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Abstract—The prediction of the protein tertiary structure from solely its residue sequence (the so-called Protein Folding Problem) is

one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is

assigned, it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of

3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem, and it has been recently

proven to be NP-hard. In this paper, we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate

(3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a nonredundant set of

1,760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the

threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18
�Angstroms allow reconstructing 3D models that are very similar to the proteins’ native structure.

Index Terms—Combinatorial algorithms, contact map, molecular modeling, protein structure prediction.

Ç

1 INTRODUCTION

PROTEIN folding is the process by which a protein assumes
its 3D structure. All protein molecules are endowed

with a primary structure consisting of the polypeptide
chain. Folding of this chain in the solvent space is
constrained to a different and yet unsolved extent by the
protein’s different residue composition, and this results into
the so-called 3D protein structure. The biological functional
unity is strictly dependent on the protein 3D structure. At
the coarsest level, it is believed that folding involves first the
local establishment of secondary structures, specifically
alpha helices and beta sheets, and that only after the
hydrophobic collapse is the 3D protein structure formed.
Actually, the greatest yet open problem in Structural
Bioinformatics is the 3D protein structure prediction from
its primary structure [14]. The ab initio solution of the
folding problem is still lacking; a typical alternative
approach is to identify a set of subproblems, such as the
prediction of protein secondary structures, solvent accessi-
bility and/or prediction of residue contacts, and/or design
of heuristic solutions. Among different possibilities, the
prediction of protein contact maps starting from the protein
chain is particularly promising, since even a partial solution
of it can significantly help the prediction of the protein
3D structure [9].

A contact map of a given protein is a binary matrix M

such that M½i; j� has value of one if and only if the distance

between residues i and j in the native structure is less than
or equal to a preassigned threshold. Having at hand a
contact map, a reliable and fast reconstruction procedure of
the 3D structure is needed. The problem is equivalent to the
unit-disk-graph realization, which has been proved to be
NP-hard [6]. Other well-studied similar problems are NMR
structure determination [12], [16] and protein conforma-
tional freedom [11]. However the different nature of
distance constraints induced by the protein contact map
requires the implementation of other methods and tools. A
series of heuristic algorithms have been developed to solve
the problem. Galaktionov and Marshall [10] reconstructed
the structures of five small proteins by adopting informa-
tion relative to the residue coordination numbers. Ven-
druscolo et al. [20] described a method based on simulated
annealing with the contact map as a target potential. They
achieved an average Root-Mean-Square Deviation (RMSD)
of 2.5 �Angstroms ð�AÞ on some 20 protein structures. Other
approaches rely on steepest descent with inequality dis-
tance constraints [5] and, alternatively, on an algorithm that
minimizes a continuous cost function that embodies
constraints associated with contact and angle maps [17],
respectively. On average, these methods reconstruct the
protein structures without completely satisfying the contact
map in that the reconstructed protein structures may have
contact maps that slightly differ from the native ones.
However, these methods can deal also with nonphysical
contact maps, allowing in principle the 3D reconstruction
from blurred contact maps.

In this paper, we face the problem of 3D protein
reconstruction starting from its native contact map. The
main contribution of this paper is a heuristic technique
called COntact MAp Reconstruction (COMAR), which is
able to compute in few seconds of runtime a 3D structure
that exactly matches all the entries of the input contact map.

The motivations for our work can be summarized as
follows:
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. The problem of computing 3D structures that exactly
match a given contact map is a well-known NP-hard
problem in computational geometry. The problem
remains NP-hard under some additional biological
assumptions, e.g., fixed distances between adjacent
amino acids. An efficient heuristic technique for
solving this problem is of interest in itself.

. Our technique aims to reduce the (quite large) gap
existing between the world of contact predictors and
that of reconstruction techniques. In order to further
reduce this gap, we are currently testing our
technique using noisy and incomplete contact maps.
For some preliminary (encouraging) experimental
results, see Section 5.

. Restricting attention to native contact maps provides
some insight on contact-map-related problems. As
an example, experimental results show that in many
cases, contact maps do not contain enough informa-
tion for selecting the native structure among all the
feasible ones we have computed (see Section 4.5).
Such evidence heavily depends, as expected, on the
contact threshold: small thresholds produce higher
uncertainty.

In detail, in this paper, we show that COMAR is reliable in
the sense that it is able to produce a reconstructed structure
that has the same contact map as the native structure. This
is so for our nonredundant data set consisting of 1,760 com-
plete protein structures and irrespective of the threshold
value adopted in computing the contact map. Although the
unit-disk-graph realization problem is in general intract-
able, the average execution times of COMAR vary from 3 to
15 seconds, depending on the contact map threshold value.
The relation between contact map threshold, protein size,
and protein 3D structure is analyzed, showing that on the
average, contact maps computed at thresholds ranging from
10 to 18 �A allow a better 3D structure recovery than those
computed at lower values (ranging from 7 to 9 �A). These
results and a partial description of our algorithm already
appeared in [19].

Here, we analyze also the generalization capability of
COMAR, i.e., the ability of finding a 3D structure completely
consistent with a given native contact map as a function of
the different steps of the algorithm. We also show that
COMAR capability is increased by introducing a randomi-
zation procedure that increases the probability of finding a
3D model consistent with the input contact map.

