence \(l \) of natural numbers and outputs an non-decreasing permutation of \(l \).

- We can distinguish at least three different polynomial time algorithms computing \(\text{sort} \):

 - First of all, we can iterate a conditional swapping operation a quadratic number of times, in the style of \textbf{BubbleSort}.

 - We can iterate an insertion algorithm a linear number of times. The insertion algorithm is itself defined iteratively and takes a linear amount of time. This algorithm is known as \textbf{InsertionSort}.

 - We can partition the input sequence \(l \) into two subsequences \(f \) and \(s \) such that any element of \(f \) is smaller or equal to any element of \(s \). We then apply recursively the same algorithm to \(f \) and \(s \) and concatenate the two results. This algorithm is known as \textbf{QuickSort}.
An Example - Sorting

- **BubbleSort** and **InsertionSort** can be written in a functional programming language, provided it allows some form of iteration.

- While most of the systems capturing polynomial time admit **BubbleSort** as a legal definition, many of them do not allow nested iterations. As a consequence, **InsertionSort** is usually rejected.

- The situation is even worse for **QuickSort**, because recursion is not structural and the algorithm being polytime critically depends on size considerations about the partition step.
Why is Nested Recursion Prohibited?

- Because it can possibly lead to an exponential behavior.
- Consider the following program:

 \[
 \begin{align*}
 \text{double}(\varepsilon) & = \varepsilon \\
 \text{double}(0 \cdot t) & = 0 \cdot 0 \cdot \text{double}(t) \\
 \text{double}(1 \cdot t) & = 1 \cdot 1 \cdot \text{double}(t) \\
 \exp(\varepsilon) & = 0 \\
 \exp(0 \cdot t) & = \text{double}(\exp(t)) \\
 \exp(1 \cdot t) & = \text{double}(\exp(t)) \\
 \end{align*}
 \]

- Clearly \(\exp(t) = 0^{2^{|t|}} \).
- Many ICC systems (safe recursion, ramified recursion, light affine logic, etc.) do not allow nested recursion.
Nested Recursion can Be Benign

- Consider the following slight variation on the previous program:

\[
\text{switch}(\varepsilon) = \varepsilon \\
\text{switch}(0 \cdot t) = 1 \cdot \text{switch}(t) \\
\text{switch}(1 \cdot t) = 0 \cdot \text{switch}(t) \\
\text{parity}(\varepsilon) = 0 \\
\text{parity}(0 \cdot t) = \text{switch}(\text{parity}(t)) \\
\text{parity}(1 \cdot t) = \text{switch}(\text{parity}(t))
\]

- Observe \(\text{parity}(t) = 0\) if \(|t|\) is even and \(\text{parity}(t) = 1\) if \(|t|\) is odd.

- There is not any exponential blowup anymore.

- Why? switch, as opposed to double, is non-size increasing!
LFPL$_\omega$ programs

- **Types**: booleans (\mathbb{B}), lists ($L(A)$), binary trees ($T(A)$), products ($A \otimes B$), disjoint union ($A + B$), resource type (\diamond). In examples: $N = \mathbb{B} \otimes \ldots \otimes \mathbb{B}$. (32 times)

- **Signatures**: mapping of function symbols f to "arities": $\Sigma(f) = A_1, A_2, \ldots, A_n \to B$, e.g.,

append : $L(N), L(N) \to L(N)$.

- **Programs**: Signature + for each function symbol f with $\Sigma(f) = A_1, A_2, \ldots, A_n \to B$ a term e_f of type \mathbb{B} containing free variables $x_1 : A_1, \ldots, x_n : A_n$. The term e_f may contain calls to f and other functions declared in Σ.
Terms

They are built up from function calls, constructors, and pattern matching like in (first order) functional programming with the following exceptions:

- Constructors of recursive types take an extra argument of type \(\diamond\) (unless they are nil):

 \[
 \text{cons}(e_1^\diamond, e_2^A, e_3^L(A)) : L(A)
 \]

 match \(e_1^L(A)\) with nil \(\Rightarrow e_2^C \mid \text{cons}(x^\diamond, y^A, z^L(A))\) \(\Rightarrow e_3^C\)

 (as always pattern matching binds variables).

- Free and bound variables occur at most once (in the usual sense of affine linear types, e.g. occurrences in different branches of case distinction count only once).

