
FOCLASA 2004 Preliminary Version

A Formal Framework for
Web Services Coordination

Claudio Guidi, Roberto Lucchi and Manuel Mazzara

Department of Computer Science, University of Bologna, Via Mura Anteo
Zamboni 7 - 40127 Bologna, Italy

E-mail: {cguidi, lucchi, mazzara}@cs.unibo.it

Abstract

Recently the term Web Services choreography has been introduced to address some
issues related to Web Services composition and coordination. Several proposals
for describing choreography for business processes have been presented in the last
years and many of these languages (e.g. BPEL4WS) make use of concepts as long-
running transactions and compensations for coping with error handling. However,
the complexity of BPEL4WS makes it difficult to formally define this framework,
thus limiting the formal reasoning about the designed applications. In this paper,
we formally address coordination among Web Services with particular attention to
Web transactions. We enhance our past work - the Event Calculus - introducing
two main novelties: i) a multicast event notification mechanism, and ii) event scope
names binding. The former enables an easier specification of complex coordination
scenarios — such as business-to-business applications require — while the latter al-
lows many new interesting behaviors which can be very useful in business scenarios:
the introduction of private event scope names — that can be exploited to deal with
security and privacy — and a dynamic event scopes definition that can be used, for
example, to manage multiple instances of the same application.

1 Introduction

Web Services technology is a platform on which we can develop applications
taking advantage of the Internet infrastructure. A Web Service, specifically,
describes particular business functionalities that a company wants to expose
through the Internet with the purpose of providing to other companies a way
for using them. The key is on-the-fly software creation through the use of
loosely coupled, reusable software components. Web Services promises to
facilitate automated application-level business integration using the ease of
connectivity to and global presence of the Internet infrastructure and replac-
ing proprietary interfaces and data formats with a standard web-messaging
infrastructure exploiting XML [27] technology. Although Web messaging is

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:cguidi@cs.unibo.it�
mailto:lucchi@cs.unibo.it�
mailto:mazzara@cs.unibo.it�

C. Guidi, R. Lucchi, M. Mazzara

sufficient for some simple application integration needs, it does not adequately
support the complete automation of critical business processes. The first gen-
eration of Web Services technology has largely focused on the web-messaging
foundation supported by SOAP [21] and WSDL (Web Services Definition Lan-
guage) [6]. WSDL is used to describe a Web Service in terms of its ports
(addresses implementing the service), port types (the abstract definition of
operations and exchanges of messages), and bindings (the concrete definition
of packaging and transportation protocols, such as SOAP, are used to inter-
connect two conversing end points). Although this foundation has the ability
to specify critical information and requirements relating to the business pro-
cess context, it does not support business processes that cross organizational
boundaries. To truly integrate business processes across enterprise boundaries,
merely supporting simple interaction using standard messages and protocols
is insufficient. Business interactions require long-running interactions driven
by an explicit process model. This raises the need for Web Services compo-
sition languages also known as Web Services flow languages or Web Services
orchestration/choreography languages.

Recently the terms Web Services choreography have been introduced to
identify Web Services composition and coordination, that is the way of defin-
ing a complex service out of simpler ones. Several proposals for describing
choreography for business processes have been presented in the last years: for
example BPML [2], IBM’s WSFL [12], Microsoft’s XLANG ([22], [16]) or the
more recent BPEL4WS [1] (which represents a trade-off between IBM and Mi-
crosoft). A business process choreography consists of the aggregation of Web
Services by encoding business rules or patterns governing services interactions
and has the ability to reuse the created aggregations [9]. Business logic can be
seen as the ingredient that sequences, coordinates, and manages interactions
among Web Services. To program a complex cross-enterprise workflow task
or business transactions, for example, it is possible to logically chain discrete
Web Service activities into inter-enterprise business processes. In the world of
Web Services a business process specifies the potential execution order of op-
erations originating from a collection of Web Services, the shared data passed
between these services, the trading partners that are involved in the joint
process, their roles with respect to the process, joint exception handling con-
ditions for the collection of Web Services and other factors that may influence
how Web Services or organizations participate in a process [13]. This allows, in
particular, specifying transactions between Web Services in order to increase
the consistency and reliability of business processes that are composed out of
Web Services.

