ARTMED-1031; No of Pages 9

Artificial Intelligence in Medicine (2008) xxX, XXX—XXX

ARTIFICIAL
INTELLIGENCE

IN MEDICINE

o ¥ s
ELSEVIER http://www.intl.elsevierhealth.com/journals/aiim

A graph theoretic approach to protein
structure selection

Marco Vassura®*, Luciano Margara?, Piero Fariselli®, Rita Casadio®

@ Computer Science Department, University of Bologna, Via Mura Anteo Zamboni, 7, 40127 Bologna, Italy
b Biocomputing Group, Department of Biology, University of Bologna, Via Irnerio, 42, 40127 Bologna, Italy

Received 19 October 2007; received in revised form 25 July 2008; accepted 26 July 2008

KEYWORDS Summary
Protein structure
prediction;
Protein folding;
Protein structure
selection;
Contact maps;
Graph algorithm

Objective: Protein structure prediction (PSP) aims to reconstruct the 3D structure of
a given protein starting from its primary structure (chain of amino acidic residues). It
is a well-known fact that the 3D structure of a protein only depends on its primary
structure. PSP is one of the most important and still unsolved problems in computa-
tional biology. Protein structure selection (PSS), instead of reconstructing a 3D model
for the given chain, aims to select among a given, possibly large, number of 3D
structures (called decoys) those that are closer (according to a given notion of
distance) to the original (unknown) one. In this paper we address PSS problem using
graph theoretic techniques.

Methods and materials: Existing methods for solving PSS make use of suitably defined
energy functions which heavily rely on the primary structure of the protein and on
protein chemistry. In this paper we present a new approach to PSS which does not take
advantage of the knowledge of the primary structure of the protein but only depends
on the graph theoretic properties of the decoys graphs (vertices represent residues
and edges represent pairs of residues whose Euclidean distance is less than or equal to
a fixed threshold).

Results: Even if our methods only rely on approximate geometric information,
experimental results show that some of the adopted graph properties score similarly
to energy-based filtering functions in selecting the best decoys.

Conclusion: Our results highlight the principal role of geometric information in PSS,
setting a new starting point and filtering method for existing energy function-based
techniques.

© 2008 Elsevier B.V. All rights reserved.
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known fact that all protein molecules are uniquely
identified by means of their primary structure, i.e.,
the sequence of amino acidic residues that forms
the backbone of the protein. In other words, under
physiological conditions, a chain of residues admits
a unique compact and functionally active conforma-
tion called native structure. In principle, the 3D
structure of a protein (called tertiary structure) and
then its biological function might be deterministi-
cally computed once its primary structure is pro-
vided. PSP is the problem of computing the 3D
structure of a protein, i.e., the spatial coordinates
of all the residues, taking as input its primary
structure.

Heuristics for tackling PSP can be divided into
two broad classes: ab initio methods and homology
detection techniques. Ab initio protein modeling
methods seek to build 3D protein structure from
scratch simulating physical and biological molecu-
lar interactions. Homology detection techniques
try to predict a 3D model for a given chain of
residues taking advantage of known 3D structures.
The output of PSP methods usually consists of a
possibly large set of candidates (decoys) that are
expected to approximate the given protein confor-
mation.

Protein structure selection problem (PSS),
instead of reconstructing a 3D model for a given
chain of residues, aims to select, among a given,
possibly large, number of decoys those that are
closer (according to a given notion of distance) to
the original (unknown) protein 3D structure. A num-
ber of heuristics have been developed during the
last few years for solving PSS (see for example [3—
6]). All of them make use of the so called energy
functions. Energy functions take as input the pri-
mary structure of the protein and the description of
a decoy and yield a numerical value (score) which is
expected to measure the quality of the decoy. The
lowest is the energy of a decoy the closest to the 3D
structure of the original protein it should be. Unfor-
tunately, it is known that small intrinsic errors can
lead to predict a high number of erroneous struc-
tures having a lower energy than the native struc-
ture [7]. Decreasing the number of erroneous
structures among the predictions is therefore of
great importance.