2 PROTEIN STRUCTURE RECONSTRUCTION

2.1 Protein Representation and Contact Maps

Proteins structures are described by the coordinates of the
atoms that collectively constitute the macromolecule. For a
protein with n atoms, we need 3n numbers to specify its
3D structure. An alternative view is to consider the distance
matrix. The distance matrix is a symmetric matrix that
contains in its cells the euclidean distance between each pair
of atoms. If the number of atoms is n, we need n2 elements;
since the matrix is symmetric (the distance between atoms i
and j is the same of that between j and i), the effective
number of needed elements is only n�ðn� 1Þ=2. In order to

simplify the protein representation, not all protein atoms
are taken into account, and residues are considered as
unique entities. In this case, the distance matrix has a
number of rows (and columns) equal to the residue
number. Each distance matrix entry is then the distance
between residue i and j. The distance between two residues
can be defined in different ways:

. the distance between a specific pair of atoms (i.e.,
C�-C� or C�-C�),

. the shortest distance among the atoms belonging to
residue i and those belonging to residue j, and

. the distance between the centers of mass of the two
residues.

Starting from the protein distance matrix and selecting an
arbitrary distance cutoff (threshold), a further simplified
representation can be obtained: the protein contact map.
Residues are in contact if their distance is less than or equal
to the preassigned threshold. Contact maps are binary
symmetric matrices, whose elements different from zero
(and set to one) represent the contacts between residues.

In this paper, we use the C� representation of the protein
backbone, and for sake of simplicity, we refer to the protein
C� trace as the “protein structure” or 3D protein structure.

2.2 Distance Geometry and Protein Structure
Reconstruction

Distance geometry (see [4] for an introduction) deals with the
characterization of mathematical properties that can be
derived from distance values between pairs of points. The
mathematical foundation of distance geometry is essentially
due to Cayley (1841) and Menger (1928), who showed how
some basic geometry properties such as convexity could be
defined in terms of distance values. One fundamental
problem in distance geometry is to find a correct set of
3D euclidean coordinates that satisfy a set of distance
constraints. In general, a set of points in the 3D space that
satisfies some given constraints does not exist. However,
Cayley and Menger gave necessary and sufficient condi-
tions for a set of positive values to be the exact distances
between pairs of 3D coordinates. Thus, given a consistent
set of distances in the 3D space, the problem of finding
coordinates that satisfy such exact distance constraints can
be solved by a polynomial-time algorithm [4], while the
problem is NP-hard when the given set of distances is
sparse [18].

NMR spectroscopy and X-ray crystallography are the
most widely used experimental techniques to obtain
bounds to the interatomic distances between residues.
Because of experimental errors, we can usually obtain only
a set of lower and upper bounds to such interatomic
distances rather than exact values. The distance-geometry-
based approach to the protein structure reconstruction
problem aims at developing techniques to recover the
3D protein structure, given a set of lower and upper bounds
to residue interatomic distances. The problem of computing
a set of consistent coordinates is generally intractable [15].
Crippen and Havel developed a recovering algorithm from
a sparse set of lower and upper bounds to the interatomic
distances [8], [12]. Their algorithm first uses some bound
smoothing techniques to estimate bound values for the
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missing distances. Then, it uses an algebraic technique

known as the EMBED algorithm to generate an approx-

imate set of 3D coordinates adopted as a starting solution

for an optimization procedure.
While the problem of recovering protein structures from a

set of distances is known to have a polynomial-time solution,

the same problem from contact maps is NP-hard [6].

However, empirical developed applications seem to suggest

that the approach of predicting the protein structure from

contact maps can be fruitful (see, for example, [5], [20], and

[21]). An introduction to such approach can be found

elsewhere [3].

3 ALGORITHM DESCRIPTION

In this section, we describe COMAR, a heuristic algorithm

to find a set of 3D coordinates consistent with some given

native contact map CM of threshold t.

COMAR(CM 2 f0; 1gn�n, t 2 NN)
1: repeat

//Phase 1: initial solution

2: C  RANDOM-PREDICTðCM; tÞ

//Phase 2: refinement

3: C  CORRECTðCM;C; tÞ
4: set " to a strictly positive value

5: while C is not consistent with CM and " > 0 do

6: C  PERTURBATEðCM;C; t; "Þ
7: C  CORRECTðCM;C; tÞ
8: decrement slightly "

9: endwhile

10: until C is consistent with CM

11: return C

The algorithm consists of two phases (see the pseudocode

above). In the first phase (Phase 1), it generates a random

initial set of 3D coordinates C 2 RR3�nn (RANDOM-PRE-

DICT) that will be the starting point for the refinement

procedure in the second phase. A detailed description of

RANDOM-PREDICT can be found in Section 3.1.
In the second phase (Phase 2), the algorithm iteratively

applies two local correction/perturbation techniques to the

current set of coordinates: CORRECT and PERTURBATE.