- Variables of type \(B, B \otimes B, N\) may be used more than once.
Examples

\[
\begin{align*}
\text{append} & : \ L(C), L(C) \to L(C) \\
\text{append}(\text{nil}, l) & = l \\
\text{append}(\text{cons}(d, h, t), l) & = \text{cons}(d, h, \text{append}(t, l)) \\
\end{align*}
\]

Formally:

\[
\begin{align*}
\text{append}(l_1, l_2) & = \text{match } l_1 \text{ with } = \\
& \quad \text{nil } \Rightarrow l_2 \\
& \quad | \quad \text{cons}(d, h, t) \Rightarrow \text{cons}(d, h, \text{append}(t, l_2)) \\
\end{align*}
\]

\[
\begin{align*}
\text{reverse} & : \ L(C) \to L(C) \\
\text{reverse}(\text{nil}) & = \text{nil} \\
\text{reverse}(\text{cons}(d, h, t)) & = \text{append}(\text{reverse}(t), \text{cons}(d, h, \text{nil}))
\end{align*}
\]
Examples - II

insert : ◊, C, L(C) → L(C)

insert(\(d, x, \text{nil}\)) = \text{cons}(d, x, \text{nil})

insert(\(d_1, x, \text{cons}(d_2, y, l)\)) = \text{let compare}(x, y) \text{ be } (x, y, b) \text{ in } \begin{cases} \text{if } b \text{ then } \text{cons}(d_1, x, \text{cons}(d_2, y, l)) \\ \text{else } \text{cons}(d_1, y, \text{insert}(d_2, x, l)) \end{cases}

sort : L(C) → L(C)

sort(\text{nil}) = \text{nil}

sort(\text{cons}(d, x, l)) = \text{insert}(d, x, \text{sort}(l))
Examples - III

\[
\begin{align*}
\text{bst} & : \ L(C) \rightarrow T(C) \\
\text{bst}(\text{nil}) & = \text{leaf} \\
\text{bst}(\text{cons}(d, h, t)) & = \text{ins}(d, h, \text{bst}(t)) \\

\text{ins} & : \ \diamond, C, T(C) \rightarrow T(C) \\
\text{ins}(d, c, \text{leaf}) & = \text{node}(d, c, \text{leaf}, \text{leaf}) \\
\text{ins}(d_1, c_1, \text{node}(d_2, c_2, l, r)) & = \text{if } c_1 \leq c_2 \text{ then} \\
& \quad \text{node}(d_1, c_2, \text{ins}(d_2, c_1, l), r) \\
& \text{else } \text{node}(d_1, c_2, l, \text{ins}(d_2, c_1, r))
\end{align*}
\]
Examples - IV

duplist : L(⋄ ⊙ B) → L(B) ⊙ L(B)

duplist(nil) = nil ⊙ nil

duplist(cons(d_1, d_2 ⊙ h, t)) = match duplist(t) with
 u ⊙ v ⇒ cons(d_1, h, u) ⊙ cons(d_2, h, v)

twice : L(⋄ ⊙ B) → L(B)

twice(l) = match duplist(l) with
 u ⊙ v ⇒ append(u, v)

Remark: Function twice duplicates length. There is no definable function that squares or exponentiates length. So, really, ⋄ enforces linear growth, not zero growth.
Interpretation of LFPL$_\omega$

- Functions are non-size increasing in standard model:

\[
[B] = \{t, f\}
\]
\[
[L(A)] = [A]^\ast
\]
\[
[A \otimes B] = [A] \otimes [B]
\]
\[
[\diamond] = \{\star\}
\]

\[
\ldots
\]

- If \(f : A_1, \ldots, A_n \to B \) then \([f] : [A_1] \times \ldots \times [A_n] \to [B]\) is defined by least fixpoint.
Expressive power of LFPL_ω

- If \(\nu_1 \in [A_1], \ldots, \nu_n \in [A_n] \), then

\[
\| \langle f \rangle (\nu_1, \ldots, \nu_n) \|_B \leq \| \nu_n |_{A_1} + \cdots + \| \nu_n |_{A_n}
\]

where \(| \cdot |_C : [C] \to \mathbb{N} \cup \{\infty\} \).

- So, at least semantically, all definable functions are non-size-increasing.