In this paper we present a new approach to face
PSS based on the analysis of some selected graph
properties on suitably defined decoys graphs. We
represent each decoy as an undirected graph
where vertices represent residues and edges
represent pairs of residues whose Euclidean dis-
tance is less than or equal to a fixed threshold.
Distances are actually computed between pairs of
C-a atoms. Decoys graphs can be represented in

an equivalent way by using contact maps. A con-
tact map for any given pair of residues, yields 0 if
their Euclidean distance is larger than a given
threshold, 1 otherwise. Instead of evaluating the
quality of a decoy on the basis of its exact
geometric conformation and of the primary struc-
ture of the protein, we produce a ranking of
the decoys according to some selected graph
properties.

The main goal of this paper is to shed some light
on the relations existing between decoys properties
and graph properties. We wish to emphasize that our
ranking techniques are completely independent of
the primary structure of the proteins. In other
words, we evaluate decoys quality according to
(coarse) geometric information only. Such informa-
tion is extracted from the decoy structure by the
graph properties that we consider. In this way we
compute a score indicating the quality of the decoy
without any information on the corresponding
native structure.

To test our methods and to make them compar-
able to other methods, we use one of the most
widely accepted benchmark data [6], available at
the Baker Laboratory web site'. Given the data set
of protein and decoy structures, we consider
seven graph properties, namely Average Degree,
Contact Order, Normalized Complexity, Network
Flow, Connectivity, and a weighted version of
Network Flow and Connectivity. The ability of
each graph property to distinguish between cor-
rect and incorrect 3D structures is then evaluated
by computing the Z score and the Enrichment
score [6]. Experimental results show that the
above listed properties perform similarly (if not
better) to previously described methods based on
backbone energy functions [6,8].

In addition, we assess the quality our method
comparing it with the results of the latest CASP7
experiment. The critical assessment of techniques
for protein structure prediction (CASP) experiment
is a blind test that provides an objective assessment
of the effectiveness of PSP methods. The quality
assessment (QA) category of the CASP7 evaluates
capabilities of state of the art programs to distin-
guish near native structures among decoys. We show
that our procedure has performances similar to the
ones of the best Model Quality Assessment Programs
at the CASP7 experiment.

The rest of this paper is organized as follows.
Section 2.1 contains basic definitions, Section 2.2
describes the benchmark data set that we use in our
experiments, Section 2.3 describes the selected
graph properties, Section 3 contains the results

' ftp://ftp.bakerlab.org/pub/decoys/decoys_11-14-01.tar.gz.
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Figure 1

for each protein

Average C-a RMSD from native structures (in A) computed over the Rosetta decoy set adopted for

benchmarking our method. The set is constructed to be an objective and difficult test for PSS.

regarding the performances of our method on both
the test data set and CASP7, and finally Section 4
contains conclusions and ideas for further works.

2. Materials and methods

2.1. From protein structure to adjacency
matrix

Proteins constructed to test PSS are called decoys,
while predicted proteins are models, and the real
protein is the native protein. In general we will refer
to them as proteins. For a given protein 3D structure
we compute its C-a trace [2], so that each residue is
identified with its C-a atom.

Accordingly, protein residues i and j are defined
to be in contact when:

di,j)<s

where d(i, j) is the Euclidean distance between 3D
coordinates of C-a atoms and s is the contact map
threshold. For a search in the s space, threshold is
changed from 7 to 18 Angstrom (A) [9] by adopting a
1 A step. By this each protein 3D structure generates
12 different graph representations. A contact map is
the representation of a graph adjacency matrix
where the vertices are the C-a atoms and the edges
are the contacts between them. At increasing s
values, the number of edges for a given vertex
increases. Given that the Euclidean distance is sym-
metric, the contact map is also symmetric. This
implies that the corresponding graph is undirected
(i—Jj=Jj—i).

The C-a root mean square deviation (C-a RMSD) is
the common used distance measure between mole-
cular structures. Given the set of coordinates
C,C' e R*" it is defined as the minimum distance

1< . 112
D = | = > _(C'i] - Cli))

n i=1

over any rototranslation Cy of the coordinate set C.

