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Abstract

SecSpaces is a Linda-like coordination model whose aim is to provide a support
for secure coordination in Open System applications. Substantially it provides a
methodology to restrict the access to the objects stored in the shared dataspace.
In this paper we introduce a formal language for representing systems interacting
via SecSpaces primitives and its operational semantics. Moreover in this context
we consider a notion of observational equivalence, namely testing equivalence. In
order to evaluate the adequacy of the model for limiting the access to the shared
dataspace, we present some examples of interaction protocols that can be used to
obtain some security properties (e.g., authentication or privacy of a datum).

1 Introduction

Emerging technologies are moving to support Open Systems applications.
Such applications are characterized by the fact that the entities that will
be involved in the applications as well as the system configuration are not
known at the design time. Examples of open system applications are present
in several contexts: i) wide area applications (Internet); ii) ad-hoc networks
for mobile devices; iii) peer-to-peer systems.

The main contributions that gave rise to coordination as a new indepen-
dent research field are based on the fact that we can view applications as com-
posed of two orthogonal parts: the internal computation and the interaction.
In particular, this concept was depicted by Carriero and Gelernter [CG92].
Due to the clear separation between the internal behaviour of the processes
and their interaction, coordination languages represent a promising approach
to support open systems applications. Indeed, several projects providing a

? Work partially supported by MEFISTO Progetto “Metodi Formali per la Sicurezza e il
Tempo”and Microsoft Research Europe.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:lucchi@cs.unibo.it�
mailto:bravetti@cs.unibo.it�
mailto:gorrieri@cs.unibo.it�


Lucchi et al.

support for Open Systems and self reconfigurable systems use a Linda-like
[Gel85] data-driven coordination model. For instance, JavaSpaces [Sun02]
and TSpace [WMF98] are two recent middlewares providing coordination for
Java [GJS96] distributed programming proposed by Sun Microsystems and
IBM, respectively. Both proposals exploit the so-called generative communi-
cation [Gel85]: a sender communicates with a receiver through a shared tuple
space (TS for short), where emitted tuples are collected; the receiver can con-
sume the tuples from the TS. Tuples in the TS have an existence which is
independent of its producer, i.e. the agent that have generated a tuple in the
TS does not have any form of control on that tuple; tuples in the TS become
equally accessible to all agents that can remove or read any available tuple.

In open systems, applications cannot assume that all the involved entities
are trusted, hence new aspects come into play. More precisely, each agent
having the access to the TS can read/remove/manipulate each tuple stored
in the TS. This means that there is no way to restrict the tuple access to a
subset of all entities that can access the TS, e.g., the set of entities involved in
a specific application. More in general, processes have no way to keep secret
any tuple stored into TS.

The different solutions that have been proposed in order to solve this
problem can be distinguished into two classes depending on their (orthogo-
nal) goals: either they are based on mechanisms capable to ensure privacy
of exchanged data (e.g., cryptography, [BN02]), or access control mecha-
nisms [NFP98,VBO03,Pin92,MMU01,BGLZ02]. Here we will focus on the
SecSpaces approach of [BGLZ02]. With respect to a technique following a
classic control access mechanism (e.g., that used in Klaim [NFP98,NFP97])
where permissions describe which operations the entities can perform on the
available tuple spaces, the SecSpaces proposal is based on the idea introduced
by SecOS [VBO03]. SecOS does not associate access permissions to entities
but rather follows the idea of a data-driven access control mechanism. More
precisely, SecOS is a capability based system; access permissions are modeled
by locks: there are both object locks referring to the whole object (a tuple)
and field locks attached to a single field of the tuple. An agent can access an
object (resp. field) only if it is able to provide the correct access key opening
the attached lock. As shown in [BGLZ02], in SecOS, due to the way the read
operation is encoded, there is no way to discriminate between the read and
the remove permission; as illustrated in Section 5.5, this discrimination can be
useful in some applications. In addition, each process able to read a datum is
also able to reproduce that datum (read permission implies write permission).
SecSpaces refines the access permissions of SecOS by making it possible to
discriminate the permission of write, read and remove a specific tuple. In-
stead of using locks, SecSpaces decorates tuples with additional control fields
of two types: partition fields and cryptographic fields. The former ones are
just used to limit the access to a partition of the space: they do not provide a
way to describe which operations an agent can perform on a specific partition.
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The latter ones refine permission granularity at the level of tuples and make
it possible to describe which operations an agent can perform on a tuple.

