Implicit Computational Complexity:
An Introduction to Non-size-increasing
Computation

Ugo Dal Lago

Dipartimento di Scienze dell’ Informazione
Universita di Bologna

BISS, March 10th 2006

Outline

Motivations

LFPL

LFPLy

Conclusions

Extensional vs. Intensional

» Many systems in ICC are both intensionally sound and
extensionally complete w.r.t. a given complexity class C:

» Any program can be executed according to the definition of C;
» Any function in C is representable.

» But what does representable mean?

» A function f : {0,1}* — {0,1}* is representable if there is a
program p which computes f.
» But there are many programs computing the same function...

> This is definitely a mismatch.

An Example - Sorting

> Let sort : N* — N* be a function which receives as input a
finite sequence / of natural numbers and outputs an
non-decreasing permutation of /.

> We can distinguish at least three different polynomial time
algorithms computing sort:

» First of all, we can iterate a conditional swapping operation a
quadratic number of times, in the style of BubbleSort.

» We can iterate an insertion algorithm a linear number of times.
The insertion algorithm is itself defined iteratively and takes a
linear amount of time. This algorithm is known as
InsertionSort.

» We can partition the input sequence / into two subsequences f
and s such that any element of f is smaller or equal to any
element of s. We then apply recursively the same algorithm to
f and s and concatenate the two results. This algorithm is
known as QuickSort.

An Example - Sorting

» BubbleSort and InsertionSort can be written in a functional
programming language, provided it allows some form of
iteration.

» While most of the systems capturing polynomial time admit
BubbleSort as a legal definition, many of them do not allow
nested iterations. As a consequence, InsertionSort is usually
rejected.

» The situation is even worse for QuickSort, because recursion
is not structural and the algorithm being polytime critically
depends on size considerations about the partition step.

Why is Nested Recursion Prohibited?

» Because it can possibly lead to an exponential behavior.

» Consider the following program:

double(e) = ¢
double(0 - t) 0-0-double(t)
double(1 - t) 1-1-double(t)

exp(¢) 0
exp(0 - t) double(exp(t))
exp(l-t) = double(exp(t))

» Clearly exp(t) = 02"
» Many ICC systems (safe recursion, ramified recursion, light
affine logic, etc.) do not allow nested recursion.

Nested Recursion can Be Benign

» Consider the following slight variation on the previous program:

switch(e)
switch(0 - ¢)
switch(1 - t)
parity(¢)
parity(0 - t)
parity(1 - t)

€

1. switch(t)

0 - switch(t)

0
switch(parity(t))
switch(parity(t))

» Observe parity(t) = 0 if |t| is even and parity(t) =1 if [t| is

odd.

> There is not any exponential blowup anymore.

» Why? switch, as opposed to double, is non-size increasing!

LFPL,, programs

» Types: booleans (B), lists (L(A)), binary trees (T(A)),
products (A ® B), disjoint union (A + B), resource type (©).
In examples: N=B® ... ® B. (32 times)

» Signatures: mapping of function symbols f to "arities":
Z(f) = A1, A,...,Ap = B, e.g.,
append : L(N),L(N) — L(N).

» Programs: Signature + for each function symbol f with
Y(f) =A1, A, ..., A, — B aterm er of type B containing
free variables x; : A1,...,x,: A, . The term ef may contain
calls to f and other functions declared in X.

Terms

They are built up from function calls, constructors, and pattern
matching like in (first order) functional programming with the
following exceptions:

» Constructors of recursive types take an extra argument of type
¢ (unless they are nil):

cons(ef, €5, es (A)) : L(A)
match e} (A) with nil = e2C | cons(x®, yA, z-A))) = e3C

(as always pattern matching binds variables).

» Free and bound variables occur at most once (in the usual
sense of affine linear types, e.g. occurrences in different
branches of case distinction count only once).

» Variables of type B, B® B, N may be used more than once.

Examples

append : L(C),L(C)— L(C)
append(nil, /) = |
append(cons(d, h,t),l) = cons(d,h,append(t,/))

Formally:
append(h,h) = match / with =
nil = b
| cons(d, h,t) = cons(d, h,append(t, b))

reverse : L(C)— L(C)
reverse(nil) = nil

reverse(cons(d, h,t)) = append(reverse(t),cons(d, h, nil))

Examples - [l

insert : o,C,L(C) — L(C)
insert(d, x,nil) = cons(d, x,nil)
insert(dy, x, cons(do, y,l)) = let compare(x,y) be (x,y, b) in
if b then cons(di, x,cons(da,y,/))

else cons(dy, y, insert(db, x,/))

sort : L(C)—L(C)
sort(nil) = nil

sort(cons(d, x,l)) = insert(d,x,sort(/))