Graph edges can also be related to the primary
protein structure by defining a sequence separation
among adjacent residues as
Aij = abs(i — j)

where abs(i — j) is the absolute value of the dis-
tance along the primary structure between residue
positions i and j.

2.2. Decoy set

The decoy set was downloaded from the Baker’s
Laboratory web site.? This set (Rosetta) was
obtained with the Rosetta algorithm that routinely
can generate reasonable low-resolution structures,
but that cannot reliably identify the most native-
like model [1,10,11]. We choose this decoys set
because it is the most recent and complete in terms
of number of proteins and decoys per protein.? In
particular, the decoys were produced following four
criteria: (1) containing conformations for a wide
variety of different proteins; (2) containing confor-
mations close (<0.4 nm) to the native structures;
(3) consisting of conformations that are at least near
local minimum of a reasonable scoring function; (4)
being produced by a relatively unbiased procedure
(see [6] for details). The Rosetta decoy set consists
of 41 native proteins with about 1800 decoys per
native protein, for a total of about 76,000 protein
structures. Fig. 1 shows for each native protein in
the set the average C-a RMSD of the decoys from the
native protein together with the corresponding
standard deviation.

2.3. Graph properties

We selected graph properties with polynomial time
worst case computational complexity able to cap-

2 ftp://ftp.bakerlab.org/pub/decoys/decoys_11-14-01.tar.gz.
3 For other decoys set see Decoys’R’Us web site http://
dd.compbio.washington.edu/ (Accessed: 23 July 2008).
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ture some of the properties of the whole protein 3D
structure. Each is computed on the native protein
structure, all related decoys as downloaded from
the Baker’s Laboratory web site and models pro-
duced and ranked at the last CASP7. Each property is
then considered a measure of the quality of the
structure on which it has been computed, reason-
ably higher values correspond to better structures,
and include those corresponding to the native struc-
ture.

Average degree (AvgDeg). This property is
obtained as the ratio of the number of edges (con-
tacts) in the protein structure (nedges) divided by
the protein length (n). It is computed as:

AvgDeg — nedges

and its computational complexity, given the number
of contacts nedges, is O(1). The number of edges of
a given residue depends on the protein 3D structure.
The greater the number of edges the more contacts
each residue makes.

Contact order (CO). CO measures the average
contact (edge) distribution with respect to the resi-
due sequence separation [12]. CO is computed as:

nedges

0_ Z A,-j/n

nedges

where the summation index runs only on the adja-
cent residue pairs i and j, n is the protein length,
Ajj =i — j| is the sequence separation between
residues i and j, and nedges is the number of edges
in the graph associated to the protein contact map.
Its computational complexity is O(nedges). A high
contact order value implies that there are several
adjacent residues that are far apart on the residue
sequence but are close in the 3D structure.

Normalized complexity (Ncompl). The complex-
ity is the number of spanning trees of the graph [13],
namely the number of all the trees that link all the
graph vertices. It is computed as previously
described in [14] using GSL libraries [15]. Its com-
putational complexity is O(n?), where n is the num-
ber of residues of the protein. Values of this
property are exponentially increasing at increasing
number of edges per protein length (AvgDeg). We
define Ncompl as the complexity of the graph
divided by AvgDeg". Since AvgDeg is different for
each structure, the information contained in
Ncompl can therefore be regarded as a normalized
complexity.

Network flow (Flow). Flow computes the max-
imum flow from the first (residue in position 1) to the
last residue (residue in position n), i.e. the minimum
number of contacts (edges) that have to be deleted
in order to disconnect the first and the last residue

[13]. This property is related to the protein con-
nectivity with respect to the N and C terminus (the
first and last residues) and is computed with HI_PR,*
an efficient implementation of the push-relabel
method [16,17]. Its computational complexity is
o(n3).

Weighted flow (Wflow). Wflow is the maximum
flow (Flow) considering the graph edges (contacts)
weighted by the value of the sequence separation
between adjacent residues A;;. As for Flow, its
computational complexity is O(n?).

Connectivity (Conn). It is the edge connectivity:
the minimum number of edges that have to be
deleted to disconnect at least one residue from
all the others [13].