This is performed in order obtain a new set of coordinates

“more consistent” with the given contact map. A detailed

description of CORRECT and PERTURBATE can be found

in Section 3.2. The refinement continues until the set of

coordinates is consistent with the given contact map or until

a control parameter " becomes zero. The control parameter

" has initially a positive value, and it is decremented every

some refinement steps. If it reaches the zero value before a

consistent set of coordinates is found, then a new random

initial set of coordinates is generated; " is initialized again to

a strictly positive value, and the refinement procedure

restarts on the new set.

3.1 First Phase: Finding the Initial Solution

The first step of the algorithm consists of the partially
random generation of a starting coordinate set that will be
refined in the second phase of the algorithm.

RANDOM-PREDICT(CM 2 f0; 1gn�n, t 2 NN)

1: fCM1; . . . ; CMkg  SPLITðCMÞ
2: for i 1 to k do

3: Ci  EMBEDðGUESS-DISTðCMi; tÞÞ
4: endfor

5: C  MERGEðCi; . . . ; Ck; CMÞ
6: return C

The computation of the initial solution is preceded by a
scanning of the contact map for the existence of splittable
components (SPLIT). Splitting the initial contact map in
submatrices is done to locate those fragments of protein that
demonstrate a high degree of independence with respect to
mutual interactions (Fig. 1). The submatrices are then
separately used to create sets of coordinates (EMBED) to
be merged (MERGE) in an initial solution. The merging
procedure is managed by selecting, between a set of equally
distributed 3D angles, the best rotation of the coordinates
corresponding to each component with respect to the lower
number of errors generated in the contact map. The
pseudocodes and detailed descriptions of SPLIT and
MERGE procedures are in Appendix A.

A fast and reliable way to obtain good starting
coordinates for the splittable components is provided by
the metric matrix embedding (EMBED) algorithm [12]. The
EMBED algorithm can be used to compute a set of
3D coordinates that is, in a certain sense, the best 3D fit
for some distance matrix D. By using some a priori
knowledge about the physical conformation of the proteins,
the GUESS-DIST procedure tries to guess a possible set of
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Fig. 1. Example of a contact map, computed with a threshold value of
14 �A, with two splittable components (protein: phenylalanyl-tRNA
synthetase complexed with phenylalanine and a phenylalanyl-adenylate
analog, PDB code 1b7y chain B). The two submatrices corresponding to
each component are shown.
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distances D 2 Rn�n consistent with some native contact
map CM 2 f0; 1gn�n. Generally, no set of 3D points is
consistent with some distance matrix D. However, EMBED
uses standard numerical linear algebra methods to find the
least distorted projection of D in the 3D euclidean space
[10]. The pseudocode and a detailed description of the
GUEST-DIST procedure are in Appendix B.

3.2 Second Phase: Refinement of the Coordinates

The second step of the algorithm applies iteratively a local
correction/perturbation heuristic technique to the ran-
domly predicted set of coordinates to obtain a new set of
coordinates closer to the native contact map.

We call not well placed those residues whose coordinates

are not consistent (according to the contact map) with the

coordinates of all other residues. The local correction

technique CORRECT attempts to change the coordinates

of every not well-placed residue i as soon as the change

does not introduce new errors in the coordinate set.
Let us consider a contact map CM 2 f0; 1gn�n of thresh-

old t and a set of coordinates C 2 RR3�n. Let us denote with

dij ¼ jC½i� � C½j�j the distance between residues i and j of

coordinates C½i� and C½j�, respectively. Formally, we say that

a residue j is well placed with respect to residue i whether

either (CM½i; j� ¼ 1 and jC½i� � C½j�j � t) or (CM½i; j� ¼ 0

and jC½i� � C½j�j > t). A residue i is well placed if every other

residue 1 � j � n is well placed with respect to i.
CORRECT attempts to change the coordinate of every

not well-placed residue i in a new coordinate that does not

affect the old set of well-placed residues with respect to i.

CORRECT(CM 2 f0; 1gn�n, C 2 RR3�n, t 2 NN)

1: for i 1 to n do

2: if i is not well placed then

3: C½i�  MOVEðCM;C; t; iÞ
4: endif

5: endfor

6: return C

The procedure to approximate a good and safe coordinate
for some residue i is described in MOVE. It changes the
coordinate C½i� to the coordinate of a point on the surface of
the sphere of radius ri centered in C½i�. The point is chosen
in a region of the surface that is supposed to be as distant as
possible from the whole set of residues j not well placed
with respect to i such that CM½i; j� ¼ 0 and as close as
possible to the whole set of residues k not well placed with
respect to i such that CM½i; k� ¼ 1. The radius of mobility ri
of the residue i is defined as

ri ¼ minfD0 � t; t�D1g;

where

. D0 ¼ minfdijjdij > t and CM½i; j� ¼ 0g and

. D1 ¼ maxfdijjdij � t and CM½i; j� ¼ 1g.
Then, by definition, the coordinate C½i� of the residue i can

be safely changed in any coordinate c 2 RR3�n such that

jC½i� � cj � ri without decreasing and eventually increasing

the cardinality of the set of residues well placed with

respect to i. The pseudocode and a detailed description of

the MOVE procedure are in Appendix C.

A run of the correction procedure may reduce the radius
of mobility for not well-placed residues. In order to
maintain as large as possible the radius of mobility for
such residues, after a correction procedure, we apply small
perturbations to the coordinate set using the PERTURBATE

procedure.

