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Abstract. Cellular Automata can be considered discrete dynamical sys-
tems and at the same time a model of parallel computation. In this
paper we investigate the connections between dynamical and computa-
tional properties of Cellular Automata. We propose a classification of
Cellular Automata according to the language complexities which rise
from the basins of attraction of subshift attractors and investigate the
intersection classes between our classification and other three topologi-
cal classifications of Cellular Automata. From the intersection classes we
can derive necessary topological properties for a cellular automaton to
be computationally universal.

1 Introduction

The concept of computation and computation theory itself are strictly related to
Turing Machines. In recent years, however, a new trend of investigation attempts
to find connections between dynamical system theory and computation theory.
Cellular Automata can be considered discrete dynamical systems and at the
same time a model of parallel computation. It is well known that they have the
same computational power of Turing Machines.

There’s no general agreement on the concept of universality for Cellular Au-
tomata. The universality of a cellular automaton is generally proved by showing
that such automaton can simulate a universal Turing Machine [13] or some other
system which is well known to be computationally universal [2]. A different ap-
proach was taken by Wolfram in [14] where the author classifies empirically
Cellular Automata in four classes according to the observed (by computer simu-
lation) evolution of the automaton on random configurations. He suggested that
Cellular Automata in the fourth class must be capable of universal computation.
Several authors have offered formalization to Wolfram classes. We cite just few of
them. Gilman [6] proposed a classification based on the concept of equicontinu-
ity while Hurley [8] proposed a classification based on the concept of attractors.
Kůrka [9] refined the Equicontinuity and Attractor classification by using purely
topological definitions and investigated the intersection classes between the two
classifications and a third one based on the complexity of the languages rising
from the column factors of Cellular Automata. All three classifications are based
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uniquely on topological concepts and it is not evident how this dynamical prop-
erties are related to computational properties of Cellular Automata except for
the connection with Wolfram’s empirical classification.

While it is generally accepted to interpret the evolution of a dynamical system
as a process of computation, it is much more less evident how to interpret the
input and the output of the computation in the evolution of the system. A
possible approach is to see the process of computation in a dynamical system as
a flow toward an attractor. The attractor is considered the halting state of the
computation. One such approach has been taken in [1] to develop a complexity
theory for the set of continuous time dynamical systems defined by differential
equations. A more general approach has been taken recently in [3]. The authors
rephrase the halting problem as the problem to decide if there exists at least one
configuration from some initial set whose orbit reaches some halting set. Initial
and halting sets are intended to be clopen (closed and open) sets of a Cantor
space so that they can be described by means of finite information. It is easy to
see how these two approaches are related: in a compact metric space the orbit
of some configuration converges to an attractor Z if and only if it enters into
all clopen invariant sets whose omega limits coincide with Z. The authors of [3]
propose a definition of universality which applies to general discrete symbolic
(i.e. defined on a Cantor space) dynamical systems and they provide necessary
conditions for the universality. According to their model, a universal symbolic
dynamical system is not minimal, not equicontinuos and does not satisfy the
shadowing property. Moreover they conjecture that a universal dynamical system
must have an infinite number of subsystems.

Here we interpret the process of computation in Cellular Automata as a flow
toward a subshift attractor. A subshift attractor is an attractor which is invariant
under the shift map. Subshift attractors have been investigated in [10] and [5]. We
show that it is possible to restate the halting problem as the problem to decide
if the omega limit of some clopen set converges to an halting subshift attractor
(that is, as the problem to decide if the orbits of all sequences contained in some
clopen set converge to the attractor). We say that the computational complexity
of a cellular automaton (AZ, F ) with respect to the halting subshift attractor Z
is defined as the complexity of clopen sets contained in the basin of attraction of
Z. Since a basin of attraction is the countable union of cylinder (clopen) sets and
a cylinder set can be univocally described by a word in A∗, we can characterize
the complexity of a basin of attraction by using formal language theory. We
propose a classification of Cellular Automata according to the complexity of
basin languages (Section 3). A cellular automaton with highest computational
complexity has at least one subshift attractor whose basin language is strictly
recursively enumerable.