It is computed as the minimum of each maximum
flow from the first residue to each other residue, its
computational complexity is O(n*).

Weighted connectivity (Wconn). Wconn is similar
to Conn, however with weights associated to edges.
Weights are values of sequence separation between
adjacent residues A;j. As for connectivity its com-
putational complexity is O(n*).

2.4. Scoring functions

In order to compare our results with those already
published we computed the same accuracy scores
previously described in [6]: the Z and Enrichment
score.

The Z score accounts for the deviation from the
average distribution in standard deviation units.
More formally for a graph property (see Section
2.3) m:

m, — avg,
varn

where mj, is the value of m for the native protein 3D
structure, avg and var are respectively the average
and variance of m for the corresponding protein
models/decoys. To compute the Z score of a set
of decoys we take the average of Z scores values for
each native structure (with respect to correspond-
ing decoys) in the set. The larger is the absolute Z
score value, the better a specific graph property
sorts out the native structure among its decoys.

The Enrichment score, as introduced by [6],
accounts for the correlation between the property
under examination and the C-a RMSD between the
decoys/models and the native structure. The
Enrichment is computed as:

Enrichment — (First(k,m) NFirst(k,C-aRMSD))

(First(k,Random) NFirst(k, C-aRMSD))

4 http://www.igsystems.com/hipr/download.html(Accessed:
23 July 2008).
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Table 1 Average time in seconds necessary to compute each graph property on a given decoy set
Size 2 AvgDeg cob Ncompl ® Flow ° Wflow P Conn P Wconn °
50—99 (563) 0.004 0.000 0.023 0.004 0.004 0.070 0.058
100—199 (1973) 0.012 0.000 0.120 0.044 0.044 0.228 0.195
200—299 (1442) 0.048 0.001 1.185 0.343 0.343 0.848 0.700
300—350 (440) 0.077 0.001 3.151 1.131 1.132 2.873 2.411

Average values are shown for different decoy sizes. The computational feasibility allows to adopt the graph properties as filtering

tools in wide-scale computing.

2 Number of residues in the chain (within brackets: number of decoys in egch set).
® Time in seconds, average computed for thresholds ranging from 7 to 18 A; see Section 2.3 for abbreviations.

where First (k, m) is the subset of the first k decoys
ranked according to the graph property m, at
decreasing values; First (k, C-aRMSD) is the subset
of the first k decoys ranked according to the C-«
RMSD from to the native structure; First (k, Random)
is the subset of the first k decoys ranked according to
the random assignment. To compare our results with
those in [6], the number of decoys found in the
intersection set between the top high scoring 15%
decoys (as obtained according to a given graph
property), and the top 15% decoys with the lowest
C-a RMSD for a given native protein is divided by the
number of random assignment (the random assign-
ment value is equal to 15% x15% x total number of
decoys in the set). This is done to highlight the
performance of the graph property at hand. An
Enrichment value equal to one indicates that the
graph property does not perform better than a
random assignment (the higher the value the better
is the performance of the property at hand).

3. Results

Several methods have been applied so far to address
the problem of the selection of near native struc-
turesin a decoy set. In this paper we test our method
using the Rosetta decoy set [6], computing the same

accuracy scores previously described in [6]: the Z
and Enrichment score (see Section 2.4 for detailed
description). In order to effectively evaluate our
graph-based properties we compare our results also
with methods that have been previously described,
and have been proved to be very efficient (in [6,8]).

3.1. Computational complexity

As explained in Section 2.3 all the different graph
properties used here have polynomial time com-
plexity. In Table 1 we show the behavior of these
graph properties in the real application. Computa-
tions were run on a system equipped with 2 Gb RAM
and 2.40 GHz Intel(R) Xeon(TM) CPU. Note that
average times are few seconds for any graph prop-
erty on any protein structure, allowing the use of
this method in wide-scale computing.