Business process choreography requirements involve asynchronous interac-
tions, flow coordination, business transaction activity and management. These
are common to all business applications that need to coordinate multiple Web
Services into a multi-step business transaction. Thus, the Web Services en-
vironment requires that several Web Service operations have transactional

2

C. Guidi, R. Lucchi, M. Mazzara

properties and be treated as a single logical unit of work performed as part
of a business transaction. A business transaction is a consistent change in
the state of the business that is driven by a well-defined business function.
Usually, a business process is composed of several business transactions. In
a Web Service environment business transactions essentially signify transac-
tional Web Service interactions between organizations in order to accomplish
some well-defined shared business objective. For example, consider, a manu-
facturer that develops Web Service based solutions to automate the order and
delivery business functions with its suppliers as part of a business transaction.
The transaction between the manufacturer and its suppliers may only be con-
sidered as successful once all parts are delivered to their final destination,
which could be days or weeks after the placement of the order.

In a Web Services environment transactions are complex, involve multiple
parties, span many organizations, and can have long duration. More specifi-
cally, business transactions are automated long-running propositions involving
negotiations, commitments, contracts, shipping and logistics, tracking, varied
payment instruments, and exception handling. Performance of these busi-
ness related tasks requires the infusion of transactional properties onto the
Web Services paradigm. Although extremely reliable, the use of classic ACID
transactions makes sense only when trusted parties are involved over short
periods of time. Strict ACIDity is not appropriate to a loosely coupled world
of autonomous trading partners, where security and inventory control issues
prevent hard locking of local resources. Business applications require transac-
tional support beyond classical ACID transactions.

We refer to nonACID transactions as Long Running Transactions. Error
Handling in this context relies on the concept of Compensation. Most of the
existing choreography languages use long running transactions and compen-
sations as a mechanism for describing loosely-coupled activities. Compensa-
tions are application-specific activities which attempt to reverse the effects
of a previous activity carried out as part of a larger unit of work which is
being abandoned. While for ACID transactions in databases the transaction
coordinator and the resource it controls know all the uncommitted updates
and have the full control on the order in which they must be reversed, in the
case of business transactions the compensation behavior is itself a part of the
business logic and must be explicitly specified.

It is straightforward to understand that, meeting these requirements, chore-
ography languages like XLANG or BPEL are quite complex. This complexity
makes it difficult to understand the precise semantics, thus limiting the for-
mal reasoning about the designed applications. With this motivation our work
here is focused on formally addressing coordination among Web Services, with
particular attention to Web transactions. In this paper we enhance our past
work - the Event Calculus - which was based on the idea of event notification
as the only error handling mechanism in Web Services choreography. While
the previous work were addressed on the problem of defining a sort of kernel

3

C. Guidi, R. Lucchi, M. Mazzara

language for modelling Web Service orchestration and error handling mecha-
nisms, here we have extended the language introducing two main novelties: i)
a multicast event notification mechanism, and ii) an event scope names bind-
ing mechanism. The first extension allows an easier specification of complex
coordination scenarios (such as e-commerce applications) with respect to the
algebra we presented in our past work which was focused mainly on error
handling mechanisms unification. The second extension also allows many new
interesting behaviors which can be very useful in business scenarios, such as
the opportunity of handling security and privacy issues or the dynamic event
scope definition for managing multiple instances of the same application. This
feature shares some similarities with the technique proposed by BPEL for the
same purpose.

In this paper, we will proceed in the following way. In section 2 the formal
approach to coordination will be introduced sketching the state of the art in
Web Services choreography and comparing different programming models and
the relative features. We decide to choose the π-calculus and we propose an
extension in order to include transactional facilities. In section 3 we present
this extension, the Event Calculus, with its syntax and semantics. Then, in
section 4, we will propose an E-Commerce transactional scenario and we will
formalize it using the Event Calculus in order to understand the potentialities
of the language. Finally, in Section 5 we describe some related work reporting
some conclusive remarks and possible future works.

2 A Formal Approach to Web Services Coordination

The problem of choreographing Web Services is tackled by a trio of standards
that have been recently proposed to handle this next step in the evolution
of Web services technology. The standards that support business process
orchestration are: Business Process Execution Language for Web Services
(BPEL4WS or BPEL for short) [1], WS-Coordination (WS-C) [25] and WS-
Transaction (WS-T) [26]. BPEL is a workflow definition language that de-
scribes sophisticated business processes that can orchestrate Web Services.
WS-Coordination and WS-Transaction complement BPEL to provide mecha-
nisms for defining specific standard protocols to be used by transaction pro-
cessing systems, workflow systems, or other applications that wish to coor-
dinate multiple Web Services. These three specifications work in tandem to
address the business workflow issues implicated in connecting and executing
a number of Web Services that may run on disparate platforms across orga-
nizations involved in business scenarios.