Since our classification is based on purely topological concepts it is easy to
explore the intersection classes with other well known topological classifications
of Cellular Automata such as Attractors, Equicontinuity and Languages clas-
sifications (Section 4). From the intersection classes we can provide necessary
conditions for a cellular automaton to be universal (Section 5). Even in our
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model a universal cellular automaton is not minimal, not equicontinuous, does
not have the shadowing property and, in particular, it is not regular. It is open
also in our case the question whether a universal cellular automaton must have
an infinite number of subsystems.

2 Notation and Definitions

Let A be a finite alphabet. With AZ and AN we denote respectively the set of
sequences (xi)i∈Z and (xi)i∈N where xi ∈ A. For x ∈ AZ, let x[i,j] ∈ Aj−i+1

denote the word xixi+1...xj . We use the shortcut w " x to say that w ∈ A∗ is
a subword of x ∈ AZ. Let define a metric d on AZ by d(x, y) = 2−n where n =
min{|i| | xi #= yi}|. The set AZ endowed with metric d is a compact metric space.
For u ∈ A∗ and i ∈ Z, let [u]i = {x ∈ AZ | x[i,i+|u|−1] = u} denote a cylinder set.
Sometimes we will refer to the cylinder set [u]i simply with [u]. A cylinder set is
a clopen (closed and open) set in AZ. Every clopen set in AZ is a finite union of
cylinder sets. The shift map σ : AZ → AZ is defined by σ(x)i = xi+1. A cellular
automaton is a dynamical system (AZ, F ) where F : AZ → AZ is a continuous
and σ-commuting function, i.e. Fσ = σF . According to Curtis-Hedlund-Lyndon
theorem [7], (AZ, F ) is a cellular automaton if and only if there exists a local
function f : A2r+1 → A of radius r > 0 such that F (x)i = f(xi−r, ..., xi+r).

In the following sections we review Attractor, Equicontinuty and Language
classifications for Cellular Automata. The intersection classes between the tree
classifications can be found in [9].

2.1 Attractor classification

The ω-limit of a set U ⊆ AZ is ω(U) = ∩n>0∪m>nFn(U). A nonempty set
Z ⊆ AZ is an attractor if there exists an F -invariant clopen set U ⊆ AZ such that
ω(U) = Z. A nonempty set is a quasi-attractor if it is the countable intersection
of attractors. An attractor is minimal if it doesn’t contain any proper subset
which is also an attractor. The basin of attraction of an attractor Z is the set
B(Z) = {x ∈ AZ | ω(x) ⊆ Z}. The basin of attraction is always an open F -
invariant set.

This following classification is Kůrka’s refinement of Hurley’s Attractor clas-
sification for Cellular Automata [8].

Corollary 1. [9] Every (AZ, F ) falls exactly in one of the following classes.

A1 There exist two disjoint attractors.
A2 There exists a unique minimal quasi-attractor.
A3 There exists a unique minimal attractor different from ω(AZ).
A4 There exists a unique minimal attractor ω(AZ) #= AZ.
A5 There exists a unique minimal attractor AZ.

A subshift attractor is a σ-invariant attractor. A clopen F -invariant set U ⊆
AZ is spreading if F k(U) ⊆ σ−1(U) ∩ U ∩ σ(U) for some k > 0. The following
proposition characterizes clopen sets whose omega limits are subshift attractors.
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Proposition 1. [5] Let (AZ, F ) be a cellular automaton and U ⊆ AZ a clopen
F -invariant set. Then ω(U) is a subshift attractor if and only if U is spreading.

Every cellular automaton (AZ, F ) has at least one subshift attractor ω(AZ)
but it can have also an infinite number of subshift attractors [12]. For instance,
Kůrka [10] shows that, for surjective cellular automata, the full space is the
unique subshift attractor. We show two examples which will be useful later. The
first example shows an unstable cellular automaton with an infinite number of
attractors and with just one subshift attractor

Example 1. The Hurley cellular automaton, whose local rule f : {0, 1}2 → {0, 1}
is defined by f(a, b) = ab has unique minimal quasi-attractor ∞0∞ (see [8] or
[11]) and unique subshift attractor ω(AZ) = {x ∈ AZ | 10+1 #" x} (see [5]).

Question 1. Is there a stable cellular automaton with more than one subshift
attractor or with an infinite number of subshift attractors?

