
WS-FM 2004 Preliminary Version

A Framework for Generic Error Handling in
Business Processes

Manuel Mazzara and Roberto Lucchi

Department of Computer Science, University of Bologna, Via Mura Anteo
Zamboni 7 - 40127 Bologna, Italy

E-mail: {mazzara, lucchi}@cs.unibo.it

Abstract

Recently the term Web Services Choreography has been introduced to address some
issues related to Web Services Composition. Several proposals for describing Chore-
ography for Business Processes have been presented in the last years and many of
these languages make use of concepts as long-running transactions and compensa-
tions for coping with error handling. BPEL4WS, the most accredited candidate
for becoming a standard in Choreography, provides three different mechanisms for
coping with abnormal situations: Exception Handling, Event Handling and Com-
pensation Handling. The complexity of BPEL4WS makes it difficult to formally
define this framework, thus limiting the formal reasoning about the designed ap-
plications. In this paper we advocate that three different mechanisms for error
handling are not necessary and we formalize a novel choreography language, based
on the idea of event notification as the only error handling mechanism. We can take
advantages of this formal description in two ways. Firstly, this language represents
by itself a proposal of simplification for BPEL4WS including an unambiguous spec-
ification. Secondly, an implementor of an actual BPEL4WS orchestration engine
should implement simply this single mechanism providing all the remaining ones
by compilation. Notably, the proposed framework is expressive enough to compare
different solutions for managing long running transactions such as BPEL4WS and
StAC.

1 Introduction

Web Services technology is a platform on which we can develop applications
taking advantage of the Internet infrastructure. A Web Service, specifically,
describes particular business functionalities that a company wants to expose
through the Internet with the purpose of providing to other companies a way
for using them. More formally, the official definition of W3C [14] says that:

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:mazzara@cs.unibo.it�
mailto:lucchi@cs.unibo.it�

M. Mazzara and R. Lucchi

“A Web service is a software system identified by a URI, whose public
interfaces and bindings are defined and described using XML. Its definition
can be discovered by other software systems. These systems may then
interact with the Web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols”.

Recently the term Web Services Choreography has been introduced to iden-
tify Web Services Composition, that is the way of defining a complex service
out of simpler ones. Several proposals for describing Choreography for business
process have been presented in the last years: for example BPML [4], IBM’s
WSFL [8], Microsoft’s XLANG ([13], [10]) or the more recent BPEL4WS [1]
(which represents a trade-off between IBM and Microsoft).

Choreography is about business processes. It is important to remark that
business processes are characterized by (1) being of long duration, (2) using
asynchronous messages for communication, (3), manipulating sensitive busi-
ness data in back-end databases. Error handling in such an environment is
both difficult and critical. The use of ACID transactions can be limited to
local updates because trust issues and because locks and isolation cannot be
maintained for long periods. We refer to transactions with these different
requirements as long running transactions. Error Handling in this context
relies on the concept of compensation. Most of the Choreography languages
listed at the beginning use long running transactions and compensations as a
mechanism for describing loosely-coupled activities.

Compensations are application-specific activities which attempt to reverse
the effects of a previous activity carried out as part of a larger unit of work
which is being abandoned. While for ACID transactions in databases the
transaction coordinator and the resource it controls know all the uncommitted
updates and have the full control on the order in which they must be reversed,
in the case of business transactions the compensation behavior is itself a part
of the business logic and must be explicitly specified.

In this paper we want to address, in a formal way, the problem of composing
Web Services with particular attention to Error Handling. In particular, we
propose a basic language to deal with Choreography. The aim of this language
is to provide a mean to express common Web Service requirements. Typically,
in such an environment we need a way for addressing concurrency and message
passing which form the basic paradigm of the distributed computation on the
Internet.