3.2. Decoy set

In Table 2 we report the results for protein graphs
computed with a threshold of 8 A. The results
indicate that Ncompl, CO, AvgDeg and Wflow are
graph properties satisfactory enough to obtain an
average Enrichment value higher than one (random
assignment) over the protein set. It is interesting
that the best performing graph property Ncompl is

Table 2 The Enrichment and Z score values computed for the different graph-based properties on the Rosetta decoy

set
Property @ All NMR X-ray

Enrichment Z score Enrichment Z score Enrichment Z score
AvgDeg 1.069 0.565 1.004 0.876 1.111 0.365
Cco 1.179 0.809 1.072 0.481 1.248 1.019
Ncompl 1.457 0.378 1.322 0.252 1.543 0.458
Flow 0.852 —0.083 0.820 —0.175 0.873 —0.024
Conn 0.584 —0.104 0.638 -0.229 0.548 —0.024
Wflow 1.151 0.109 1.026 0.093 1.232 0.120
Wconn 0.687 —0.089 0.706 —0.150 0.675 —0.050

Enrichment measures the number of times that the graph property is better than random assignment at PSS. Z score measures the
ability of the graph property to separate native structure from all other decoys. The best performing graph property (Ncompl) is
related to the computation of trees spanning through the protein graph, extracting a global description of the protein structure.

@ The graph properties (see Section 2.3 for the description) are evaluated with a threshold of 8A.
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related to the computation of trees spanning
through the protein graph, extracting a global
description of the protein structure. This finding
supports the idea that native-like protein structures
have peculiar contact networks that are really dif-
ferent from those obtained using regular or random
graphs [18,19]. From the results shown in Table 2, it
can also be concluded that the Enrichment scores
are slightly better for protein structures that were
resolved with X-ray diffraction methods rather than
with NMR. This is expected if we consider the higher
precision of X-ray experiments, allowing better dis-
tinction between native protein and decoys. The
results shown in Table 3 are grouped as a function of
the different secondary structure contents of pro-
teins and decoys. Our results confirm [6] that all
alpha decoys are more difficult to rank as compared
to beta and mixed secondary structure types. The
results may be due to the fact that in the all alpha
proteins, the majority of edges are located at very
short sequence separations with few edges among
the different helices. This type of graphs may there-
fore cause more difficulties in discriminating differ-
ent spatial dispositions of helical domains.

The density of edges of a decoy graph strictly
depends on the threshold cutoff value of the radius
adopted, increasing at increasing cutoff value. For
this reason the different graph-based functions
were computed using different thresholds, in the
range from 7 to 18 A with a step of 1 A for each
protein of the Rosetta data set. As shown in Fig. 2 it
appears that the capability of discriminating close-
to-the-native decoy structures with Ncompl, CO,
and AvgDeg is above random (equal to 1) at all
the different values of threshold cutoff adopted.
Conn, Wconn, and Wflow have better than random
performances at higher (lower for Wflow) thresh-
olds. In Table 4 we compare our graph properties
(see Section 2.3) with methods that have been
previously described (in [6,8,20]). Benchmarking
is done on the Rosetta decoy set [6](described in

Weonn

Enrichment score

— — —Wilow

—— —— —Conn

i i d 3 L

T T T T T T
8 10 12 14 16 18
contact map threshold

Neomplexity
—————— —CO
AvgDeg

Figure 2 The Enrichment of the graph properties at
different threshold values. The capability of discriminat-
ing close-to-the-native decoy structures with Ncompl, CO,
and AvgDeg is above random (equal to 1) at all the
different values of threshold cut-off adopted, while Conn,
Wconn, and Wflow have better than random performances
at higher (lower for Wflow) threshold values.

Section 3.2). From Table 4 emerges that the graph
properties (last rows) perform quite similarly to
existing functions, in terms of Enrichment. This is
very surprising if we take into account that such
accuracy is obtained without any knowledge of
chemical information of the native structure, so
that they are really complementary to other exist-
ing methods for PSS. On the contrary, when the Z
score is considered, our graph-properties perform
worse than some energy-based functions, indicating
that a finer tuning is necessary to pick up the native
structure among a set of very close-native decoys.
These findings show that our approach, based only
on the properties computed from the protein graphs
can be adopted when addressing the problem of
discriminating native-like conformations in decoy
sets, at least as a pre-filtering procedure.