The second example shows an unstable regular cellular automaton with just
two subshift attractors.

Example 2. The cellular automaton (AZ, F ), whose local rule f : {0, 1}3 →
{0, 1} is defined by f(x, y, z) = xyz, has just two subshift attractors ω(AZ) =
{x ∈ AZ | 10+1 #" x} and ∞0∞ #= ω(AZ). A cellular automaton is regular if and
only if Σ2r+1 is a sofic shift (see [4]). In this case it is easy to see that Σ3 is the
one-sided sofic shift defined by the σ-closure of the sequences (111)∗x(000)∞,
where x = (110) | (110)(100) | (011) | (011)(001) | (010).

2.2 Equicontinuity classification

We review some topological properties of Cellular Automata.

• Equicontinuity :

∀x ∈ AZ,∀ε > 0,∃δ > 0,∀y ∈ Bε(x),∀n ≥ 0, d(Fn(x), Fn(y)) < ε

• Almost equicontinuity :

∃x ∈ AZ,∀ε > 0,∃δ > 0,∀y ∈ Bε(x),∀n ≥ 0, d(Fn(x), Fn(y)) < ε

• Sensitivity :

∃ε > 0,∀x ∈ AZ,∀δ > 0,∃y ∈ Bε(x),∃n ≥ 0, d(Fn(x), Fn(y)) ≥ ε

• Positively expansiveness:

∃ε > 0,∀x,∀y #= x,∃n ≥ 0, d(Fn(x), Fn(y)) ≥ ε

This following classification is Kůrka’s modification [9] of Gilman’s Equicon-
tinuity classification [6]. Gilman’s classification is based on measure-theoretic
concepts, while Kůrka’s one uses only topological concepts.
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Corollary 2. [9] Every (AZ, F ) falls exactly in one of the following classes:

E1 (AZ, F ) is equicontinuous.
E2 (AZ, F ) is almost equicontinuous but not equicontinuous
E3 (AZ, F ) is sensitive but not positively expansive.
E4 (AZ, F ) is positively expansive.

2.3 Language classification

The column factor of width k > 0 of (AZ, F ) is the set of one-sided infinite
sequences Σk = {y ∈ AN | ∃x ∈ AZ,∀n ≥ 0, Fn(x)[0,k) = yn}. A cellular
automaton (AZ, F ) is bounded periodic if ∀k > 0,∃m > 0,∃n > 0 such that
∀x ∈ Σk,∀i ≥ m,σi(x) = σi+n(x). A cellular auotmaton is regular if ∀k > 0 the
language L(Σk) = {w ∈ (Ak)∗ | ∃x ∈ Σk, x[0,|w|−1] = w} is regular. Obviously, a
bounded periodic cellular automaton is regular. Every cellular automaton with
the shadowing property is regular [9] while the converse is not true.

The following classification is Kůrka’s Language classification of Celular Au-
tomata according to the language complexity of column factors.

Corollary 3. [9] Every (AZ, F ) falls exactly in one of the following classes:

L1 (AZ, F ) is bounded periodic.
L2 (AZ, F ) is regular not bounded periodic.
L3 (AZ, F ) is not regular.

Proposition 2. [9] L1 = E1.

3 Basin Language classification and computational
complexity of Cellular Automata

In this section we are interested in the basins of attraction of subshift attractors.
We study the complexity of such basins by using formal language theory.

First we show that the basin of attraction of a subshift attractor is always a
dense open set.

Proposition 3. The basin of every subshift attractor is a dense open set.

Proof. Let Z be a subshift attractor of (AZ, F ). Then B(Z) is open so we just
need to show that every x ∈ AZ belongs to the closure of B(Z). Let consider
a clopen set V ⊆ B(Z) and let ε > 0. Since AZ is mixing, there exists n > 0
such that ∅ #= σn(Bε(x)) ∩ V ⊆ σn(Bε(x)) ∩ B(Z). Since Z is a subshift, for
all n ∈ Z,σ−n(V ) ⊆ B(Z) and ∅ #= Bε(x) ∩ σ−n(V ) ⊆ Bε(x) ∩ B(Z). Then
x ∈ cl(B(Z)). ,-