In order to formally dealing with these requirements we chose to start
from the π-calculus [12], a well known process algebra which has been widely
studied during the last fourteen years. We chose the π-calculus rather than
other calculi because the definition of XLANG (and then BPEL) has been
strongly influenced by this calculus. The strong correlation between a so
theoretical and academical area and a more business oriented one should not
appear surprising as many people think. This is because a part of the people
involved in the second one have been previously involved in the first one and,

2

M. Mazzara and R. Lucchi

at the moment of choosing a valid paradigm for a Choreography language,
they decided for an already deeply experimented one as, for example, the
π-calculus. This appears completely natural as for the invention of the car:
the more natural way for implementing such a mean of transportation was to
enhance an already experimented one as the coach. Installing an engine on a
basin would have resulted in a queer experiment, although pretty funny!

Unfortunately, the original π-calculus does not support any transaction
mechanism. For this reason, in this paper we shall extend the basic calculus
in such a way to include transactional facilities. Some other works have been
presented in the past addressing similar issues. Anyway, all the past works
committed only to ACID or Long-running semantics without providing a gen-
eral framework for formalizing both the semantics. Instead, our attempt could
be interpreted in this direction.

In this document we will proceed in the following way. In Section 2 we
describe briefly the most accredited candidate for becoming a standard in
Choreography and we explain and motivate our goals. In Section 3 we intro-
duce the language syntax and in Section 4 its semantics. In Section 5 we shall
informally show how to program the error handling mechanisms provided by
BPEL4WS in our framework. Finally, in Section 6 we describe some related
work and we report some conclusive remarks.

2 State of the Art in WS Choreography

The Business Process Execution Language for Web Services (BPEL4WS) is
the fusion of IBM’S WSFL and Microsoft’s XLANG and it is actually sup-
ported by both. So far, it represents the most accredited candidate for be-
coming a future standard in the field of Web Services Choreography. For this
reason it deserves to be studied and considered as a touchstone for any further
effort in this field.

BPEL4WS (BPEL for short) is, in practice, a layer on top of WSDL [7].
Roughly speaking, WSDL is used for defining message types and port types;
such messages and ports are then used by BPEL for specifying the flow of
actions. A BPEL document is an XML-based document that can be executed
by an Orchestration Engine, which is the central coordinator. The engine will
read the BPEL document and will invoke the necessary Web Services in the
required order. The process itself will be offered as a Web Service and will be
invoked in such a way.

A complete explanation of BPEL is beyond the purposes of this paper.
Anyway, it is crucial to focus on the fact it provides three different mechanisms
for coping with abnormal situations: Exception Handling, Event Handling
and Compensation Handling. In this paper we advocate that three different
mechanisms for error handling are not necessary and we formalize a novel
choreography language based on the idea of event notification as the only error
handling mechanism. We can take advantages of this formal description in two

3

M. Mazzara and R. Lucchi

ways. Firstly, this language represents by itself a proposal of simplification
for BPEL including an unambiguous specification. Secondly, an implementor
of an actual BPEL orchestration engine should implement simply this single
mechanism providing all the remaining ones by compilation.

It is worth to note that the BPEL Event Handling mechanism was not
specifically designed for error handling. Although it is not a goal of this work,
we consider that the proposed language still allows for all the remaining usages
of the original mechanism. In order to prove the adequacy of the proposed
mechanism, in Section 5 we shall informally show how to program the three
mechanisms provided by BPEL in our framework. Any formal comparison
is beyond the scope of this paper and it is left as future work. Anyway, it
is worth noting that a more precise comparison with BPEL is an hard task
because, presently, it lacks of any formal specification.