3.3. CASP7

CASP experiments aim to evaluate the state of the
art of protein 3D structure prediction methods. The
last CASP experiment (CASP7) collected more than
60,000 models from 253 different research groups.

Table 3 The Enrichment and Z score values grouped by secondary structure type on the protein set

Property # a af B

Enrichment Z score Enrichment Z score Enrichment Z score
AvgDeg 0.840 —0.063 1.218 1.088 1.479 1.474
co 0.863 —0.120 1.537 1.481 1.464 2.351
Ncompl 1.187 —0.104 1.576 0.764 2.043 1.108
Flow 0.803 —0.239 0.939 0.061 0.840 0.118
Conn 0.691 —0.271 0.555 0.079 0.316 0.060
Wflow 1.026 —0.113 1.191 0.147 1.453 0.705
Wconn 0.819 —0.097 0.521 —0.097 0.600 —0.050

Our results are in agreement with previous finding [6] and confirm that all-alpha decoys are slightly more difficult to rank as compared
to beta and mixed secondary structure types.

2 As in Table 2.
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The quality assessment (QA) category of CASP7 is a
comparison of methods to distinguish near-native
structures from decoys.” A model quality assess-
ment program (MQAP) is defined as a program that
receives as input a 3D model and produces as output
areal number representing the quality of the model.
A blind test on the models predicted by the other
prediction methods on 87 targets was used to inde-
pendently assess the quality of the participating
MQAPs [21]. We adopted GDT_TS [22] as evaluation
measure of model correctness, as this is the stan-
dard measure used in CASP. Global distance test
(GDT_TS) measure performs sequence-independent
superposition of the model and the native structure
and calculates the number of residues that are
within a specified distance d. The GDT_TS score is
obtained averaging the values computed withd = 1,
2, 4 and 8 A and dividing by the number of residues
of the native structure. We downloaded models,
targets and MQAP predictions from the Prediction
Center.® For performance comparison we consid-
ered the same set of 19,221 models and 87 targets
used in previous works, so that all considered MQAPs
have a prediction for each model [21].

For each of the 87 targets the best of the top five
models ranked according to the MQAP is considered.
The average GDT_TS score of this models is used to
measure the ability of each MQAP to select good
models. The model quality varies significantly among
different targets, so MQAPs may have different per-
formances for targets of different difficulty. The
distribution of the GDT_TS score per target median
was found to be bimodal with peaks around GDT_TS =
20 and 60. Targets are then divided into two sets of
hard and easy targets using a cutoff of GDT_TS = 40
(as in [21]). Results for MQAPs, for OSP, and for our
best graph property Ncompl are shown in Table 5.
Models and details are available at the CASP7 web
site.” In addition to CASP7 MQAPs we analyze the
performances of Verify3D [23,24], Prosall [25] and
OSP [26—28]. The first two are included as reference,
since are among the most frequently used MQAPs.
The occluded surface packing (OSP) is a method to
evaluate atomic packing of protein model structures.
It is worth noticing that our method that exploits only
geometric information of the C-a trace without
knowledge of the primary structure, can select good
models better than a score based on atom packing.
GDT_TS is included as the perfect MQAP for refer-
ence, to understand what is the maximum score that

5 http://predictioncenter.org/casp7/doc/categories. html(Ac-
cessed: 23 July 2008).

6 http://predictioncenter.org/ (Accessed: 23 July 2008).

7 http://www.predictioncenter.org/casp7/Casp7.html(Ac-
cessed: 23 July 2008).