The Business Process Execution Language for Web Services is the fusion of
IBM’S WSFL and Microsoft’s XLANG and it is actually supported by both.
So far, it represents the most accredited candidate for becoming a future stan-
dard in the field of Web Services choreography. For this reason it deserves to
be studied and considered as a touchstone for any further effort in this field.

4

C. Guidi, R. Lucchi, M. Mazzara

BPEL allows for a mixture of block and graph-structured process models,
thus making the language expressive at the price of being complex. Although
BPEL is the most accredited proposal, it is remarkable how much attention
it received, while more fundamental issues like expressiveness and adequacy
have not been addressed. Another problem is that, although some attempts of
formalizing a subset of BPEL have been performed [24], this language and also
other similar proposals do not yet have any clearly defined official semantics.
This because its complexity makes it difficult to formally define this frame-
work, thus limiting the formal reasoning about the designed applications. For
this reason, in this work we want to formally address the problem of defining
workflows composing and coordinating Web Services. In particular, we pro-
pose a basic language to deal with choreography. The aim of this language is
to provide a mean to express common Web Service requirements.

Relying on orchestration/choreography languages is argued to support the
development of complex services in a more coherent and robust way [15,20]
simplifying their analysis and design. Here we introduce in general terms the
requirements a choreography language for Web Services should meet. Business
process choreography requirements involve asynchronous interactions, flow co-
ordination, business transaction activity and management:

(i) Basic Flow Patterns:
• Sequence
• Conditional
• Parallel

(ii) Send/Receive to/from other WS

(iii) Send/Receive mapped on typed ports

(iv) Invocation of WS

(v) Error/Transaction Handling (Exceptions, Compensations)

In order to formally deal with these requirements we chose to start from
the π-calculus [19], a well known process algebra which has been widely stud-
ied during the last fifteen years. Fig.1 motivates our choice comparing many
different models from the point of view of many interesting features. The
table shows the π-calculus as the most suitable choice for our purpose. Un-
fortunately, as emphasized by the last column, even the π-calculus does not
support any transactional mechanism.

Since the Web Services environment requires that several Web Service
operations have transactional properties and be treated as a single logical
unit of work performed as part of a business transaction, in this paper we shall
extend the basic calculus in such a way to include transactional facilities. Some
other works have been presented in the past addressing similar issues. Anyway,
all the past works committed only to ACID or Long-running semantics without
providing a general framework for formalizing both the semantics. Instead,
our attempt could be interpreted in this direction.

5

C. Guidi, R. Lucchi, M. Mazzara

Figure 1. Programming models synopsis

Consider that, as the π-calculus is a natural way to express concurrency
and as the most areas of programming are now concurrent — starting from
microprogramming and device drivers level, passing from the GUI level and
arriving to systems integration and business to business orchestration — its
market could span a very wide range. For example, a practical application
is represented by the XLANG Scheduler in Microsoft BizTalk Server [16],
a recent tool used to integrate business systems. XLANG — the internal
orchestration language of BizTalk — is explicitly built on a model from the
π-calculus for a rigorous mathematical basis. Subsequently, also the definition
of BPEL has been strongly influenced by this calculus.

The strong correlation between a theoretical and academical area and a
business oriented one should not appear surprising as many people think. This
is because a part of the people involved in the second one have been previously
involved in the first one and, at the moment of choosing a valid paradigm for
a choreography language, they decided for an already deeply experimented
one as, for example, the π-calculus. This appears completely natural as for
the invention of the car: the more natural way for implementing such a mean
of transportation was to enhance an already experimented one as the coach.
Installing an engine on a basin would have resulted in a queer experiment,
although pretty funny!

Because of this business interest in the π-calculus, we want to try to imag-
ine a scenario in which this theory can be used as a foundation for Business
Process Management System in the same way as relation algebra has been used
as a foundation for relational databases. Such a synopsis is shown graphically
in Fig.2.