A qualitative characterization of basins of attraction is provided by formal
language theory. By Proposition 3, the basin B(Z) of a subshift attractor Z is
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defined by the countable union of cylinder sets. A cylinder set can be (univocally)
identified by some word in A∗. Considering basins of subshift attractors offers
some advantages respect to basins of general attractors. Since the basin of a
subshift attractor is σ-invariant, we don’t need to take care of the coordinate of
the cylinder in the space AZ. This means that if a cylinder [u]i is contained in
the basin of some subshift attractor Z, then for every j ∈ Z, [u]j is contained in
B(Z) (this implies that the orbit of every configuration which contains the word
u will converge to Z).

Definition 1. Let denote with

LZ = {u ∈ A∗ | [u] ⊆ B(Z)}

the basin language of the subshift attractor Z of (AZ, F ).

The language complexity of LZ is a qualitative measure of the complexity of
B(Z). We show that the language LZ can be at most recursively enumerable.
Next we show that LZ can be strictly recursively enumerable.

Lemma 1. Let (AZ, F ) be a cellular automaton. Let V ⊆ AZ be a clopen F -
invariant spreading set and let U ⊆ AZ be a clopen set such that ω(U) ⊆ V .
Then ∃n ∈ N such that Fn(U) ⊆ V .

Proof. Since V is clopen, V = AZ \ V is clopen and compact. For n ∈ N, let
define Xn = {x ∈ U | Fn(x) /∈ V } ⊆ U ∩ V . Since U is clopen, every Xn

is clopen. Moreover, since V is F -invariant, ∀n ∈ N, Xn+1 ⊆ Xn. Assume for
absurd that, ∀n ∈ N, Xn #= ∅. Then, by compactness, X = ∩n∈NXn ⊆ U ∩ V is
not empty and ω(X) ∩ V #= ∅ which is a contradiction. ,-

Proposition 4. Let Z be a subshift attractor of (AZ, F ). Then LZ is r.e.

Proof. Let U ⊆ AZ be a clopen F -invariant spreading set such that ω(U) = Z.
By Lemma 1, for every u ∈ A∗, [u] ∈ B(Z) if and only if ∃n ∈ N such that
Fn([u]) ⊆ U . Since U is a finite union of cylinder sets, given some v ∈ A∗ and
k ∈ N, the property F k([v]) ⊆ U is decidable. This implies that [u] ⊆ B(Z) is a
semidecidable question. Then LZ is at most recursively enumerable. ,-

The following proposition shows that every r.e. language recognition problem
is Turing-reducible to the basin language recognition problem for some cellular
automaton. In particular we show that the halting problem for Turing Machines
can be rephrased in terms of reachability of a subshift attractor for Cellular
Automata.

Proposition 5. Let L ⊆ B∗ be a r.e. language. Then there is a cellular automa-
ton (AZ, F ) with a subshift attractor Z and an injective computable mapping
ϕ : B∗ → A∗ such that u ∈ L if and only if ϕ(u) ∈ LZ .
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Proof. Let M = (B,Q, δ, q0, F ) be a Turing machine recognizing the language
L. Let define (AZ, F ) where A = B∪Q∪{S, L, R}. The particle S is a spreading
state. The particle L moves to left one step at time and erases everything on
its path except when it encounters S and/or R: in that case generates an S
particle. The R particle behaves exactly like L but it moves on the right. The
other particles simulate the computation of the Turing machine M (the tape
alphabet symbols are always quiescent). When some erroneous step occurs (un-
known transition, two states collide, ..) then it is generated a particle S. If a final
state is reached, then it is generated a particle S. Note that ∞S∞ is a subshift
attractor.

Let define the computable mapping ϕ : B∗ → A∗ by ϕ(u) = Lq0uR. It
is easy to see that if a ∈ B is some tape symbol of the Turing Machine then
ω(∞aLq0uRa∞) = ∞S∞ if and only if u ∈ L. Then u is accepted by M if and
only if ω([Lq0uR]) = ∞S∞. ,-

We can classify Cellular Automata according to basin languages complexity.

Corollary 4. Every (AZ, F ) falls exactly in one of the following classes:

B1 ∃Z,LZ = A∗

B2 ∀Z,LZ #= A∗ is recursive
B3 ∃Z,LZ is strictly r.e.