PERTURBATE(CM 2 f0; 1gn�n, C 2 RR3�n, t 2 NN , " 2 RR)

1: for i 1 to n do

2: for j 1 to n do

3: if t�"< jC½i��C½j�j� t and CM½i; j�¼1 then

4: bring closer C½i� and C½j� of "=10

5: endif

6: if t< jC½i��C½j�j<tþ" and CM½i; j�¼0 then

7: move away C½i� and C½j� of "=10

8: endif

9: endfor

10: endfor

11: return C

For every residue i and every residue j well placed with
respect to i, if their distance dij is under the given threshold
ðCM½i; j� ¼ 1Þ but close to the threshold, then PERTUR-
BATE changes the coordinates of i and j in order to make
them a bit more closer (lines 3-5). If dij is above the given
threshold ðCM½i; j� ¼ 0Þ but close to the threshold, then
PERTURBATE changes the coordinates of i and j in order
to make them a bit more distant (lines 6-8). A perturbation
can introduce new errors to the coordinate set, but
conversely, it avoids not well-placed residues from getting
stuck.

4 EXPERIMENTAL RESULTS

4.1 Protein Set

We selected the list of proteins with their relative structural
classifications from SCOP [2] release 1.67. We then down-
loaded the corresponding protein structures from the PDB,
and we retained only those files with coordinates obtained
with x-ray experiments, with resolution < 2:5 �A, and
without missed internal residues. Finally, using BLAST
[1], we removed sequence redundancies, ending up with a
data set of 1,760 protein chains with sequence similarity
lower than 25 percent. The distribution of the 1,760 protein
chains according to the SCOP classification is shown in
Fig. 2. Our protein set contains 1,502 one-domain and
258 multidomain chains. The complete list is available at the
website http://vassura.web.cs.unibo.it/protlist.tgz.
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Fig. 2. Distr ibut ion of our protein set according to
the SCOP classes. A ¼ all alpha. B ¼ all beta. C ¼ Alpha=Beta.
D ¼ Alphaþ Beta. Multi-fA;B;C;Dg and Other contain multidomain
proteins.
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4.2 Hardware Configuration

All the test runs are executed on personal computers
equipped with an Intel Pentium 4 processor with a clock
rate of 2.8 GHz and 1 Gbit of RAM memory. Times reported
are measured using the time() C library function. During
each run, the program collects time information before
reading the input and, again, after computing the result; the
CPU time actually elapsed is computed as the difference
between the two figures.

4.3 Distance Measures

To measure the difference between contact maps, we use
the simple Hamming distance that counts the number of
different bits; this distance is also the target function of the
problem. When we deal with two protein structures, the
classical RMSD is computed between the native and the
reconstructed structure. RMSD is commonly used to
compare two molecular structures described by some set
of coordinates C;C0 2 R3�n. It is defined as the smallest
distance;

Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

C0½i� � Ck½i�ð Þ2
s

;

where Ck 2 R3�n is obtained by rotating and translating the
coordinates set C.

4.4 Highlighting COMAR Capability

In this section, we experimentally test the convergence
capability of COMAR, namely, the ability of COMAR to
rapidly find a 3D structure that matches the contact map
taken as input.

The termination conditions let the algorithm run until a
set of coordinates consistent with a given input contact map
is found (Section 3). Formally, given a contact map CM and
a set of coordinates C, we say that COMAR is convergent
when the refinement of C (see Section 3.2) leads to a new set
of coordinates consistent with CM. COMAR refinement
(Phase 2) is more likely to converge as soon as the
3D structure described by the initially guessed coordinate
set is sufficiently similar to the native one (see also
Section 4.4.2). COMAR capability of finding a 3D structure
with a given input contact map depends therefore on the
interplay between the quality of the initial guessed solution
(Phase 1) and the result after the refinement procedure
(Phase 2).

To prove this, we test independently the robustness of
the prediction phase (Section 3.1) and that of the
refinement phase (Section 3.2) by evaluating the RMSD
value of each 3D model to the corresponding native
structure before and after refinement (see below). All tests
have been performed on the data set described in
Section 4.1, adopting a C� protein representation and
computing the contact map with a threshold value of
12 �A. As discussed in Section 4.5, our choice is consistent
with the observation that contact maps computed at lower
thresholds are found to admit 3D structures that, in spite
of being completely consistent with the input contact
maps, are largely different from the native structures.

It is interesting to discuss how much the random
perturbation of our statistical information is relevant in

order to obtain convergent computations. We tested what is
the percentage of convergence of COMAR when the initial
solution is not randomly perturbed. For instance, COMAR
converges for 98.69 percent for contact maps of threshold
12 �A. In Fig. 3, the percentage of convergence of COMAR
for different values of contact map threshold is reported.
We obtain that the convergence rate is above 90 percent for
all thresholds over 7 �A. The reconstruction quality is higher
for thresholds ranging between 10 and 18 �A (see Section 4.5).