6

C. Guidi, R. Lucchi, M. Mazzara

Figure 2. π-calculus as a foundation for Business Process Management System
compared with relational algebra as a foundation for Relational Databases

3 The Event Calculus

The complexity of BPEL makes it difficult to formally define this framework,
thus limiting the formal reasoning about the designed applications. In this
paper we enhance our past work [14] – the Event Calculus — based on the
idea of event notification as the only error handling mechanism. In that work
we advocated that three different mechanisms for error handling are not nec-
essary and we formalized a novel choreography language. Here we are going
beyond saying that such a mechanism is sufficient for modelling a wide range
of issues related to Web Services coordination in general. For doing this we
extend the calculus with a multicast event notification mechanism more suit-
able for complex coordination scenarios. For instance, in e-commerce/business
applications which involve more partners, certain events can be of interest for
many of them (consider, e.g., the application managing the registration to
a conference and the room reservation which exploits two Web services for
supplying these tasks, the event “the credit card A is expired” should be no-
tified to the hotel reservation service as well as to the conference registration
service).

We are confident that a mechanism of multicast event notification repre-
sents the best choice for Web services coordination, especially in the context
of e-business in which transactions play an important role. Our claim is sup-
ported also by different works recently proposed by other researchers who
are using similar mechanisms (see for example the extensions of the CORBA
transactional system reported in [7]).

More technically, the novelty we introduce in the Event Calculus regards:
i) the introduction of multicast event notification, and ii) event scope names
binding. The first extension allows an easier specification of complex coordi-
nation scenarios (such as e-commerce applications) with respect to the algebra
we presented in our past work which was focused mainly on error handling
mechanisms unification. The second extension also allows many new interest-

7

C. Guidi, R. Lucchi, M. Mazzara

ing behaviors which can be very useful in business scenarios. As previously
discussed, the major barrier for a wider adoption of e-commerce is about se-
curity and privacy. We underlined the importance of the support offered by
the underlying infrastructure for targeting these issues. The introduction of
private event scope names that can be used also to deal with security and pri-
vacy. Private event scope names, indeed, allow us to manage events that can
be observed only by a subset of processes involved in the application. In this
way we guarantee that unauthorized information flows are not implemented
by exploiting event notification. Consider, for example, the case in which an
event means “User A used the credit card xxx to reserve a room in the hotel
x”; this event should be used without authorization by a malicious process to
monitor the usage of credit cards.

Finally, differently from previous work, the calculus we are going to de-
scribe allows for dynamic event scopes definition, that is to dynamically define
the event an event scope is interested in.

3.1 Syntax

Let N , ranged over by n, be the set of names and T , ranged over by t, be the
set of scope names. In the following, we use u,v,. . . to range over N ∪ T , and
ũ,ṽ,. . . to denote lists of elements in N ∪ T . The set of processes is defined
by the following grammar:

P,Q, R ::= 0 Normal Termination

| x ṽ.P Output

| x(ũ).P Input

| (u)P Private Name

| P | P Parallel Execution

| A(ũ) Process Invocation

| signal(t) Raising of a Signal

| [P,Q]t Event Scope

We define free names fn(P) of a process P as in the π-calculus with the
necessary extension for signal(t) and [P, Q]t:
fn([P,Q]t) = (fn(P) ∪ fn(Q)) ∪ {t}
fn(signal(t)) = {t}.

We are assuming a set of process constants, ranged over by A, in order to
support process definition, whose definition follows:

Definition 3.1 [Process Definition] A defining equation for a process identi-
fier A is of the form

A(ũ)
def
= P

8

C. Guidi, R. Lucchi, M. Mazzara

where it holds fn(P) ⊆ {ũ} and ũ is composed by pairwise distinct names

The first five operators are as usual: the 0 simply describes the normal
termination of a process. The meaning of an Output x ṽ.P is sending a list ṽ,
the object of the communication, through the channel x, the subject. The Input
prefix x(ũ).P represents the reception of the object ũ through the channel x
and it is a binder for the names ũ ∈ N ∪T (these names can be channel names
or scope names). The New Name Creation operator is also a binder for the
name n ∈ N∪T . The parallel operator represents the support for concurrency
as the flow activity in BPEL. As in BPEL, the world here is modelled by
concurrent activities which interact by message passing and event raising.
BPEL allows for Web Services composition providing the invoke activity.
In the same way, the process invocation à la π-calculus allows us to compose
many different uncoupled services. So far the language is strictly similar to the
π-calculus, it differs only for the last two operators. The first one is signal(t)
which produces a signal directed to all the event scopes identified by t. The
second one is the definition of an event scope [P, Q]t. Informally, the event
scope [P,Q]t defines a process P to be run during the normal execution and
an event handler Q associated with the event t (differently from the previous
work, many event scopes can be interested to the same event, i.e. use the
same identifier t). When a process in the system raises a signal(t), the event
handlers of all the event scopes interested to t that are ready to react will be
eventually executed (the activation is asynchronous due to physical latency)
and the relative bodies (i.e. the processes managing the normal execution)
are terminated. It follows that an event scope can catch a signal only once.
Signals directed to nonexistent identifiers are lost.