Comparing the data-driven approach of SecSpaces and SecOS to model
access control with the classical one of Klaim, we observe that in the former
the access permissions granularity is finer than in the latter: in SecSpaces

and SecOS they are at the level of single tuples whilst in Klaim they are at the
level of tuple spaces. It is worth noting that in Klaim we can obtain the same
granularity of SecOS and SecSpaces by creating a new location (that contains
a tuple space) for any entry. However, this approach should give rise to an
uncontrollable proliferation of tuple spaces that should be available at the
system startup, because Klaim security policies do not change dynamically
(however, it has been recently presented MuKlaim [GP03] that implements
the basic features of Klaim and that allows dynamic privileges acquisition).
Finally, we note that, when using classic access control list mechanisms as done
by Klaim, the permissions managing can be a difficult task if the open system
is characterized by a high level of dynamicity. In [BGLZ02] the primitives of
SecSpaces have been described by explaining their effect on the shared tuple
space but a formal behavioral description of systems using such primitives has
not been considered. The new contribution of this paper can be summarized
in the following three points:

• we define a syntax for modeling open systems which make use of SecSpaces
primitives and an operational semantics, i.e. how processes and space
change during the computation. To be precise, the formal paradigm that
we adopt is obtained by extending the Linda process algebra proposed
in [BGZ98] with new ingredients needed for modeling the primitives of
SecSpaces, i.e. entries and templates with a tuple structure and matching
rules based on access fields;

• we define a notion of observational equivalence based on may testing [NH84]
that allows us to compare the behavior of systems;

• we rephrase in our formal context some of the main security properties (e.g.,
secrecy, authentication) by exploiting observational testing equivalence. In
particular, we rephrase the secrecy and message authentication properties
by using the idea introduced in [AG99] and we show how other properties as
producer and receiver authentication can be formalized by using a similar
idea. We also provide some examples of property checking via the above
introduced techniques on some simple interaction protocols.

The paper is structured as follows. Section 2. gives the syntax of system
descriptions, Section 3. presents the operational semantics of SecSpaces and
Section 4. defines testing equivalence that we exploit to formally prove basic
safety properties. Section 5. presents the formal techniques to be used for
checking the various kinds of security properties against system descriptions.
Finally, Section 6. comments related works and concludes the paper.
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2 Syntax

The section defines the syntax we use to represent systems, that is processes
using SecSpaces coordination primitives and the shared space. We define
entries to be the objects (tuples) that can be written in the TS and templates
to be the data structures a process can use to find entries in the TS.

Differently from [BGLZ02], in this paper, for the sake of simplicity, we do
not consider subtyping on entries but rather a simple matching rule on data
fields similar to that used in Linda. Indeed, since the matching rule on data
fields does not influence the access control mechanism which is exclusively
based on control fields, this is not a limiting assumption. Moreover, in order
to be as general as possible we model cryptographic fields in a more abstract
way with respect to the original work on SecSpaces [BGLZ02]: we simply
consider this field as composed by a single key, say k, that can match only
with an associated co-key, say k. We call this kind of control fields asymmetric
partition fields because, as it will be clear in the following, the write permission
to the asymmetric partition k is allowed to each process that knows k, whilst
the read permission to those that know k. In this way, the cryptographic
fields of [BGLZ02] represent a possible realization of asymmetric partition
fields which exploits asymmetric cryptography.

Section 2.1 introduces the structure of entries and templates, whilst Sec-
tion 2.2 formalizes systems and the matching rule processes can use to find
entries.

2.1 Entries and templates

Linda tuples are ordered and finite sequences of typed fields. Fields can be
actual or formal (see [CA95]): a field is actual if it specifies the type and
a value, whilst it is formal if the type only is given. SecSpaces extends
this tuple by adding special control fields, namely partition and asymmetric
partition fields. Further, for the sake of simplicity, fields are not typed: we
consider this aspect does not influence the issues we tackle.