By Proposition 5, class B3 is not empty and it contains Cellular Automata
capable of universal computation. By the existence of intermediate Turing de-
grees we cannot affirm that all Cellular Automata in class B3 are universal so
if we can provide some characterization for class B3 we just have necessary
conditions for the universality. Several natural questions easily arise.

Question 2. Is the membership in Basin Language classes decidable?

Is it possible to characterize classes B1,B2,B3 in terms of the cardinality of
subshift attractors? For instance, every cellular automaton in B1 has just one
subshift attractor.

Question 3. Is there some cellular automaton with an infinite number of subshift
attractors in B2?

Question 4. Is there some cellular automaton with a finite number of subshift
attractors in B3?

4 Classes comparison

In this section we compare Basin Language classification with Attractors, Equicon-
tinuity and Language classifications. First we show two techniques to build Cel-
lular Automata with nice properties. These two constructions will be useful to
investigate the intersection classes.

The first construction is the product cellular automaton.
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Definition 2. The product cellular automaton (AZ × BZ, F × G) of (AZ, F )
with (BZ, G) is defined by ∀(x, y) ∈ AZ ×BZ, (F ×G)(x, y) = (F (x), G(y)).

The proof of the following lemmas are trivial.

Lemma 2. Let (AZ×BZ, F×G) be a product cellular automaton. Then (Z ′, Z ′′) ⊆
AZ ×BZ is a (subshift) attractor of (AZ ×BZ, F ×G) if and only if Z ′ and Z ′′

are (subshift) attractors of (AZ, F ) and (BZ, G), respectively.

Lemma 3. Let (AZ, F ) ∈ Ai and let (BZ, G) ∈ Aj for 1 ≤ i, j ≤ 5. Then
(AZ ×BZ, F ×G) ∈ Ak, k = Min{i, j}.

Lemma 4. Let (AZ, F ) ∈ E3. Then (AZ × BZ, F ×G) ∈ E3 for every cellular
automaton (BZ, G).

Lemma 5. Let (AZ, F ) ∈ L3. Then (AZ × BZ, F × G) ∈ L3 for every cellular
automaton (BZ, G).

Lemma 6. Let (AZ, F ) ∈ Bi and let (BZ, G) ∈ Bj for 1 ≤ i, j ≤ 3. Then
(AZ ×BZ, F ×G) ∈ Bk, k = Max{i, j}.

Proof. By Lemma 2, the language LZ of the subshift attractor Z = (Z ′, Z ′′) of
(AZ×BZ, F ×G) is LZ = LZ′ ×LZ′′ . Then, since LZ can be at most recursively
enumerable, the language complexity of LZ is trivially the highest between the
complexities of languages LZ′ and LZ′′ . ,-

The second construction consists in adding a spreading state to a cellular
automaton.

Definition 3. Let (AZ, F ) be of radius r and let As = A∪ {s} where s /∈ A. Let
(AZ

s , Fs) denote the CA whose local rule fs : A2r+1
s → As is defined by

fs(x−r, ..., xr) = s if ∃xi = s and fs(x−r, ..., xr) = f(x−r, ..., xr) otherwise.

Lemma 7. Let (AZ, F ) be a cellular automaton and let s /∈ A. Let consider
(AZ

s , Fs). Then (AZ
s , Fs) ∈ E2 ∩ A3 ∩ (B2 ∪ B3). Moreover, (AZ

s , Fs) ∈ B2 if
and only if (AZ, F ) ∈ B1 ∪B2.