Finally, it is worth to note that we can also dynamically define the event
an event scope in interested in. Consider, for instance, the process x(t).[P, Q]t
where the event scope name t is obtained as input on the channel x.

3.2 The Language Semantics

Now we shall give the semantics for the language in two steps, following the
approach of Milner [18]. This approach consists in separating the laws which
govern the static relations between processes from the laws which rule their
interactions. We shall achieve this defining firstly a static Structural Con-
gruence relation over syntactic processes. A Structural Congruence relation
for processes is introduced as a small collection of axioms that allow minor
manipulation on the processes structure. This relation is intended to express
some intrinsic meanings of the operators, for example the fact that parallel
is commutative. Secondly, we shall define the way in which processes evolve
dynamically by means of a Labelled Transition System. Doing in this way
we simplify the statement of the transition system just adding the (CONGR)
rule in Table 1 which closes the transition relation under process order ma-

9

C. Guidi, R. Lucchi, M. Mazzara

nipulation induced by Structural Congruence.

Definition 3.2 [Structural Congruence] The structural congruence on pro-
cesses≡ is the smallest equivalence relation satisfying the followings and closed
with respect to α-renaming, parallel composition and restriction:

(i) (P , | , 0) is an Abelian Monoid:

P1|P2 ≡ P2|P1 Commutativity

(P1|P2)|P3 ≡ P1|(P2|P3) Associativity

P |0 ≡ P 0 is nil element

(ii) (u)0 ≡ 0

(iii) (u)(v)P ≡ (v)(u)P

(iv) (u)(P1|P2) ≡ P1|(u)P2 if u 6∈ fn(P1)

(v) A(ṽ) ≡ P{ṽ/ũ} if A(ũ)
def
= P

In this paper we are using the usual definition for substitution: P{ṽ/ũ}
means the replacement, in the process P , of each occurrence of a name in the
ordered sequence ũ with the correspondent name in the ordered sequence ṽ.

Sometimes the semantics of a system is defined in term of a reduction
relation which can result more concise. Anyway, in this case we found a
labelled transition system a more elegant way for describing raising of signals
and inter-scope interactions. Thus we decided to express the semantics in this
way although it lacks of brevity. The transition relations over system states
are labelled by the actions. We have five kind of actions as defined in the
following:

Definition 3.3 [Actions] The actions are given by

α ::= x ṽ | x(ũ) | 〈t〉 | t | τ

We shall write Act for the set of actions.

The first action is sending the tuple ṽ via the channel x while the second is
receiving the tuple ũ via x. The third and the fourth ones stand respectively
for the signalling of an event directed to the transactions identified by t and
the notification of interest in catching the signal t. Finally, τ represents an
internal action. We omit the definition for fn(α), bn(α) and subj(α). They
represent, for actions, respectively the set of free names, bound names and
names occurring as subject in a communication. These definitions are as
usual with a straightforward extension for the signal labels.

Definition 3.4 [Transition Relations] The transition relations { α−→ |α ∈
Act} on states S are defined by the rules in Table 1 where P

α−→ P ′ means

10

C. Guidi, R. Lucchi, M. Mazzara

that the process P evolves in P ′ with the action α.

(Out)

x ṽ.P
x ṽ−→ P

(In)

x(ũ).P
x(ũ)−→ P

(Signal)

signal(t)
〈t〉−→ 0

(Com)

P
x ṽ−→ P ′ Q

x(ũ)−→ Q′

P | Q τ−→ P ′ | Q′{ṽ/ũ}

(Par)

P ′ α−→ P ′′

P ′ | P α−→ P ′′ | P
bn(α) ∩ fn(P) = ∅ α 6= t, < t >

(Res)

P
α−→ P ′

(u)P
α−→ (u)P ′

u 6∈ subj(α)
(Congr)

P ≡ P ′ P ′ α−→ P ′′ P ′′ ≡ P ′′′

P
α−→ P ′′′

(Scope)

P
α−→ P ′

[P,Q]t
α−→ [P ′, Q]t

α 6= 〈t〉, t
(Autoraising)