In this section we just want focus the attention on the differences between
the definition of entry and template structures. In the next section we will de-
fine the matching rule, then we will explain the meaning and the applications
of control fields. Control fields are exploited for implementing access con-
trol policies based on the kind of operation an agent performs on each entry.
Therefore, entries have two occurrences of control fields which are respectively
associated to the rd (read) and in (input) operations, whilst templates have
only one occurrence of control fields without any reference to specific prim-
itives. Similarly to SecOS, we test the right access permission of the agent
to perform an operation in the matching rule. Hence, the matching rule will
evaluate only those entries control fields associated to the operation the agent
is performing.

Formally, let Mess, ranged over by m, n, . . ., be an infinite set of messages,
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Partition, ranged over by c, ct, cs, . . ., be the set of partitions. We also assume
that Partition contains a special default value, say #, whose meaning will be
discussed in the following. Let APartition, ranged over by k, k′, kt, . . .,
be the set of asymmetric partitions. Similarly to partition fields, we assume
that APartition contains a special default value denoted by “?” as well. Let
“ · : APartition → APartition” be a function such that if k = k′ then k′ = k
(and ? = ?). Let V ar, ranged over by x, y, . . ., be the set of data variables.
We use ~x, ~y, . . ., to denote finite sequences x1; x2; . . . ; xn of data variables.

The set Entry of entries, ranged over by e, e′, . . ., is defined as follows:

e =< ~d >
[c]rd[c′]in
[k]rd[k′]in

where the tuple of data ~d is defined by the following grammar:

~d ::= d | d; ~d

d ::= m | c | k | x

and c, c′ ∈ Partition, k, k′ ∈ APartition.

A data field d can be a message, a partition, an asymmetric partition or a
variable. In the following, we use Data to denote the set of data fields. We
define ẽ as the operator that, given an entry e, returns its tuple of data (e.g.,

if e =< ~d >
[c]rd[c′]in
[r]rd[r′]in , ẽ = ~d).

The set Template of templates, ranged over by t, t′, . . ., is defined as
follows:

t =< ~dt >
[ct]
[kt]

where ~dt is defined by the following grammar:

~dt ::= dt | dt; ~dt

dt ::= d | null

and ct ∈ Partition, kt ∈ APartition.

Differently from entries, data fields of templates can be set to wildcard
value, denoted by null. Wildcards are used to match with all fields values,
e.g., they have the same meaning of formal fields in Linda or the null pointer
in JavaSpaces.

For the sake of simplicity, when the partition or the asymmetric partition
fields of entries/templates are set to default values, we omit to represent them

(e.g., instead of t =< ~dt >
[#]
[k] we write t =< ~dt >[k]) whilst -in the case of

entries- if their value for rd and in is the same we simply write one occurrence
without specifying the operation (e.g., instead of e =< ~d >[c]rd[c]in we simply

write e =< ~d >[c]).
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2.2 Programs

Here we formalize systems configurations, that include process exploiting
SecSpaces coordination primitives and the state of the shared tuple space.
Systems are modeled following the approach adopted in [BGZ98] to model
Linda primitives: systems are terms obtained by the parallel composition of
processes and entries stored into the space.

System configurations, ranged over by A, B, . . ., and processes, ranged
over by P , Q, . . ., are defined as follows:

A, B, . . . ::= systems
e entries
P processes
A | A parallel composition

P , Q, . . . ::= processes
0 null process
out e.P output
rd t(~x).P read
in t(~x).P input
P | P parallel composition
!P replication

A system can be an entry, a process or the parallel composition of entries
and processes. A process can be a terminated program (0), a prefix form µ.P ,
the parallel composition of two programs, or the replication of a program.
The prefix µ can be one of the following classical Linda operations: i) out e,
that writes the entry e in the TS; ii) rd t(~x), that given a template t reads
a matching entry e in the TS and stores the return value in ~x; iii) in t(~x),
that given a template t consumes a matching entry e in the TS and stores
the return value in ~x. A process P | Q that is the parallel composition of
two processes P and Q behaves as two processes running in parallel. Finally,
a process can use the replication operator !P , whose meaning is the parallel
composition of infinite copies of P .

In the following, we use P [d/x] to denote the process that behaves as P

in which all occurrences of x are replaced with d. We also use P [~d/~x] to
denote the process obtained by replacing in P all occurrences of variables in
~x with the corresponding value in ~d, that is P [d1; d2; . . . ; dn/x1; x2; . . . ; xn] =
P [d1/x1][d2/x2] . . . [dn/xn].