- The previous observation leads to:

Theorem (Hofmann)

\(f \) is representable iff \(f \) is computable in time \(O(2^{cn}) \) for some \(c \) (here \(n = |w| \)). Equivalently \(f \) is computable on an \(O(n) \) space-bounded Turing machine with unbounded stack [Cook 1972].
\(\text{LFPL}_T\)

- Structural, Higher-Order Recursion.
- Types:
 \[A, B ::= \diamond \mid B \mid A \rightarrow B \mid A \otimes B \mid L(A)\]
- Terms:
 \[t, u ::= x \mid c \mid \lambda x.t \mid (t) u \mid t \otimes u \mid \text{let } t \text{ be } x \otimes y \text{ in } u \mid \text{if } \mid \text{iter}^L(A) t u\]
- Rewriting Rules:
 \[(\lambda x.t)u \rightarrow t[u/x]\]
 \[(\text{iter}^L(A) t u) \text{ nil} \rightarrow u\]
 \[(\text{iter}^L_B t u) (\text{cons } d a l) \rightarrow (t) d a (\text{iter}^L_B t u) l\]
 \[\text{let } t_1 \otimes t_2 \text{ be } x \otimes y \text{ in } u \rightarrow u[t_1/x, t_2/y]\]
 \[
 \text{if true } u v \rightarrow u
 \]
 \[
 \text{if false } u v \rightarrow v
 \]
Typing Rules for LFPLₜ

\[
\begin{align*}
 x : A & \vdash x : A \\
 \Gamma, \Delta & \vdash (t)u : B \\
 \Gamma & \vdash t : A \rightarrow B \\
 \Delta & \vdash u : A \\
 \Gamma, \Delta & \vdash \text{let } t \text{ be } x \otimes y \text{ in } u : C \\
 \Gamma & \vdash t : A \otimes B \\
 x : A, y : B, \Delta & \vdash u : C \\
 \Gamma, \Delta & \vdash t \otimes u : A \otimes B \\
 \Gamma & \vdash \text{true} : B \\
 \Gamma & \vdash \text{false} : B \\
 \Gamma & \vdash \text{cons} : \diamond \rightarrow A \rightarrow L(A) \rightarrow L(A) \\
 \Gamma & \vdash \text{nil} : L(A) \\
 \Gamma & \vdash \text{if} : B \rightarrow A \rightarrow A \rightarrow A
\end{align*}
\]
Expressive power of LFPL$_T$

- Some of the previously described examples cannot be caught.
- The calculus is strongly normalizing (it can be embedded into Gödel System T).
- The class of representable functions shrinks:

Theorem (Hofmann)

$f : \{0, 1\}^* \rightarrow \{0, 1\}$ is representable iff f is computable in time $O(p(n))$ for some polynomial p.

- The calculus can be extended with a weak modality in the spirit of linear logic and with second-order quantification without losing its nice quantitative properties.
InsertionSort in LFPL τ

\[\vdash \text{insert} : \text{L}(A) \circ \circ \circ A \circ \circ \text{L}(A) \]

\[\vdash \text{sort} : \text{L}(A) \circ \circ \text{L}(A) \]

where:

\[
\begin{align*}
 \text{insert} & \quad = \quad \text{iter}^\text{LA}_B \ t^{\circ \circ A \circ \circ B \circ \circ B} \ u^B \\
 u & \quad = \quad \lambda d^{\circ}. \lambda a^A. \text{cons} \ d \ a \ \text{nil} \\
 t & \quad = \quad \lambda d^{\circ}. \lambda a^A. \lambda f^B. \lambda d'^{\circ}. \lambda a'^A. \\
 & \quad \quad \text{let (compare } a \ a') \ \text{be } a_1 \otimes a_2 \ \text{in } \text{cons} \ d \ a_1 \ (f) \ d' \ a_2 \\
 B & \quad = \quad \circ \circ A \circ \circ \text{L}(A)
\end{align*}
\]
InsertionSort in LFPL$_T$

\[
insert' = \lambda d^\Diamond. \lambda a^A. \lambda l^{L(A)}. (insert \ l \ d \ a)
\]

\(\vdash insert' : \Diamond \rightarrow A \rightarrow L(A) \rightarrow L(A) \)

\[
sort = iter_{L(A)}^{L(A)} \ insert' \ \text{nil}
\]
Summing Up

- We have presented two programming languages, LFPL_ω and LFPL_T.
- Every program is non-size-increasing (this is enforced by way of both linearity and \diamond).
- Interesting algorithms are captured by the systems (for example, InsertionSort).
References

Questions?