4.4.1 Quality of the Prediction Phase

The RANDOM-PREDICT procedure (Phase 1, see Sec-
tion 3.1) tries to guess a possible set of coordinates for a
given contact map by using available statistical information
on contact distribution distances in real proteins. The
prediction is partially random in the sense that the
predicted set of distances is actually obtained by introdu-
cing random perturbations on a set of distances recovered
from statistical information (see procedure DISTANCE in
Appendix B).

The quality of the prediction phase can be measured in
terms of the RMSD from the native structure. We performed
a series of tests for both the sets of distances generated with
and without randomness. In Fig. 4, we show how the
proteins in our data set are distributed according to the
RMSD between the native structure and the nonrandom
initial structure. The maximum RMSD value reached is
19.4 �A with an average RMSD of about 3.1 �A.

In Fig. 5, we show the results of the same test when the
initial guessed solutions are randomly perturbed as detailed
in Section 3.1. For each protein, the RMSD value considered
is the average RMSD value obtained after 50 different runs.
The maximum RMSD value reached is 25.5 �A at an average
RMSD of 4.7 �A.

From the test results, it appears that initial structures
guessed without randomization have on the average better
quality when compared to the native ones. However, as
shown in Fig. 3, when randomization is omitted, the
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Fig. 3. Proteins within our set for which COMAR finds a 3D structure

consistent with the corresponding input contact map computed at

different threshold values without random perturbations.
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algorithm procedure fails in recovering all 3D models as a
function of the threshold value. As a test case, the initial
nonrandom solution of the protein of the Cricket Paralysis
Virus (1b35, chain B) has a very high RMSD value (19.4 �A)
from the native structure. Alternatively, when randomiza-
tion is introduced for the same protein, among the
50 random initial structures generated, at least some have
an RMSD value lower than 5 �A from the native structure.
This is an example of how randomizing on the initial set of
coordinates can effectively improve the performance of
COMAR when the nonrandom initial solution leads to
nonconvergence.

4.4.2 Error Tolerance of the Refinement Phase

In this section, we test the convergence of the refinement
(Phase 2) in terms of RMSD of the initial solution to the
native structures. This is done randomly, generating
structures with RMSD values ranging between 1 �A to
32 �A. Such structures are generated by perturbing the native
ones. A native set of coordinates C is perturbed with

maximum error n �A, 1 � n � 32, by randomly moving
every coordinate in C of at most n �A. We verified that this
procedure leads to a 3D structure whose RMSD from the
original one is around n �A (data not shown).

For each native structure, we perform a series of
10 random tests. The percentage of convergence in terms
of the class of error is shown in Fig. 6. All native structures
perturbed up to 8-�A RMSD are refined to structures exactly
matching the native contact maps. The number of non-
converging structures is rapidly increasing when the RMSD
value from the native structure is above 12 �A. This indicates
that COMAR has good convergence capability: in nearly all
tested cases, Phase 1 generates an initial structure having
RMSD that is at the most 8 �A from the native one (see
Fig. 5). This is further corroborated by the fact that Phase 2
can greatly reduce the RMSD of the given structure from
the native one even when convergence is not obtained
(Fig. 7). For example, for initial structures perturbed up to
16 �A, the average RMSD obtained after the refinement
procedure is 3.2 �A; 61.9 percent of these structures are,
however, not consistent with the corresponding native
contact map.
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Fig. 4. Distribution of proteins according to the RMSD value between the

native 3D structure and the guessed initial structure as evaluated after

the RANDOM-PREDICT phase (Section 3.1) without random perturba-

tion (Appendix B).

Fig. 5. Distribution of proteins according to the RMSD value between the

native 3D structure and the guessed initial structure as evaluated after

the RANDOM-PREDICT phase (Section 3.1) with random perturbation

(Appendix B).

Fig. 6. Percentage of proteins of our set for which Phase 2 of COMAR is

not able to converge as function of the RMSD value of the initial

structure to the native structure. See text for details.

Fig. 7. Average RMSD from the native structure of structures refined by

Phase 2 of COMAR as a function of the RMSD of the initial structure

from the native structure. See text for details.
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4.5 Three-Dimensional Structure Recovery

For each protein of our selected nonredundant data set,
containing 1,760 protein structures (see Section 4.1), we
generate 12 different contact maps by changing the contact
threshold from 7 to 18 �A with a 1-�A step, and then, we run
our procedure for all the 12�1;760 generated contact maps.

The most relevant result of our procedure is the fact that
all the reconstructed protein structures satisfy the native
contact maps. This means that the Hamming distance
between the native and the reconstructed contact maps is
zero, or in other words, that given the contact map of a
protein, our algorithm finds a 3D structure that has the
same contact map as the native protein. In spite of this, in
some cases, the RMSD of the reconstructed protein with
respect to the native structure can be very large (Fig. 8).

This indicates that some contact maps can represent a
huge ensemble of protein conformations. Usually, this
means that the map contains only a broad central band of
local contacts, and no constraints are posed on the global
bending of the protein. The reconstruction ambiguity is
more evident when the contact map is generated using
low values of contact thresholds (ranging from 7 to 9 �A)
and decreases as the contact threshold increases (Table 1).
Our results indicate that at increasing contact map
threshold, both average RMSD and standard deviation
values decrease over the all-protein set (Table 1). At
increasing threshold values, global features in the contact

map help in finding the 3D structure likely to be more
similar/close to the native one.