We say that a system is well formed if each rd/in < ~dt >
[c]rd[c′]in
[k]rd[k′]in (~x)

operation is such that the variables ~x and the tuple of data ~dt have the same
arity. Let fn(A) and fv(A) be the functions that given a system A return
the set of names that syntactically occur in A and the set of free variables in
A, respectively. We say that a system is closed if it has no free variable. In
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the following, we consider only systems that are closed and well formed; we
denote with System the set of such systems.

As previously mentioned, the matching rule between entries and templates
depends on the operation the process is performing on the TS. More precisely,
there are two access permissions, one associated to rd operations and the other
one to in operations. The definition of the matching rule follows.

Definition 2.1 Matching rule - Let e =< d1; d2; . . . ; dn >
[c]rd[c′]in
[k]rd[k′]in be an

entry and op ∈ {rd, in} be the operation using the template t =< dt1; dt2; . . . ;

dtm >
[ct]
[kt]

. Let ce and ke be the control fields of e associated to op, we define e
matchesop t as follows:

(i) m = n

(ii) dti = di or dti = null, 1 ≤ i ≤ n

(iii) ce = ct

(iv) ke = kt.

Condition 1. checks that e and t have the same number of data fields,
condition 2. regards the tests applied on data fields and, substantially, it
rephrases the matching rule of Linda. Tuples of data fields match if each data
of the template is equal to the corresponding data of the entry or if it is set to
wildcard value. Condition 3. tests that the partition field of the entry is equal
to that of the template. Condition 4. checks that the asymmetric partition
field of the template corresponds to the co-key associated to the asymmetric
partition field of the entry.

As pointed out by the matching rule, the aim of partition fields is to provide
a special kind of data field that does not accept wildcard. Hence, each process
that is able to use a template matching with a specific entry must know the
partition field of that entry. Partition fields logically partitionate the TS and
the access to a partition is restricted to only those processes that know the
partition identifier. However, the default value # of the partition field that all
agents know (i.e., we assume it to be in the knowledge of any agent) allows any
process to interact with each other using that partition. Similarly, a default
value known by any process has also been defined for asymmetric partition
fields (denoted by “?”).

Differently from partitions, the asymmetric partition fields allow for a way
to discriminate the permission of write, read and remove an entry. For ex-
ample, to read an entry with asymmetric partition field set to k the process
must set to k the asymmetric partition field of the template, that can be an
unknown value to the producer of the entry (in order to write he needs just k).
Therefore, following the same idea of partitions, properly distributing these
values we can assign processes the permission to perform only a subset of
possible operations on that entry. Finally, as it will be clear in the following,
the return value of read/input operations does not include the control fields,
only data stored inside the tuple. Therefore, new access permissions can be
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acquired only by performing read/input operations of entries containing par-
tition or asymmetric partition values inside tuples of data.

3 Operational semantics

We present the operational semantics of systems by defining the structural
congruence over systems and by mapping them onto labeled transition systems
(LTSes). Table 1 describes a relation indicating syntactic differences between
systems that do not influence the behaviour of processes. More precisely,
identity (i), reflexive (ii) and transitive (iii) relations hold, the order of the
systems parallel composition is not relevant (iv), associative relation holds (v),
portions of system can be replaced with other ones structurally equivalent (vi),
null processes have no influence on the behaviour of the system (vii) and,
finally, replication operator !P corresponds to an infinite parallel composition
of P (vii). The structural congruence over systems is defined as the smallest
congruence satisfying rules (i), . . ., (viii).

(i) A ≡ A (ii)
B≡A
A≡B

(iii)
A≡B B≡C

A≡C (iv) A | B ≡ B | A

(v) (A | B) | C ≡ A | (B | C) (vi)
A≡A′

A|B≡A′|B

(vii) A | 0 ≡ A (viii) !P ≡ P |!P

Table 1
Structural equivalence.