Proof. By definition, s is a blocking word. Moreover, Zs = {∞s∞} #= ω(AZ
s ) is

a fixed point attractor. Then (AZ
s , Fs) ∈ E2 ∩A3 and (AZ

s , Fs) /∈ B1. We now
show that adding a spreading state doesn’t affect the complexity of the basin
languages of (AZ, F ). The basin of attraction of Zs consists of the set of all
biinfinite sequences which contain at least one occurrence of s, that is B(Zs) =
{x ∈ AZ

s | ∃i ∈ Z, xi = s}. Then, the basin language LZs = {w ∈ A∗
s | ∃i, wi = s}

is recursive. It is easy to see that Z is a subshift attractor of (AZ
s , Fs) if and only

if Z = ω(U∪[s]) where U ⊆ AZ is a clopen F -invariant spreading set for (AZ, F ).
Let Z ′ = ω(U) ⊂ AZ be a subshift attractor of (AZ, F ). Then LZ = LZ′ ∪ LZs

and LZ′ ∩ LZs = ∅ which implies that LZ is strictly recursively enumerable if
and only if LZ′ is strictly recursively enumerable. ,-
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4.1 Comparison with Language classification

By Proposition 2, the class L1 of bounded periodic Cellular Automata coincides
with the class E1 of equicontinuous Cellular Automata. We show that every
equicontinuous cellular automaton has exactly one subshift attractor.

Proposition 6. Every equicontinuous cellular automaton has a unique subshift
attractor which is a mixing shift of finite type.

Proof. Since (AZ, F ) is stable, then Z = ω(AZ) = Fn(AZ) for some n ∈ N. Then
Z is a mixing sofic shift. We show that Z is actually a SFT. Since (AZ, F ) is
equicontinuous, there exists p > 0 such that ∀x ∈ Z,∀i ∈ N, F ip(x) = x. (see
[9]). Let r be the radius of (AZ, F ) and let consider the shift of finite type defined
by Z(2rp+1) = {x ∈ AZ | ∀i ∈ Z, x[i,2rp+i] ∈ L2rp+1(Z)}, i.e. the shift of finite
type identified by the set of legal (2rp+1)-blocks of Z. Obviously, Z ⊆ Z(2rp+1).
Moreover, F p is the identity on Z(2rp+1), then Z(2rp+1) ⊆ Z.
Now, assume for absurd that there exists a subshift attractor Z ′ ⊂ Z. Let U
be a clopen spreading set such that ω(U) = Z ′. Since U #= Z, U ∩ Z #= ∅ and
Z is mixing, there exists y ∈ Z and m ∈ Z such that y ∈ U and σm(y) /∈ U .
Then, for every i ∈ N, F ip(σm(x)) = σm(x) /∈ U contradicting the fact that U
is spreading. ,-

More generally, the basins of attraction of regular Cellular Automata give
rise only to recursive basin languages.

Proposition 7. If (AZ, F ) is regular then ∀Z,LZ is recursive.

Proof. We show that for every u ∈ A∗ the question [u] ⊆ B(Z) is decidable.
Let U ⊆ AZ be a clopen F -invariant spreading set such that ω(U) = Z. Let

k = max{|u| | [u] ⊆ U} and let v ∈ A∗. Since (AZ, F ) is regular, it is possible
to compute a labeled graph representation G of its column factor ΣN where
N = max{k, |v|} (see [4]). Then ω([u]) #⊆ Z if and only if there exists in G an
infinite path q1

w1→ q2
w2→ q3... such that u " w1 and [wi] #⊆ U,∀i ∈ N. Given a

labeled graph G this property is easily decidable. ,-

Corollary 5. L1 ⊂ B1, L2 ∩B1 #= ∅, L3 ∩B1 #= ∅.

Proof. Since every surjective cellular automaton is in B1, the proof follows from
the nonemptiness of the intersection classes Li∩A5 #= ∅, 1 ≤ i ≤ 3 (see [9]) and
from L1 = E1 ⊂ B1 (see Proposition 2 and Proposition 6). ,-

Corollary 6. L2 ⊂ B1 ∪B2

Proof. The automaton of Example 2 has two subshift attractors and it is regular.
Then L2 ∩B2 #= ∅. The conclusion follows from Proposition 7. ,-

Corollary 7. L3 ∩B2 #= ∅, B3 ⊂ L3.

Proof. Let (AZ, F ) ∈ L3 ∩B1 and let (BZ, G) ∈ L2 ∩B2. Then, by Lemma 5
and Lemma 6, (AZ × BZ, F × G) ∈ L3 ∩ B2. The inclusion B3 ⊂ L3 follows
from Corollary 6. ,-
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Fig. 1. Basin Language and Languages classifications

4.2 Comparison with Equicontinuity classification

Corollary 8. E1 ⊂ B1, E2 ∩B1 #= ∅, E3 ∩B1 #= ∅, E4 ⊂ B1.