3 The Language Syntax

Let N be a numerable set of channel names and T be a numerable set of scope
names. The set of processes, ranged over by P , Q, R, . . . is defined by the
following grammar:

P ::= 0 Normal Termination

| x ṽ.P Output

| x(ũ).P Input

| (n)P New Name Creation

| P | P Parallel Execution

| A(ũ) Process Invocation

| signal(t) Raising of a Signal

| [P,Q].R Event Scope

where n is a name in N , ṽ represent a list of elements in N ∪ T ∪ {this},
ũ represent a list of elements in N ∪ T and t ∈ T ∪ {this}. The term this

is a keyword which represents the identifier of the current event scope. The
keyword must be used uniquely inside the body a scope definition, we will
define this notion of well formedness in the following. We are assuming a set
of process constants, ranged over by A, in order to support process definition,
whose definition follows:

Definition 3.1 (Process Definition) A defining equation for a process iden-
tifier A is of the form

A(ũ)
def
= P

4

M. Mazzara and R. Lucchi

The first five operators are as usual: the 0 simply describes the normal termi-
nation of a process. The meaning of an Output x ṽ.P is sending a list ṽ, the
object of the communication, through the channel x, the subject. The Input
prefix x(ũ).P represents the reception of the object ũ through the channel
x and it is a binder for the names ũ ∈ N ∪ T (these names can be chan-
nel names or scope names). The New Name Creation operator, instead, is
a binder for the name n ∈ N . The parallel operator represents the support
for concurrency as the flow activity in BPEL. As in BPEL, the world here is
modelled by concurrent activities which interact by message passing and event
raising. BPEL allows for Web Services composition providing the invoke ac-
tivity. In the same way, the process invocation à la π-calculus allows us to
compose many different uncoupled services. So far the language is strictly
similar to the π-calculus, it differs only for the last two operators. The first
one is signal(t) which produces a signal directed to the event scope identi-
fied by t. It is assumed that each event scope [P, Q] is identified by a scope
name (e.g., the scope [P, Q]t is identified by t), which is determined during
the execution (more precisely, at the moment of the scope allocation). This
will be clear in the following showing the semantics rules. For now, it is nec-
essary to understand that an event scope defines a process P to be run during
the normal execution and an event handler Q. During the execution, when a
scope is opened, the defined handler is allocated. At that point, an identifier
is associated with the scope. This information is provided by the system to
the body of the scope which can refer this identifier with the keyword this.
If some process running in parallel will raise a signal directed to it, the event
handler will be eventually executed (the activation is asynchronous due to
physical latency) and then the process itself terminated. Signals directed to
nonexistent scope are lost. A straightforward consequence of this fact is that
a scope can catch a signal only once.

We define free names fn(P) of a process P as in the π-calculus with the
necessary extension for signal(t) and [P, Q].R:

fn([P, Q].R) = fn(P) ∪ fn(Q) ∪ fn(R),

fn(signal(t)) = {t}.
In the next section we shall give the semantics for well formed processes,

whose definition follows.

Definition 3.2 (Well-Formed Process) A process is well-formed if the fol-
lowing conditions hold:

(i) For each process definition it contains A(ũ)
def
= P it holds fn(P) ⊆ {ũ}

and ũ is composed by pairwise distinct names,

(ii) The keyword this never occurs outside the body P of a scope definition
[P,Q].R.

We use P to denote the set of processes that are well-formed.

5

M. Mazzara and R. Lucchi

4 The Language Semantics

In our language all the scopes are characterized by an unique identifier. The
knowledge of this identifier is fundamental for a process to be able to interact
properly with the previously allocated scope. When the main process inside
a scope terminates also the relative event handler is removed and then it
becomes unaccessible. Practically, processes have two way for interacting: (1)
Message Passing and (2) Event Raising. It is not hard to understand the two
mechanisms are mutually encodable. Anyway, here the goal is not about the
minimality of the language but about providing mechanisms to describe, at an
abstract level, all the important aspects a Web Service Choreography language
needs. Pay attention to the fact that this sentence is not in contradiction
with our previous claim about redundancy of BPEL’s mechanisms for Failure
Handling. Indeed, we are searching for the smallest set of operators which
can meet the needed requirements for Web Services Choreography offering
a reasonable simplicity to the application designers. Programming complex
business processes with Failure Handling only in term of message passing does
not seem reasonable. With this motivation we are claiming that — in this
context — to add a mechanism of event handling is necessary and sufficient.