P
〈t〉−→ P ′

[P, Q]t
〈t〉−→ Q

(React)

[P, Q]t
t−→ Q

(Event Multicast 1)

P
〈t〉−→ P ′ Q

t−→ Q′

P | Q 〈t〉−→ P ′ | Q′

(Event Multicast 2)

P
〈t〉−→ P ′ Q

t−→/
P | Q 〈t〉−→ P ′ | Q

(Event Catching 1)

P
t−→ P ′ Q

t−→ Q′

P | Q t−→ P ′ | Q′

(Event Catching 2)

P
t−→ P ′ Q

t−→/
P | Q t−→ P ′ | Q

Table 1
Labelled Transition System

Table 1 is basically an optimized version of the one presented in our previ-
ous work with the addition of the multicast event notification mechanism and
of the dynamic event scope definition. In order to express the semantic of the
notification mechanism we follow the approach proposed in [4].

The prefix primitives for output and input on channels are described by

11

C. Guidi, R. Lucchi, M. Mazzara

axioms (OUT) and (IN), respectively, while (SIGNAL) shows that when the
signal is performed it terminates. Rule (COM) shows the behavior of the
communication between two processes and rule (PAR) describes the behavior
of processes running in parallel (note that the rule does not allow to perform
signal as well as event catching without considering all the processes running
in parallel). Rules (RES) and (CONGR) are the classic ones used in the
Pi-calculus for describing name restriction and the replaceability of processes
with others structurally equivalent. Rule (SCOPE) shows that the event scope
[P,Q]t evolves according to the behavior of P except in the case a signal or
the reaction to the notification of the event t is performed. In particular, if
the event t is notified by the process P (AUTORAISING) or t is notified by
another process running in parallel (REACT) then the event scope behaves as
Q. It is worth noting that if an event scope contains an event scope interested
at the same event, say t, then solely the compensation associated to the outer
event scope interested to t is performed. Rules (EVENT MULTICAST 1) and
(EVENT MULTICAST 2) describe that, if the event t is signalled, it must be
notified to all the processes interested in catching this event, while (EVENT
CATCHING 1) and (EVENT CATCHING 2) impose that all the event scopes
interested in t must react to this signal.

4 An E-commerce Scenario

In this section an e-commerce scenario will be presented in order to show the
potentiality of the Event Calculus for describing long running transactions
and business activities; such a scenario is graphically presented in Fig.3. As
we said, long running transactions can involve other nested transactions. For
this reason, generally, a coordinator is needed in order to handle the state of
the long running transaction and to activate compensations when some inner
transactions fail. Referring to [10] we consider the example of a customer ap-
plication which allows to purchase a new set of formalwear items, a suit, a tie
and a pair of shoes from a shopping portal. The customer application requires
that all the items must be purchased otherwise the order must be cancelled.
The shopping portal could be seen as an interface between the customer ap-
plication and a coordinator which manages the Business Activity (BA) linked
to the purchase order. In particular let’s suppose that the three items are
sourced by three different suppliers with no trust relationship between them.
Each supplier has a public service which can be invoked by the coordinator
in order to start three different internal Business Activities (let’s name BA1
the Business Activity for buying the suit, BA2 the Business Activity for buy-
ing the tie and BA3 the Business Activity for buying the pair of shoes). In
this case three different transactions will be performed. When each of them
completes with success a completion message is sent to the coordinator. The
coordinator can send a message of completion to the application customer,
through the shopping portal interface, when all the internal transactions have

12

C. Guidi, R. Lucchi, M. Mazzara

been completed with success. Now let’s consider the fact that BA1, BA2 and
BA3 are invoked concurrently by the coordinator and each of them can be
terminated with a completion or with a failure. A completion corresponds
to the purchase of an item, otherwise the failure represents the fact that the
supplier cannot source the item. For instance it is possible that BA1 and
BA3 complete buying the suit and the pair of shoes, and BA2 fails because
the supplier cannot source the tie. In this case a message of failure is sent to
the coordinator which could try to obtain the tie from another supplier (let’s
name BA4 the alternative Business Activity for buying the tie). If this is
possible, a new internal transaction can be activated between the coordinator
and the new supplier’s service in order to complete BA4, otherwise BA1 and
BA3 have to be compensated. The compensation means that the coordinator
has to cancel the prior completed transactions with the supplier of the suit
and with the supplier of the shoes. In this case, after the compensations,
the coordinator is in a state semantically equivalent to the state before the
purchase order operations were carried out. The shopping portal knows the
state of the coordinator and can signal to customer application the fact that
the order cannot be completed.