A typical example is shown in Fig. 8 for the protein
Human Myeloperoxidase Isoform C (1cxp, chain B). The
contact map computed with a threshold equal to 7 �A
(Fig. 8a) does not contain enough global information of the
protein structure, and a large number of protein structures
are represented by that map. For instance, a possible
reconstruction is reported in Fig. 8c where the RMSD to
the native structure is 41.3 �A. When the contact map is
computed at a threshold of 16 �A (Fig. 8b), more features are
available off of the main diagonal, and the recovered
3D structure is closer to the native one. Indeed, RMSD
decreases now to 4.9 �A (Fig. 8d).

This finding prompted us to do a search in the
threshold space to optimize the RMSD values. We find
that a better 3D reconstruction is obtained when a high
threshold value is adopted (10 �A or higher), while the
average runtime (over 1,760 proteins) does not depend on
the threshold adopted (Table 1). RMSD values between
the reconstructed and the corresponding native 3D protein
structures are analyzed as a function of the four main
SCOP classes, clustered in monodomain and multidomain
proteins. The results are shown in Fig. 9. As a general
trend, we find that multidomain proteins are more easily
reconstructed with our procedure than monodomain
proteins. This is so rather independent of the threshold
value adopted. One possible explanation is that the
contact map of multidomain proteins carries information
about the interdomain residue contacts that poses more
constraints to the reconstruction of the 3D protein
structure. Another interesting point that emerges from
Fig. 9 is the fact that the contact maps of monodomain all-
alpha proteins (a SCOP label) tend, on average, to be more
ambiguous in their reconstruction. This is in agreement
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Fig. 8. Contact map degeneracy: a test case. The recovery of
the 3D structure of Human Myeloperoxidase Isoform C (1cxp
chain B,104 residues, all-alpha). (a) 1cxp contact map computed at a
threshold of 7 �A. (b) 1cxp contact map computed at a threshold of 16 �A.
(c) 1cxp native structure (thick line) compared to a recovered structure
with the same contact map (a) ðRMSD ¼ 41:31 �AÞ. (d) 1cxp native
structure (thick line) compared to a recovered structure with the same
contact map (b) ðRMSD ¼ 4:95 �AÞ.

TABLE 1
Scoring the Recovery of 3D Structure from the

Contact Maps of 1,760 Proteins

Threshold = the threshold used to compute the input contact map; Cmap
dist = the Hamming distance between the contact map of the native
structure and the contact map of the recovered structure; Avg RMSD =
the average, over all proteins, RMSD between the native structure and
the recovered structure; AvgSD = the average standard deviation over
all proteins; and Avg Time = the average, over all proteins, time needed
to recover the 3D structure.
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with the fact that all-alpha proteins are characterized by
contact maps with a great number of contacts made by
sequence nearest neighbor residues, and this hampers
global 3D reconstruction.

An analysis of our procedure as a function of the
protein length shows that the method works indepen-
dently of the protein size and that long proteins are on
average reconstructed as well as short ones (Fig. 10).

4.6 Comparison with Previous Methods

To our knowledge, only four methods have been intro-
duced so far to reconstruct the protein 3D structures
starting from the contact map information [5], [10], [17],
[20]. The approach developed by Vendruscolo et al. [20]
was tested on some 20 proteins. Unlike our results, their
findings indicate that RMSD, on the average, increases
when the protein length increases.

This effect may be due to the adopted simulated
annealing procedure that require more optimization steps
for large than for short proteins; furthermore, they stop the
search without a complete satisfaction of the contact maps
ðCmap distance ¼ 0Þ. On the contrary, our method runs till
the satisfaction of the contact map (Table 1).

When our method is tested on the Vendruscolo et al. set
[20], it is worth noticing that even when a comparable
threshold of 9 �A is used, the reconstructed RMSD is lower,
on the average, than that previously obtained (Fig. 11). At
higher contact map threshold values (for instance, 13 �A, as
shown in Fig. 11), all the proteins of the Vendruscolo et al.
set [20] are reconstructed with RMSD values lower than 2 �A
and again with zero errors in the contact map. The average
execution time on this set is less than 1 second.

Galaktionov and Marshall [10] report values for only five
proteins, with RMSD values lower than 1 �A. In Table 2, we

show that our method performs similarly on their data set
(results are obtained with a contact map threshold of 13 �A).

Two other papers [5], [17] describe reconstruction proce-
dures; however, they adopt predicted constraints or pre-
dicted contacts to fold the proteins so that a direct comparison
with them is not possible.

5 CONCLUSIONS AND PERSPECTIVES

In this paper, we address the problem of reconstructing
protein structures from the native contact maps. We
introduce the general problem (which has been shown
to be computationally intractable), and we describe an
efficient and very fast procedure (COMAR) to solve it. We
show that contact maps computed using threshold values
greater than those commonly used for C�-C� distances
allow better 3D structure recovery than those computed at
lower thresholds (7-9 �A). This is mainly due to the fact
that for some proteins (in particular but not exclusively,
the all-alpha monodomain), there exist a large number of
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Fig. 9. Average RMSD values on the different SCOP classes as

obtained using contact maps computed with a threshold of 13 �A.