Table 4 Comparison of graph-based functions with
the state of the art functions on Rosetta decoy set

Function/property Rosetta
Enrich. Z score
All atom
RAPDF 2@ 1.23 —6.71
soLv ® 0.84 ~2.96
HYDB ° 1.33 -6.29
TORS ° 1.36 -2.09
FRST P 1.41 -3.72
LJ attractive © 1.40 —1.48
LJ attractive, side 1.35 —1.47
chain only ©
LJ repulsive capped € 0.85 4.37
LJ repulsive linear © 0.87 3.10
LJ repulsive linear, 0.78 —1.48
side chain only ©
LJ total, capped € 0.92 4.38
LJ total, linear © 1.14 —2.48
LJ total, linear, 1.26 —2.86
side chain only ©
Coulomb € 1.14 —1.52
Screened Coulomb € 0.87 —0.96
GB desolvation © 0.63 1.51
GB SA © 1.61 -1.29
GB total © 0.63 1.08
SASA-ASP © 1.53 —1.60
Effective solvent © 0.93 1.77
Main chain hydrogen 1.01 —-1.16
bonding ©
Side chain hydrogen 0.97 —2.05
bonding ©
Centroid/backbone
Residue-environment 1.22 1.22
(structural) ©
Residue-residue (pair) © 1.33 1.14
Hard sphere repulsion © 0.98 —0.53
Strand assembly in sheets © 0.99 -0.18
Strand orientation © 1.41 —1.38
Strand packing © 1.38 —0.98
Helix-strand packing © 1.04 0.45
AvgDeg ¢ 1.07 0.56
cod 1.18 0.81
Ncompl ¢ 1.46 0.38
Flow ¢ 0.85 —0.08
Conn ¢ 0.58 -0.10
flow ¢ 1.15 0.11
Wconn ¢ 0.69 -0.09

at
2008).

The graph properties (last seven rows) perform quite similarly
to existing functions in terms of Enrichment. This is surprising
if we take into account that such accuracy is obtained without
any knowledge of the chemical information of the protein
structure.

& From [20], computed using Victor/FRST software available

® From [8], computed as 1.
¢ From [6].
d This work, as in Table 2.

http://protein.cribi.unipd.it/frst/ (Accessed:

23 July
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Table 5 Comparison of the best performing graph property Ncompl with the latest MQAPs and OSP on CASP7 data:
average GDT_TS (Avg) for the best of the top five ranked models for each MQAP is shown, together with the

corresponding standard deviation (std)

CASP7
All Easy Hard
Avg Std Avg Std Avg Std
Energy-based 2
Pcons 61.0 21.8 73.7 12.2 38.1 32.6
ProQ 61.2 21.3 73.5 11.8 38.9 31.9
ProQprof 54.3 22.9 68.0 12.9 29.5 34.3
Prosall 61.3 21.2 73.4 12.1 39.6 31.6
QA-ModFOLD 60.2 211 72.3 11.7 38.4 31.6
Verify3D 61.1 20.8 73.1 11.6 39.5 31.2
Graph-based ®
Ncompl 59.8 21.5 72.5 11.6 371 32.5
Other
OSP © 57.0 20.4 68.8 11.7 35.7 30.3
GDT-TS 64.5 19.9 75.9 11.3 43.9 29.7

GDT_TS shows the maximum score that a MQAP could obtain.
2 From CASP7 except for Verify3D [23,24] and Prosall [25].
b This work, threshold 9 A.
¢ Described in [26—28].

a MQAP could obtain. It is interesting to note that
Ncompl, which is computed from a single model
without any knowledge of the chemical structure
of the target protein, performs similarly to other
methods using more information such as: primary
structure, multiple sequence alignment, multiple
structural alignment, consensus of the predictions
(e.g. Pcons), neural networks (e.g. ProQ).

4. Conclusions and further work

In this paper we test several polynomial time com-
putable graph properties to assess quality of pre-
dicted protein 3D structures. Our results indicate
that it is possible to implement scoring functions
capable of selecting near-native structures from a
set of decoys or computed models by exploiting the
graph representation of the 3D structure. Although
the accuracy of some force fields is higher than our
graph properties, it is very interesting to notice that
our method achieves a comparable accuracy with-
out having any knowledge of the chemistry of the
protein chain, not even of the residue sequence.
This finding further support the idea that simple
backbone geometry is one of the most relevant
piece of information, and suggests our method as
a possible tool to improve performances of existing
energy based functions. Furthermore the computa-
tional feasibility of the implemented graph proper-
ties makes them suitable filtering tools in wide-scale
computing.

Further works may be done to test the ability of
other, NP-hard, graph properties to act as MQAPs.
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