For the sake of simplicity we assume that the business application BA
(the shopping portal) we are going to model exploits four Business Activi-
ties, namely BA1, BA2, BA3 and BA4 where BA4 is the only alternative
for BA2 (while for BA1 and BA3 there is not alternative). Furthermore,
because the Event Calculus does not include timing out facilities or similar
mechanisms for dealing with message loss in distributed environment, we are
not considering any BA failures due to internal errors (for a detailed investi-
gation about these issues refer to [11]). We first introduce the channel names,
event scope names and processes will be used to describe the activity and
their corresponding meaning. Let invokeS1, invokeS2, invokeS3, invokeS4,
receiveS1, receiveS2, receiveS3 and receiveS4 be the channels used to in-
voke (resp. receive the response) the Web Service supplying business activity
BA1, BA2, BA3 and BA4, respectively. Let receive and reply be the channels
used by the service supplier (the shopping portal) to receive service invoca-
tions (we use req to denote the request parameters) and to reply to the cus-
tomer application, respectively. Let completion1, completion2, completion3
and completion4 be the event names used to denote the completion of Business
Activities BA1, BA2, BA3 and BA4, respectively. Let coo be the event which
represents the failure of the long running transaction managed by BA, abort
be the event name denoting that the involved activities (BA1, BA2, BA3 and
BA4) should abort. We use ABORTHANDLER1, ABORTHANDLER2,
ABORTHANDLER3, and ABORTHANDLER4 to denote the processes
which manage this task for business activity BA1, BA2, BA3 and BA4, re-
spectively. Let notok be the event name representing that all the activities
completed in a successful way must be cancelled (by executing the compensa-
tion processes). We use CANC1, CANC2, CANC3, and CANC4 to denote

13

C. Guidi, R. Lucchi, M. Mazzara

Figure 3. An E-Commerce Scenario

the processes which manage this task for business activity BA1, BA2, BA3
and BA4, respectively. Let m be the event representing that the business
activity BA2 has failed and then the alternative BA4 is to be considered.

For the sake of simplicity, the model we present exploits the conditional
operator 1 . IsresOK?P : Q that tests if res (which is the return value of
a Web Service invocation) is equal to ok (which means the business activity
completes with success) then the process P is performed, in the opposite case
Q is executed.

The definition of the business activity BA, expressed by process PShop,
is formalized below. Process PShop is the process supplying the shopping
portal, it replies to the consumer BAok if the long running transaction is
completed or BAnotok in the case of failure (and in this case it manages the
compensation). It is worth noting that the process Counter implements a
counter by exploiting the event count, when the event count is notified three
times it notifies the event req (which means that all the Business Activities
have been completed) and then the process PShop can terminate by replying
BAok.

1 This construct can be easily encoded in our calculus (see [23])

14

C. Guidi, R. Lucchi, M. Mazzara

BA1 ::= [invokeS1(req).receiveS1(res).IsresOK ?

signal(completion1) :

signal(coo), ABORTHANDLER1]abort

| [0, [signal(count), CANC1]notok]completion1

BA2 ::= [invokeS2(req).receiveS2(res).IsresOK ?

signal(completion2) :

signal(m), ABORTHANDLER2]abort

| [0, [signal(count), CANC2]notok]completion2

BA3 ::= [invokeS3(req).receiveS3(res).IsresOK ?

signal(completion3) :

signal(coo), ABORTHANDLER3]abort

| [0, [signal(count), CANC3]notok]completion3

BA4 ::= [invokeS4(req).receiveS4(res).IsresOK ?

signal(completion4) :

signal(coo), ABORTHANDLER4]abort

| [0, [signal(count), CANC4]notok]completion4

Comp ::= signal(abort)

| signal(notok)

| reply(BAnotok)

Coord ::= BA1 | [BA2, BA4]m | BA3 | [0, Comp]coo

Counter ::= [0, [0, [0, reply(BAok).signal(req)]count]count]count

PShop ::= receive(req).([Coord | Counter,0]req)

5 Conclusions

In this paper we enhanced our past work - the Event Calculus - which was
based on the idea of event notification as the only error handling mechanism
in Web Services choreography. While the previous work were addressed on the
problem of defining a sort of kernel language for modelling Web Service orches-
tration and error handling mechanisms, here we have extended the language
introducing two main novelties: i) a multicast event notification mechanism,
and ii) an event scope names binding mechanism.