Fig. 10. Actual RMSD distribution as a function of the protein length

(number of residues) when contact maps are computed with a contact

threshold of 13 �A.

Fig. 11. Reconstruction accuracy (RMSD) of our method on the set of
Vendruscolo et al. [20]. The results correspond to a contact threshold of
9 �A (for a direct comparison with [20]) and of 13 �A, respectively. The
error associated with the Vendruscolo et al. reported data is due to the
fact that the complete satisfaction of the contact map is not a constraint
for their search.

TABLE 2
Comparison of Our Method with that of

Galaktionov and Marshall [10]
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different conformations that satisfy the native contact
map. When the threshold of the contact map computation
is increased, the ensemble of possible different solutions is
reduced by increasing the number of structural con-
straints. Our finding indicates that the best cutoff thresh-
old is in the range of 10-18 �A.

We are currently testing the robustness of COMAR in the
case of noisy or incomplete contact maps. Preliminary
results obtained on a subset of 120 proteins with lengths
ranging between 50 and 1,100 residues show that COMAR
can reconstruct 3D structures having RMSD < 4 �A from the
corresponding native structures with up to 5-10 percent
random errors in the input contact map. In the case of
incomplete contact maps, the same reconstruction accuracy
is obtained when up to 75 percent of the input (i.e., entries
of the map) is not considered. In other words, COMAR
provides much better solutions if it receives as input a small
number of well-predicted entries rather than a large
number of predicted entries with a small number of errors.

In summary, in this paper, we show the following:

. Our method converges with high probability to a
correct solution, and it is sufficiently robust to
generate a solution close to the correct one also in
those cases in which it is not convergent.

. Our method can reconstruct with zero contact map
errors all the protein structures of our data set, and
to our knowledge, this result has not been achieved
before by other authors.

. The required computational time is in the range of 3-
15 seconds when a normal personal computer is
available, making the program a useful tool also for
wide-scale applications.

. Our results are obtained on a nonredundant data set
comprising 1,760 proteins, and this is the largest data
set used so far for this specific task.

Finally, even if COMAR seems to tolerate many more errors
in the contact map than all the others techniques proposed
in the literature so far, the best available predictors are far
from producing enough accurate contact maps. Part of this
gap might be filled by using error filters for predicted
contact maps or, equivalently, by posing more emphasis on
the reliability of predicted contacts.

APPENDIX A

The SPLIT procedure splits a native contact map into
submatrices in relation to those fragments of the protein that
show a high degree of independence with respect to mutual
interactions. In other words, we identify submatrices of the
contact map such that their residues have no contacts
outside the submatrix itself (Fig. 1). In searching these
submatrices, we ignore contacts near the main diagonal,
since each residue is in contact with the residues close to it in
the protein chain. Therefore, we call thickness the minimum
distance from the main diagonal of a contact to be
considered in the splitting procedure.

Formally, we say that a contact map matrix CM 2
f0; 1gn�n is splittable with thickness T in the two submatrices
CM1;j 2 f0; 1gj�j and CMj;n 2 f0; 1gn�jþ1�n�jþ1 if and only
if CM½h; k� ¼ 0 8 h 2 ½1; j�, k 2 ½j; n�, such that jh� kj � T .

Given a contact map CM, the SPLIT function determines
if it is splittable and returns its submatrices. First, it

computes the number of contacts shared by residues before
and after each position in the sequence of residues
(SPLICE-CREATION). Then, it divides CM into subma-
trices of size at least AcceptedSize, sharing no contacts with
other submatrices. We have two types of submatrices:

. one having no contacts besides the ones near the
main diagonal, allowed by the thickness T and
denoted by a sequence of zeros in the array of shared
residues V (line 7);

. one sharing no contacts with neighbor submatrices,
denoted by a sequence of values preceded and
followed by a zero in the array of shared residues V
(line 8).

SPLITðCM 2 f0; 1gn�nÞ
1: V  SPLICE-CREATIONðCMÞ
2: AcceptedSize 13

3: s 1

4: D fg
5: foreach i 1 to n do

6: if ði� s > AcceptedSizeÞ then

7: if (V ½k�¼0 8 k 2 ½sþ 1; i�1� and V ½s�; V ½i� 6¼0) or

8: (V ½s� ¼ 0 and V ½i� ¼ 0) then

9: D D [ fsubmatrix of CM from s to ig
10: s i

11: endif

11: endif

12: endfor

13: return D

For each position i 2 ½1; n�, SPLICE-CREATION counts the
number of contacts in the rectangular submatrix of CM
having a lower left corner at position i on the main diagonal
(line i� 1, row iþ 1) and the same upper right corner as
CM (line 0, row n). Contacts in the lower left corner of this
rectangular submatrix, having position j, k such that
jj� kj � T , are not considered (line 6). The thickness
parameter T is initialized as the mean over all residues of
the column of the first zero found starting from the main
diagonal.