Formally, let Act = {τ} ∪ {e | e ∈ Entry} ∪ {t | t ∈ Template} ∪ {t | t ∈
Template}, ranged over by α, be the set of possible actions: τ represents an
internal action, e the output of the entry e, whilst t and t represent a in and a
rd operation using template t, respectively. Let RetV= {ẽ | e ∈ Entry}∪{−},
ranged over by β, be the set of possible return values of the operations. More
precisely, − is returned by output operations and denotes that there is no
return value, whilst the other values can be returned by in/rd operations.

The labeled transition system we use is a quadruple (System,Act, RetV,→)
where →⊆ System × Act × RetV × System. (A,α, β,A′) ∈→ (also denoted

as A
α−−−→
β

A′) means that the system A can execute action α with return
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(1) out e.P
τ−−−→
−

e|P (2) in t(~x).P
t−−−→
ẽ

P [ẽ/~x]

(3) rd t(~x).P
t−−−→
ẽ

P [ẽ/~x] (4) e
e−−−→
−

0

(5)
A

e−−−→
−

A′ B
t−−−→
ẽ

B′ e matchesin t

A|B τ−−−→
−

A′|B′

(6)
A

e−−−→
−

A′ B
t−−−→
ẽ

B′ e matchesrd t

A|B τ−−−→
−

A|B′

(7)
A

α−−−→
β

A′

A | B α−−−→
β

A′ | B

(8)
A ≡ B B

α−−−→
β

B′ A′ ≡ B′

A
α−−−→
β

A′

Table 2
Operational semantics.

value β and it evolves in the system A′. Table 2 depicts rules that define the
operational semantics of SecSpaces; relation → is the smallest one satisfying
rules (1), . . . , (7). Rules (1), (2) and (3) describe the three prefix operators
out, in and rd, respectively. More precisely, out(e).P performs an internal
action (i.e. it is not observable) that produces an occurrence of the entry e
in the TS (represented as a parallel component of the system) and then it
behaves as P ; in t(~x).P and rd t(~x).P perform an input and read operation,
respectively: when a matching entry e is found in the TS the return value is
ẽ and the process behaves as P [ẽ/~x]. The consumption of an entry e in the
TS is represented in (4), whilst rule (5) describes that if a process performs
an in t(~x) and a matching entry e is available in the TS, then the entry is
consumed and the input is performed; in this case the system evolves in an
internal action. Rule (6) describes read operations and, differently from (5),
in this case the matching entry e continues to be stored in the TS. Finally, (7)
describes the behaviour of processes running in parallel, whils (8) says that
we can replace at any time a system with another one structurally congruent.

In the following, A
τ−−−→ ∗A′ denotes that the system may evolve to A′

performing only τ moves; that is A
τ−−−→
−

A1 . . .
τ−−−→
−

An−1

τ−−−→
−

A′ for some

n.
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4 Testing equivalence

In order to compare the behaviour of systems, in this section we rephrase in
this context a notion of observational equivalence, namely may testing equiv-
alence [NH84].

Informally, two systems are testing equivalent if, whatever is the environ-
ment in which the systems are executed, an event occurs in one system if
and only if it occurs in the other one. The set of external observers that we
consider is parametrized by the set of data the external environment knows.
It is worth noting that this precaution in other calculi (e.g. the spi calculus)
in which testing equivalence has been defined is not necessary. The problem
is that in our model we cannot restrict the scope of a name so that it is bound
inside the system, hence the only way we have to assume that a data is secret
(i.e. bound to the system) is to exclude this data from the knowledge of the
processes in the external environment. The approach we have followed has al-
ready been proposed in CryptoSpa [FGM]. Therefore, the testing equivalence
we are going to define is parametrized by the set of data known by the external
environment. On the contrary, in the spi calculus [AG99], the ν operator can
be used to describe bound data. In this way, the set of external observers is
not in the scope of names bound inside the system and such names are ensured
to be secret by the binding mechanism itself.

Formally, let ω ∈ Data be a barb, i.e. any data that we use to detect
the success of a test. We say that a system A immediately exhibits barb ω
(denoted by A ↓ ω) iff A ≡< d1; d2; . . . ; dn >

[#]
[?] |B, where ω = di for some i,

1 ≤ i ≤ n, whilst we say that a system A exhibits barb ω (denoted by A ⇓ ω)

iff A
τ−−−→ ∗A′ and A′ ↓ ω. We also define a test to be a couple (T, ω) where

T is a system and ω is a barb; we say that a system A immediately passes a
test (T, ω) iff A|T ↓ ω, whilst a system A passes a test (T, ω) iff A|T ⇓ ω.
Let φE ⊆ Data be the knowledge set of the external environment, the set
E(φE) = {A | fn(A) ⊆ φE} represents the external environment (set of tests)
we consider in the equivalence evaluation.