A program, statically, can be viewed as a tree of nested scopes. During its
execution, instead, each scope is provided with an index identifying itself and
it is extruded creating a flat structure. It is not provided with another index
identifying the father in the ancestors’s tree of nested scopes. Originally, we
introduced also this information in the language; anyway it is worth to note
that, avoiding the introduction of this information, is a significant advantage
for the language because it simplifies the definitions of business processes and
the semantics rules. Nevertheless, it does not seem to grow the complexity in
the programming of Business Process phases. Before giving the semantics for
the language, we have to formally define the concept of system state which is
necessary for the dynamic handling of scope identifiers.

Definition 4.1 (System State) The set S of the system states is defined as
follows:

S ::= P | [P, Q]t | S|S
where t ∈ T .

The intended meaning of [P, Q]t is to identify the scope [P,Q] that at runtime
has been associated to the identifier t. As it will be clear in the following
(see Table 1), this allocation is obtained by substituting the keyword this

with a fresh name t. We denote this special case of substitution as usual
by P{t/this} but the definition is slightly different: we define it as the re-
placement, in the body of the outer scope appearing in the process P , of
each occurrence of the keyword this with the name t. The remaining oc-
currences of this will be substituted in the same manner when allocating
the corresponding scopes. Now we extend the definition of free names on
system states by adding only one rule: if S is of the form [P, Q]t we define

6

M. Mazzara and R. Lucchi

fn([P,Q]t) = (fn(P) ∪ fn(Q)) \ {t}.
Now we shall give the semantics for the language in two steps, following the

approach of Milner [11]. This approach consists in separating the laws which
govern the static relations between processes from the laws which rule their
interactions. We shall achieve this defining firstly a static Structural Con-
gruence relation over syntactic processes. A Structural Congruence relation
for processes is introduced as a small collection of axioms that allow minor
manipulation on the processes structure. This relation is intended to express
some intrinsic meanings of the operators, for example the fact that parallel
is commutative. Secondly, we shall define the way in which states evolve dy-
namically by means of a Labeled Transition System. Doing in this way we
simplify the statement of the transition system just adding the (CONGR) rule
in Table 1 which closes the transition relation under process order manipula-
tion induced by Structural Congruence.

Definition 4.2 (Structural Congruence) The structural congruence on
processes ≡ is the smallest equivalence relation satisfying the followings and
closed with respect to α-renaming, parallel composition and restriction:

(i) (P , | , 0) is an Abelian Monoid:

P1|P2 ≡ P2|P1 Commutativity

(P1|P2)|P3 ≡ P1|(P2|P3) Associativity

P |0 ≡ P 0 is nil element

(ii) (n)0 ≡ 0

(iii) (n1)(n2)P ≡ (n2)(n1)P

(iv) (n)(P1|P2) ≡ P1|(n)P2 if n 6∈ fn(P1)

(v) A(ṽ) ≡ P{ṽ/ũ} if A(ũ)
def
= P

In the above definition we use the usual notation for name substitution P{ṽ/ũ}
which means the replacement, in the process P , of each occurrence of name in
the ordered sequence ũ with the correspondent name in the ordered sequence
ṽ. In the following definitions we shall consider the natural extension to states
of the Abelian Monoid rules for processes.

Sometimes the semantics of a system is defined in term of a reduction
relation which can result more concise. With this purpose, we also originally
tried to define our semantics with a reduction relation. Anyway, subsequently
we found a labeled transition system a more elegant way for describing raising
of signals, scope spawning and inter-scope interactions. For this reason we
decided to express the semantics in this way although it lacks of brevity. The
transition relations over system states are labeled by the actions. We have
four kind of actions as defined in the following:

7

M. Mazzara and R. Lucchi

Definition 4.3 (Actions) The actions are given by

α ::= x ṽ | x(ũ) | 〈t〉 | τ
We shall write Act for the set of actions.