Examples - [

bst : L(C)—T(C)
bst(nil) = leaf
bst(cons(d, h,t)) = ins(d, h,bst(t))

ins : o C,T(C)—T(C)
ins(d, c,leaf) = node(d, c, leaf, leaf)
ins(dy, c1,node(dr, ¢0,1,r)) = if ¢t < ¢ then
node(d, ¢,ins(da, c1,/),r)

else node(dy, ¢, 1,ins(d>, c1,r))

Examples - |V

duplist : L(¢®B)— L(B)®L(B)
duplist(nil) = nil ® nil
duplist(cons(dy,d> ® h,t)) = match duplist(t) with
u® v = cons(dy, h,u) ® cons(do, h, v)

twice : L(¢®B)— L(B)
twice(/) = match duplist(/) with
u® v = append(u, v)
Remark: Function twice duplicates length. There is no definable

function that squares or exponentiates length. So, really, ¢ enforces
linear growth, not zero growth.

Interpretation of LFPL,,

» Functions are non-size increasing in standard model:

[B] = {tf}
[L(A] = [A]*
[A®B] = [Al®I[B]
[ol = {x

» Iff:A;,...,A, — Bthen [f]:[A] x ... x[A)] — [B] is
defined by least fixpoint.

Expressive power of LFPL,,

> If v € |IA1]],...,V,, € [[An]], then

|[[f]](vl»- c Vn)|B < |Vn|A1 +...+ |Vn|A,,

where | - |¢ : [C] — NU{co}.

» So, at least semantically, all definable functions are
non-size-increasing.

» The previous observation leads to:
Theorem (Hofmann)

f is representable iff f is computable in time O(2°") for some ¢
(here n = |w|). Equivalently f is computable on an O(n)
space-bounded Turing machine with unbounded stack [Cook 1972].

LFPLy

» Structural, Higher-Order Recursion.

» Types:
AB:=¢o|B|A—-oB|A®B|L(A)
» Terms:
t,bu == x|c|Axt|(t)u|tQullet t be x®y in u

if | iter,L3(A) tu

» Rewriting Rules:

(Ax.tlu — tlu/x]
(iterl,;(A) tu)nil — u
iter tu)lconsd a — (t a (iter tu
(iterg™ t u) (cons d al) — (£) d a (iterg™ ¢ u)l
let £t ®t, be x®y in u — ulty/x, ta/y]
iftruevv — u
if falseuv — v

Typing Rules for LFPL 1

'cte:C
x:AFx: A ATHE:C

'-t:A—oB AFu:A x:ATHt:B

NAF (t)u: B '-Ax.t:A— B
FNFt:A®B x:Ay:B A u:C TrFt:A AFu:B
NAFlet t be x®y in u:C NTAFtQu:A®B

Ft:o—oA—oB—oB Fu:B

F iter;(A) tu:L(A) — B F true: B false: B

Fcons:o—oA—oL(A) — L(A) F nil : L(A)

Fif:B—oA—-oA—o0A

Expressive power of LFPLt

» Some of the previously described examples cannot be catched.

» The calculus is strongly normalizing (it can be embedded into
Godel System T).

» The class of representable functions shrinks:

Theorem (Hofmann)

f:{0,1}* — {0, 1} is representable iff f is computable in time
O(p(n)) for some polynomial p.

> The calculus can be extended with a weak modality ! in the
spirit of linear logic and with second-order quantification
without losing its nice quantitative properties.

InsertionSort in LFPL

Finsert : L(A) o0 —o0 A —L(A)
Fsort : L(A) — L(A)

where:

©o—A—oB—B uB

msert iterg ¢
u = Ad°Aa*.cons d anil
t = Ad°Aa*AFBAd N4
let (compare aa’) be a; ® a» in cons d a; (f)d' a

B = o—oA-—L(A)

InsertionSort in LFPL

insert! = Ad°AaPAA) (insert Id a)

Finsert’ : o—oA—oL(A) — L(A)

sort = itertgﬁg insert’ nil

Summing Up

» We have presented two programming languages, LFPL, and
LFPL .

» Every program is non-size-increasing (this is enforced by way
of both linearity and ©).

» Interesting algorithms are captured by the systems (for
example, InsertionSort).

References |

[Martin Hofmann.
Linear types and non-size-increasing polynomial time
computation.
In LICS, pages 464-473, 1999.

[Martin Hofmann.
The strength of non-size increasing computation.
POPL, pages 260-269, 2002.

[Martin Hofmann.
Linear types and non-size-increasing polynomial time
computation.
Information and Computation, 183(1):57-85, 2003.

References I

[Martin Hofmann and Steffen Jost.
Static prediction of heap space usage for first-order functional

programs.
POPL, pages 185-197, 2003.

@ Martin Hofmann and Ugo Dal Lago.
Quantitative Models and Implicit Complexity.
FSTTCS, pages 189-2000, 2005.

Questions?

	Motivations
	LFPL
	LFPLT
	Conclusions