Definition 4.1 Testing equivalence - Let A and B be two systems and
φE be the knowledge of the external environment; we say that A≤mayB iff for
every test (T, ω) with T ∈ E(φE): (A | T ) ⇓ ω implies (B | T ) ⇓ ω. A and B
are testing equivalent (denoted by A ≈ B) iff A≤mayB and B≤mayA.

It is trivial to check that ≈ is an equivalence relation and that systems
structurally equivalent are testing equivalent.

In the original work [NH84] a barb is a special action ω used to signal the
success of an experiment. More in general, the barb are the actions considered
interesting from the point of view of an external observer. Therefore, in our
context, it is reasonable to consider as a barb only data stored inside one of the
entries of the default partition (see the usage of “#” and “?” in the definition
of “↓”) because each process can read such data.
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5 Security properties

In this section we intend to formalize in SecSpaces some of the main security
properties and describe how some forms of secure coordination can be imple-
mented in SecSpaces. Previous sections will be exploited to formally describe
interaction protocols and security properties. More precisely, security proper-
ties definition exploits testing equivalence.

5.1 Data secrecy using partition fields

The first lack of Linda we have emphasized in the Introduction section is that
there is no way to keep secret any data written in the TS. Therefore, the first
goal we tackle is to implement a data exchange between two processes that
ensures data secrecy. Informally, given a system we say that the secrecy of a
datum holds if, whatever is the environment in which the system runs, hostile
processes have no way to known that datum.

To formalize this property we follow the same idea used in [AG99]: secrecy
of a datum d in a system S holds if the system S is observationally equivalent
to S[d′/d], for any d′. Intuitively, this means that from the point of view of
the external observer two instances of a system which exchange different data
are indistinguishable, i.e. it cannot distinguish which is the exchanged data.
Formally, we say that the secrecy property -of a datum d- holds in the system
S iff S ≈ S[d′/d] for any d′. It is worth noting that exchanged data can be
also known by the hostile environment, but they have no way to understand
which value has been exchanged.

In order to obtain a form of interaction in which secrecy holds, we need just
to use partition control fields. The idea we follow is that if a partition field, say
c, is known only by two agents and if they keep it secret, they can exchange any
data ensuring that secrecy holds simply by using entries with partition field
set to c. Formally, let A(d) = out(< d >[c]).0 be the process that writes the
entry < d >[c] and then terminates, B = in < null >[c] (x).0 be the process
that removes an entry having partition field set to c. Let S(d) = A(d)|B be
a system; if only A and B know c, i.e. c 6∈ φE, the exchange of the data d
between A and B satisfies the secrecy property, that is: S(d) ≈ S(d′) for any
d and d′. It is rather easy to prove that this condition holds for the system
we have defined. Indeed, as an intuition, during the computation c will never
be in the hostile environment knowledge and, consequently, because hostile
environment cannot access to the entries of partition c, it cannot distinguish
which data the protocol exchanges.

Note that, as we previously said in the Introduction section, by just us-
ing partition control fields, we cannot discriminate between the read and the
write permission of an entry. In the following we will see properties where
this discrimination of access permissions is needed and we exploit asymmetric
partition control fields.
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5.2 Producer and receiver authentication

SecSpaces access control mechanisms are finer enough to assign at the agents
the permission to perform a subset of operations on a specific entry. In this
section we consider a special case: only one agent, say A, has write permission
on a certain class of entries. In this way, each entry (of this class) stored
in the TS has been written by A and we say that the property of producer
authentication holds. Informally, producer authentication of a specific entry
holds if, whatever is the hostile environment in which the system runs, that
entry can be generated only by the specified producer.