The first action is sending the tuple ṽ via the channel x, the second is receiv-
ing the tuple ũ via x while the third is a signal of an event directed to the
transaction t. Finally, τ represents an internal action. We omit the definition
for fn(α), bn(α) and subj(α). They represent for actions respectively the set
of free names, bound names and names occurring as subject in a communica-
tion. These definitions are as usual with a straightforward extension for the
signal labels.

Definition 4.4 (Transition Relations) The transition relations { α−→ |α ∈
Act} on states S are defined by the rules in Table 1 where S

α−→ S ′ means
that the state S evolves in S ′ with the action α.

Regarding the presented semantics three points deserve to be touched.
Firstly, note that the mechanism in which we are extruding nested transactions
is very similar to what happens in the Ambient Calculus [5] with the out
operation. Also the (Scope) rule of the transition system reflects the one of
the Ambient Calculus. The difference here lays in the fact that our extrusion
is implicit and not explicitly programmed. Because this freedom of explicitly
extruding transactions does not seem to have an added value in the context
of Web Services, we decided to disallow it letting the system to control the
evolution flattening transactions in such a way that, at runtime, they are all
at the same level of nesting.

The second point is about localities. Here we decided to avoid the intro-
duction of this notion in the language in order to be as close as possible to the
notion of transaction in BPEL. In fact, it is important to recall that the no-
tion of Long Running Transaction in BPEL is purely local and occurs within
a single business process instance [1]. There is no distributed coordination re-
garding the outcome among multiple participants. The achievement of a dis-
tributed agreement is a problem outside the scope of BPEL. This problem can
be solved by using the protocols described in the WS-Transaction [15] specifi-
cation. It is worth to note that, since the need of composing WS-Transaction
and BPEL is presently widely recognized and our notion of transaction seems
to match quite well in a context of Process Algebras with localities [6], a next
step in this research should consist in introducing a notion of locality in the
language.

Finally, we want to remark that the execution of the rules (ScopeAlloc)
and (ScopeExtr) generates fresh names in the whole system. Some reader
could underline the fact that the relative side conditions could be expressed
more rigorously. Anyway, our goal is to keep the specification as light as pos-
sible without lacking of precision and, since our semantics is implementation
oriented, this solutions represents a reasonable tradeoff.

8

M. Mazzara and R. Lucchi

(Out)

x ṽ.P
x ṽ−→ P

(In)

x(ũ).P
x(ũ)−→ P

(Signal)

signal(t)
〈t〉−→ 0

(Local Com)

P
x ṽ−→ P ′ Q

x(ũ)−→ Q′

P | Q τ−→ P ′ | Q′{ṽ/ũ}

(Par)

S ′
α−→ S ′′

S ′ | S α−→ S ′′ | S
bn(α) ∩ fn(S) = ∅

(Res)

S
α−→ S ′

(n)S
α−→ (n)S ′

n 6∈ subj(α)
(Congr)

S ≡ S ′ S ′ α−→ S ′′ S ′′ ≡ S ′′′

S
α−→ S ′′′

(Catch)

R
〈t〉−→ R′

[P, Q]t | R τ−→ Q | R′

(Autoraising)

P
〈t〉−→ P ′

[P, Q]t
〈t〉−→ Q

(ScopeAlloc)

[P,Q].R | S τ−→ [P{t/this}, Q]t | R | S t fresh

(ScopeExtr)

[[P, Q].R | P ′, Q′]t | S
τ−→ [P{t′/this}, Q]t′ | [R | P ′, Q′]t | S t’ fresh

(Scope)

P
α−→ P ′

[P,Q]t
α−→ [P ′, Q]t

α 6= 〈t〉
(NonLocal Com)