SPLICE_CREATIONðCM 2 f0; 1gn�nÞ
1: V  fg
2: for i 1 to n do

3: V ½i�  0

4: for j 1 to i� 1 do

5: for k ¼ iþ 1 to n do

6: if jj� kj > T

7: V ½i�  V ½i� þ CM½j; k�
8: endif

9: endfor

10: endfor

11: endfor

12: return V

The MERGE procedure tries to merge coordinates

C1; . . . ; Ck, [each one constructed by the corresponding

submatrix splitted from contact map CM (Section 3.1)] into

a structure consistent with the whole contact map CM. The

merging process is performed incrementally (lines 3-17),

adding at each step i the set of coordinates Ci to the
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resulting structure C. The TRANSLATE procedure (line 4)

translates the coordinates in Ci to superimpose the common

residue between Ci and the already built structure. Then,

50 random rotations of Ci over the common residue are

generated. The best rotation is selected as the one for which

the contact map of the current structure has the minimum

number of differences with the corresponding submatrix of

the original contact map (lines 6-16). The RANDOM

procedure generates three random numbers in the intervals

specified. The ROTATE(Ci, fx; y; zg) function returns the

rotation of the set of coordinates Ci over the three principal

axes by angles fx; y; zg.

MERGE(C1 2 RR3�n
1 ; . . . ; Ck 2 RR3�n

k , CM 2 f0; 1gn�nÞ
Require: n1 þ . . .þ nk ¼ n
1: C  fg
2: e 1
3: for i 1 to k do

4: Cold  C

5: Ci  TRANSLATEðCi; CÞ
6: for j 1 to 50 do

7: fx; y; zg RANDOMð½0;��;½��;��;½�;��Þ
8: C0i  ROTATEðCi; fx; y; zgÞ
9: C0  append C0i to Cold
10: CM 0  contact map of C0

11: e0  differences between CM 0 and CM

12: if e > e0 then

13: e e0

14: C  C0

15: endif

16: endfor

17: endfor

18: return C

APPENDIX B

The GUESS-DIST procedure tries to guess a possible set of

distances D 2 RRn�n consistent with some contact map

CM 2 f0; 1gn�n of threshold t by using some a priori

knowledge about the physical conformation of the proteins.

For instance, residues that form the backbone of a protein

are usually placed according to the typical distance value of

3.8 �A (the C�-C� distance). Other typical distance values

can be obtained experimentally from the real proteins. The

set of experimental typical values used by the GUESS-

DIST procedure are collected in DISTANCE, which returns

a random typical value for every couple of residues i and j

and threshold t. The RANDOM procedure generates a

random number in the interval specified.

DISTANCE(t 2 NN , i 2 NN , j 2 NN)

Require: 1 � i, j � n
1: if i ¼ j then return 0

2: if ji� jj ¼ 1 then return 3.8
3: if ji� jj ¼ 2 then return 6þRANDOMð½�1:5; 1:5�Þ
4: if ji�jj¼3 then return Maxf0; 7:5þRANDOMð½7:5�t;
t� 7:5�Þg

5: if ji�jj>3 then return ð0:91�t=100Þtþ
RANDOMð½�tþ ð0:91� t=100Þt; t� ð0:91� t=100Þt�Þ

Any set of distances D must satisfy the triangle inequality

(i.e., for all: 1 � i, j; k � n, D½i; j� � D½i; k� þD½k; j�) in order

to be 3D consistent. To obtain from D a set of guessed

distances that satisfy the triangle inequality, we run the

(standard) SHORTEST-PATH algorithm (see, for example,

[7]) on the weighted graph identified by the D matrix.

GUESS-DIST(CM 2 f0; 1gn�n, t 2 NN)

1: for i 1 to n do

2: for j i to n do

3: if CM½i; j� ¼ 1 then

4: D½i; j�  DISTANCEðt; i; jÞ
5: else

6: D½i; j�  1
7: endif

8: D½j; i�  D½i; j�
9: endfor

10: endfor

11: return SHORTEST-PATHðDÞ

APPENDIX C

The MOVE procedure projects some C½i� coordinate on the

surface of the sphere of radius (of mobility) ri and centered

in C½i� (see Section 3.2). The direction of the projection is

described by a vectorial pseudoforce FF applied to i. For

every residue j not well placed with respect to i, let us

consider the (vectorial) pseudoforce FFj ¼ ðC½i� � C½j�Þ=dij
of magnitude one and direction ij. The point on the surface

of the sphere (line 12) is then identified by the pseudoforce

FF resulting from the (vectorial) addition of forces FF 0j, where

FF 0j ¼ FFj when CM½i; j� ¼ 1, and FF 0j ¼ �FFj has opposite

direction to FFj when CM½i; j� ¼ 0 (lines 2-11).

MOVE(CM 2 f0; 1gn�n, C 2 RR3�n, t 2 NN , i 2 ½1; n�)
1: rri  radius of mobility at threshold t of residue i

2: F  f0; 0; 0g
3: for j 1 to n do

4: if j is not well placed with respect to i then

5: if CM½i; j� ¼ 1 then

6: F  F � ðC½i� � C½j�Þ=dij
7: else

8: F  F þ ðC½i� � C½j�Þ=dij
9: endif

10: endif

11: endfor

12: return C½i� þ F ðri=jF jÞ
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