As announced in the introduction, we exploit the different knowledge an
agent must have in order either to read (remove) an entry or to write that entry
when asymmetric partition fields are used. Let P (d) = out(< d >[k]).0 be the
process that writes the entry < d >[k] into the TS, and R = in < null >[k]

(x).F (x) be the process that reads an entry (with asymmetric partition field
set to k) and then it continues with F using the received data. If only P knows
k, i.e. k 6∈ fn(R) and k 6∈ φE, and it keeps k secret, P is the only process
with write permission on the class of entries having k as asymmetric partition
field. Consequently, the system S(d) = P (d)|R is such that the property of
producer authentication -of the entry written by P - holds. In order to prove
this property we proceed as follows: i) we define the ideal behaviour of the
system: Sid(d) = P (d)|Rid(d), where Rid(d) =in < d >[k] (x).F (d); ii) we test
if the ideal system Sid(d) is testing equivalent to the system S(d), for any d.
Intuitively, the ideal system is such that the received entry is certainly that
written by P (because Rid admits only exact matching) whilst the original
system is such that it reads any entry with one data field and asymmetric
partition field set to k and then the continuation depends on the data it
reads. If the two systems are testing equivalent for any d, it means that the
external environment cannot produce any entry having asymmetric partition
field set to k. Note that we have made no assumption on k, i.e. the external
environment can read (remove) the entry written by P .

It is easy to prove that the system satisfies producer authentication, that
is Sid(d) ≈ S(d), for any d. It is worth noting that the idea we exploit can
be used in a similar way to assign write permission to a specific set of agents
simply by allowing the knowledge of k only to those agents.

Symmetrically, by limiting only to R the knowledge of k we obtain the
property of receiver authentication (of an entry); receiver authentication holds
if, whatever is the external environment, R is the only process that can read
a specific entry. Obviously, R can read the entry P writes and, in general,
can read any entry (with one data field) having asymmetric partition field set
to k. In order to prove that receiver authentication holds, i.e. that only R
can read such entries, we proceed as follows: we show that different entries
with asymmetric partition field set to k are indistinguishable from the point
of view of an external observer, i.e. it cannot access those entries. In this case,
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receiver authentication holds iff P (d) ≈ P (d′), for any d and d′. It is trivial
to prove that this condition is satisfied if we assume k 6∈ φE.

5.3 Message authentication

Several applications need to ensure that an agent reads exactly a specific data.
For instance, let us consider the case in which an agent wants to receive the IP
address of a trusted machine; it can be useful to guarantee that the received IP
address is exactly the expected one. This security property is usually referred
to as message authentication [FGM00,AG99].

To formalize this property we proceed in the same manner used for pro-
ducer authentication: i) we define the ideal system satisfying (by construction)
message authentication; ii) we test if the ideal system is testing equivalent to
the system.

In the previous section we have shown how to satisfy producer authenti-
cation; the idea we follow is that message authentication can be satisfied by
exchanging data using entries whose producer can be authenticated (it is, e.g.,
a trusted server). Let S(d) be the system we have defined in the previous sec-
tion, then -in the case in which k is known only by P - the system satisfies mes-
sage authentication of the data d. Let Sid(d) = P (d)|in < null >[k] (x).F (d)
be the ideal system in which the receiver continues using the expected data
d; message authentication holds iff Sid(d) ≈ S(d), for any d. It is easy to test
this condition holds for the given system.

5.4 A simple protocol for secrecy and authentication

The protocol proposed in Section 5.1 exploits the partition field c -shared only
by agents A and B- to exchange data (on that partition) satisfying secrecy
property. In that example we have assumed c is in the initial knowledge of
A and B; here we describe how to exchange c by exploiting a protocol that
guarantees secrecy of c and producer, receiver and message authentication
(Sections 5.2 and 5.3). We assume that: i) c is the partition A wants to
communicate to B in order to use that partition to exchange data in a secure
way; ii) only A knows k; iii ) only B knows k. Let A = out(< c >[k]).
in < null >[c] (x).0 be the process that writes the entry < c >k and then
performs an input of an entry having partition field set to c, B(d) = in <
null >[k] (x).out(< d >[x]).0 be the process that performs an input of an
entry with asymmetric partition field set to k and then writes an entry in
the partition x returned from the input. Let φE, with c, k, k 6∈ φE, be the
knowledge of the hostile environment; the system S(d) = A|B(d) ensures
the secrecy of the data exchanged in the partition field A communicates to
B (i.e., c): S(d) ≈ S(d′) for any d and d′. Moreover, it is trivial to prove
producer and receiver authentication of the entry < c >[k] holds. Therefore,
the protocol guarantees mutual authentication: A and B cannot repudiate to
have performed the protocol.
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5.5 Discriminating read/remove permissions