P | P ′ τ−→ P ′′ | P ′′′{ṽ/ũ}
[P, Q]t | [P ′, Q′]s

τ−→ [P ′′, Q]t | [P ′′′{ṽ/ũ}, Q′]s

Table 1
Labeled Transition System

9

M. Mazzara and R. Lucchi

5 Failures Handling Pragmatics

Mechanisms as Exception Handling, Nested Transactions with Compensation
handlers and event handling can be programmed easily in this event based
framework. In this section we shall show by examples how to program, in our
language, the first two of these mechanisms while the third one is straight-
forward. At the end it should be immediate to figure out that implementing
failure resilient business processes within this single error handling mechanism
is both easy and effective.

5.1 Nested Transactions

In BPEL each transaction has a scope. In our language a transaction scope
can be programmed using an event scope where the event handler represents
the compensation handler. In this context, an abort can be programmed just
as a signal directed to the scope itself. For example, a simple pattern is the
following:

[signal(this), Q].0

where the event handler Q has to provide the compensation mechanism. This
mechanism must be decided solely by the programmer because is part of the
business logic itself.

In our language we can program the compensation activation mechanism
supported by BPEL where compensation handlers are invoked in the reversed
order. In fact, it is possible to nest as many scope as we want providing an
outer scope with the information about the scopes it contains using, e.g., a
restricted channel for avoiding interferences. When the logic of the innermost
event handler has been executed, it has to raise an event directed to the father.
At that point, the father has to catch this event managing it with an adequate
compensation handler which, at the end, has to raise the same event for its
father and so on, propagating the signal until the root is reached. Let us
consider the following basic pattern which allows the propagation of a signal
from the inner transaction to the outer:

(x)([[signal(this), x(r).signal(r)].0 | x this, Q].0)

In this example we have nested transactions where the inner transaction acti-
vates its handler which receive on a restricted channel the name of the outer
transaction for activating its handler Q. It is straightforward to understand
that, in this way, we can call the compensation handlers in the reversed order
as in the usual semantics of nested transactions.

5.2 Exception Handling

The semantics of the exception handling mechanism try P catch Q can be
programmed using event scopes as the scopes of exceptions. Usually, an ex-
ception is activated by a thrown primitive: try P catch Q means that, if a

10

M. Mazzara and R. Lucchi

thrown is executed by P , then P is terminated and Q is performed. In our
framework raising an exception inside the body of a scope means simply to
signal an event to itself. The event will be triggered by rendezvous on a re-
stricted channel. Here we program the thrown construct as x.x(). The output
x represents the trigger itself while the input x() is necessary for blocking P
avoiding an incorrect interleaving before the execution of signal(this). It
is worth noting that the solution is correct only in the case P is a sequential
process. The extension supporting parallel composition can be obtained sim-
ply by defining an event scope for each process composed in parallel and by
implementing a synchronization among the event handlers in order to activate
the exception handler. The pattern for the described behavior is as follows:

[(x)(P | x().signal(this)), Q].0

It is worth noting that nesting transaction allows us to catch more than
one kind of exception.

6 Conclusions and Future Works

The specification of the BPEL language describes three different mechanisms
for coping with abnormal situations: Exception Handling, Event Handling and
Compensation Handling. All this complexity makes it difficult to formally de-
fine the language, thus limiting the formal reasoning about the designed appli-
cations. Having a small language instead makes it possible to accomplish the
goal of formalization. In this paper we claim that three different mechanisms
for error handling are not necessary and complicate too much the language
definition. Thus we formalized a novel choreography language, extending the
π-calculus, based on the idea of event notification as the only error handling
mechanism. Our effort can be considered as a proposal of simplification for
BPEL, thus advantaging implementors of the orchestration engine as well as
application designers. In order to support this thesis, we presented some ex-
amples explaining how the mechanisms of BPEL can be programmed using
our framework. Any formal comparison is left as future work.