Proof. By Proposition 6, E1 ⊂ B1. Moreover E4 ⊂ A5 ⊂ B1. For the other
two cases, the proof follows from the nonemptiness of the intersection classes
Ei ∩A5 #= ∅, 2 ≤ i ≤ 4 (see [9]). ,-

Corollary 9. E2 ∩B2 #= ∅, E2 ∩B3 #= ∅.

Proof. Let (AZ, F ) ∈ Bi, 2 ≤ i ≤ 3, and let s /∈ A. Then, by Lemma 7, (AZ
s , Fs) ∈

E2 ∩Bi. ,-

Corollary 10. E3 ∩B2 #= ∅, E3 ∩B3 #= ∅.

Proof. Let (AZ, F ) ∈ E3 ∩B1 and let (BZ, G) ∈ E2 ∩Bi, 2 ≤ i ≤ 3. Then, by
Lemma 4 and Lemma 6, (AZ ×BZ, F ×G) ∈ E3 ∩Bi. ,-

Fig. 2. Basin Language and Equicontinuity classifications

4.3 Comparison with Attractor classification

Corollary 11. A1 ∩B1 #= ∅, A1 ∩B2 #= ∅, A1 ∩B3 #= ∅.
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Proof. The identity cellular automaton ({0, 1}Z, I) has two disjoint attractors
ω([0]),ω([1]) and, since it is surjective its unique subshift attractor is the full
space. Then A1 ∩B1 #= ∅. Let (BZ, G) ∈ Bi, 1 ≤ i ≤ 3. Then, by Lemma 3 and
Lemma 6, (AZ ×BZ, I ×G) ∈ A1 ∩Bi. ,-

Corollary 12. A2 ∩B1 #= ∅, A2 ∩B2 #= ∅, A2 ∩B3 #= ∅.

Proof. Let (AZ, F ) ∈ A2 ∩B1 be the Hurley cellular automaton of Example 1.
Let (BZ, G) ∈ Bi, 2 ≤ i ≤ 3 and let s /∈ B. By Lemma 7, (BZ

s , Gs) ∈ A3 ∩Bi.
Then, by Lemma 3 and Lemma 6, (AZ ×BZ

s , F ×Gs) ∈ A2 ∩Bi. ,-

Corollary 13. A3 ∩B1 = ∅, A3 ∩B2 #= ∅, A3 ∩B3 #= ∅.

Proof. If (AZ, F ) ∈ A3 then it has at least two subshift attractors: the minimal
attractor and the maximal attractor. Then A3∩B1 = ∅. Let (AZ, F ) ∈ Bi, 2 ≤
i ≤ 3 and s /∈ A. Then, by Lemma 7, (AZ

s , Fs) ∈ A3 ∩Bi #= ∅. ,-

To conclude, since a cellular automaton in A4 ∪A5 has only one attractor,
we can easily derive the intersection classes for A4 and A5.

Corollary 14. A4 ∪A5 ⊂ B1.

Fig. 3. Basin Language and Attractors classifications

5 Conclusions

We investigated the connections between dynamical and computational prop-
erties of Cellular Automata. We classified Cellular Automata according to the
complexity of the languages rising from the basins of attraction of subshift attrac-
tors (see Corollary 4). According to our classification, Cellular Automata capable
of universal computation are in our highest complexity class. We investigated
the intersection classes between our classification and Languages, Equicontinuity
and Attractors classifications (see figures 1, 2 and 3). By exploring intersection
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classes we can provide necessary conditions for Cellular Automata to be uni-
versal. Like in [3], according to our model, a universal cellular automaton is
not regular (then it is not equicontinuous, not positively expansive and does
not satisfy the shadowing property) and is not minimal (minimal Cellular Au-
tomata cannot have two distinct subshift attractors so they belong to our lowest
complexity class). Several questions remain open:

1. Is there some stable cellular automaton with an infinite number of subshift
attractors?

2. Is the membership in our classes decidable?
3. Is there some cellular automaton with an infinite number of subshift attrac-

tors in class B2?
4. Is there some cellular automaton with a finite number of subshift attractors

in class B3?
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