Until now we have used systems that communicate using control fields having
the same value for both read and remove operations (rd and in). Obviously, all
the methodologies proposed can be applied -using control fields with different
values for rd and in- in order to assign to an agent only read or remove
permission. One interesting advantage is that make it possible to ensure the
availability of a datum. Indeed, exploiting the rd operation of Linda an entry
in TS can be read by more than one process. Let us consider the case in
which a process is willing to communicate some data -contained into an entry-
to a group of agents; in the case rd and in access permissions coincide a
reader can maliciously remove the entry that becomes unavailable to the other
processes. On the other hand, exploiting different access permissions we can
easily ensure data availability by allowing -to the specified group of processes-
only read access permission to the entry. Finally, when we assign only in access
permission to an entry, it can be read only by one process. More precisely,
we say that an entry has remove-only permission if it can be accessed only
performing in operations, then only one process can access that entry; this
can be useful in those applications that need to distribute a set of data to a
set of processes guaranteeing that the data are read only by one process (e.g.,
a process that collects service requests and then distribute them to a set of
processes that perform the requested jobs).

As an interesting case, here we illustrate the case in which the producer
of an entry assigns it read-only access permission (the same technique we use
can be exploited to assign remove-only access permission). In other words,
this means that no agent (except the owner) can remove the written entry
(i.e. perform an in). This application can be useful in several contexts; for
example broadcast communications or in those applications which have to
publish personal information to each other (e.g., ip-address, phone-number).

Informally, we can say that an entry e can be accessed only using read
operations if whatever is the hostile environment T , the parallel composition
of e and T always evolves into a configuration in which the entry e is still in
the space. Formally, let e be an entry and φE be the knowledge of the hostile
environment; we say that e has read-only permission iff for any T ∈ E(φE) :
e | T →∗ A implies A ≡ e | A′.

In order to assign the read-only permission to an entry we proceed as
follows: we assign to the partition (or to the asymmetric partition) control field
corresponding to the “in” operation a value that is known only to the producer.
In this way, no process can perform an input because it does not have the
necessary knowledge. As a simple example, let A = out(< d >[c]rd[c′]in).P be
the process that writes the entry < d >[c]rd[c′]in and then behaves as P ; if only
A knows c′ (i.e., c′ 6∈ φE) and it keeps c′ secret (i.e., secrecy of c′ holds in P )
the written entry has read-only permission. It is worth noting that we can
allow read-only access permission to a restricted set of processes by limiting
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the knowledge of c to that set of processes.

6 Related work and conclusion

In this paper we have proposed a process algebra for SecSpaces and rephrased
in this context the classical notion of may testing equivalence. Moreover, we
have shown that by using such a formal machinery we can express security
properties (such as secrecy and authentication) and check system algebraic
specifications against them. Finally, we have presented some examples of
property checking for some simple interaction protocols. Such examples have
given evidence that our approach provides granularity of access permission at
the level of the kind of operation performed on a tuple.

Most inherent previous proposals have already been commented. Here
we add only a comment about proposals based on the orthogonal approach
in which secure coordination is based on mechanisms that ensure privacy of
the data stored inside tuples (e.g., cryptography). SecSpaces can be easily
extended to support this feature by exploiting cryptography similarly as in
[BN02]: we could extend the syntax of data field by adding encrypted data,
i.e. d ::= . . . | {d}Ec , where {d}Ec denotes the encryption of d with the
cryptographic key Ec. In this way, the content of a data field encrypted can
be accessed only by those processes that know the corresponding decryption
key.

In this work we were able to formalize some security properties, namely
safety properties only, by using may testing equivalence (see [NH84] for more
details). In the literature there are several other approaches used to for-
malize and to verify security properties in process calculi, e.g. type sys-
tems [NFP98,GP03] or proof systems [Mar98]. As future work we intend
to formalize a notion of non-interference, originally presented in [GM82] and
then developed in many works (see, for example, [FGM00]), in order to be
able to capture more properties (e.g., the information flow security properties
of a multilevel systems).
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