We should underline the fact that even if our language tries to deal with
the asynchrony of the communication typical of the context we refer to, the
message passing mechanism is the one proposed in the synchronous version of
the π-calculus. This is because we believe that asynchrony should be reflected
at the level of event raising and not at the level of message passing. Anyway,
it is straightforward to present an asynchronous variant of this language.

We considered that the proposed language shares some features with BPEL
and StAC[3] and that they can all be viewed at the same level of program-
ming abstraction. In the future we intend to investigate the expressivity of
such proposals (such also the πt-calculus [2]) by exploiting our language that
we consider flexible enough to encode, in a simple manner, the most inter-
esting proposals available in the literature. We want to remark that a point

11

M. Mazzara and R. Lucchi

particularly favorable to flexibility and elegance consists in the way in which
we are identifying and handling dynamically the allocation of scopes. Our
mechanism is an extension of the name mobility present in the π − calculus
in order to include also a runtime handling of scope identifiers. Other crucial
problems we would like to tackle are verification and behavioral type systems
[9]. It should be clear that the language we presented in this paper strongly
commits to the π-calculus. This theory has been deeply investigated in the
last years and it is widely recognized that the introduction of types for concur-
rency promise certain benefits in terms of program semantic analysis. In fact,
a theoretical approach like the one we followed can lead to verifiers where the
type system can check not just data types matching but also that a procedure
using some channels (to send and receive data) is obeying a given protocol
with these messages (and with these channels). Several works in literature
showed that in this framework checking for critical properties in distributed
programming is possible at compile time. Behavioral type systems for Process
Algebras, in fact, permit us to ensure processes to have specific properties as
being deadlock-free or obeying a particular protocol.

12

M. Mazzara and R. Lucchi

References

[1] Tony Andrews, Francisco Curbera et al. - Businnes Process Execution Language
for Web Services Specification, Version 1.1, 5 May 2003.

[2] L.Bocchi, C.Laneve, G.Zavattaro - A Calculus for Long Running Transactions.
FMOODS ’03, Paris, December 2003. LNCS.

[3] Michael Butler, Carla Ferreira - An Operational Semantics for StAC, a
langage for Modelling Long-running Businness Transactions. To appear in
COORDINATION 2004.

[4] Businness Process Modelling Language (BPML) [www.bpmi.org].

[5] L.Cardelli, A.D.Gordon - Mobile Ambients. Foundations of Software Science
and Computation Structures: First International Conference, FOSSACS ’98.

[6] I.Castelani - Process Algebras with Localities. Handbook of Process Algebra -
Edited by J.A. Bergstra, A.Ponse, S.A. Smolka - Elsevier 2001.

[7] E.Christenses, F.Curbera, G.Meredith, S.Weerawarana.
Web Services Description Language (WSDL 1.1) [www.w3.org/TR/wsdl],
W3C, Note 15, 2001.

[8] F.Leymann - Web Services Flow Language (WSFL 1.0)
[www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf].

[9] Atsushi Igarashi, Naoki Kobayashi - A Generic Type System for the π-Calculus.
In Proceedings of ACM Symposium Conference on Principles of Programming
Languages (POPL), 2001.

[10] Microsoft Corp. Biztalk Server - http://www.microsoft.com/biztalk.

[11] R. Milner - Function as Processes. Mathematical Structures in Computer
Science, 2(2):119-141, 1992.

[12] Robin Milner, Joachim Parrow, David Walker - A Calculus for Mobile Processes.
Journal of Information and Computation, 100:1-77. Academic Press, 1992.

[13] S.Thatte - XLANG: Web Services for Businnes Process Design

[www.gotdotnet.com/team/xml/wsspecs/xlang-c] Microsoft Corporation, 2001.

[14] World Wide Web Consortium (W3C) - http://www.w3.org.

[15] WS-Transaction Specification - http://www.w3.org.

13