The first extension allows an easier specification of complex coordination
scenarios (such as e-commerce applications) with respect to the algebra we
presented in our past work which was focused mainly on error handling mech-
anisms unification. We want to add some considerations about the notification

15

C. Guidi, R. Lucchi, M. Mazzara

mechanism: when an event is signalled, no operations are performed until the
system has activated all the event scopes interested to that event. In the case
of distributed Web Services and event scopes, in order to model in a more
realistic way the mechanism it can be interesting to assume that scopes catch
the event in an asynchronous manner. On the other hand, the signal mecha-
nism already allows to express that the notification of events is asynchronous.
The second extension also allows many new interesting behaviors which can be
very useful in business scenarios, such as the opportunity of handling security
and privacy issues or the dynamic event scope definition for managing multiple
instances of the same application. This feature shares some similarities with
the technique proposed by BPEL for the same purpose. In this paper we did
not give many details and examples about these features but we consider this
direction as a very profitable future work. In particular, we will investigate
information flow and interference in the sense of [8].

Although we mainly presented e-commerce applications for our language,
we consider that such a calculus represents a foundational framework able to
deal with any aspect of coordination among Web Services. We should under-
line also the fact that, even if our language tries to deal with the asynchrony
of the communication typical of the context we refer to, the message passing
mechanism is the one proposed in the synchronous version of the π-calculus.
This is because we believe that asynchrony should be reflected at the level of
event raising and not at the level of message passing. Anyway, it is straight-
forward to define an asynchronous variant of this language.

We consider that the proposed language shares some features with BPEL,
StAC [5] and πt-calculus [3]: they can all be viewed at the same level of pro-
gramming abstraction. As future work we intend to investigate the expressive-
ness of such proposals. In particular, we feel that the technique proposed by
BPEL to manage multiple instances of the application (based on correlation-
sets) has some similarities with the way we propose for defining at runtime
the event a scope is interested to, for example as in x(t).[P, Q]t. A more de-
tailed and formal comparison between such languages and the calculus here
presented is left as future work.

A last remark is about the need for timed transactions. Presently, we
believe that a notion of time in long running transactions can be useful in
business scenarios (refer to [11]). Other researchers consider that the notion
of time should be introduced both at the model level and at the protocols
and implementation levels. XLANG itself, for example, contains a notion of
Timed Transaction as a special case of long running activity.

16

C. Guidi, R. Lucchi, M. Mazzara

References

[1] Tony Andrews, Francisco Curbera et al. - Businnes Process Execution Language
for Web Services Specification, Version 1.1, 5 May 2003.

[2] A. Arkin - Business Process Modelling Language (BPML) specification, BPMI,
http://www.bpmi.org/index.esp, June 2002.

[3] L.Bocchi, C.Laneve, G.Zavattaro - A Calculus for Long Running Transactions.
FMOODS ’03, Paris, December 2003. LNCS.

[4] N. Busi, R. Gorrieri, G. Zavattaro - Process Calculi for Coordination: from
Linda to JavaSpaces. In Proc. of International Conference on Algebraic
Methodology and Software Technology (AMAST’00), 198-212 LNCS 1816,
Springer-Verlag, 2000.

[5] Michael Butler, Carla Ferreira - An Operational Semantics for StAC, a langage
for Modelling Long-running Businness Transactions. COORDINATION 2004.

[6] E.Christenses, F.Curbera, G.Meredith, S.Weerawarana - Web Services
Description Language (WSDL 1.1) [www.w3.org/TR/wsdl], W3C, Note 15,
2001.

[7] Iain Houston, Mark C. Little, Ian Robinson, Santosh K. Shrivastava, Stuart
M. Wheater - The CORBA Activity Service Framework for supporting extended
transactions. Softw., Pract. Exper. 33(4): 351-373 (2003).

[8] R. Gorrieri, R. Focardi, F. Martinelli - Classification of Security Properties.
Part 2: Network Security. Foundations of Security Analysis and Design 2, LNCS
2946, Springer Verlag 2004.

[9] R. Khalaf, S. Tai, and S. Weerawarana - Web services, the next step: A
framework for robust service composition, CACM, Special Issue on Service-
Oriented Computing, M.P. Papazoglou and D. Georgakopoulos, Eds., October
2003.

[10] Introducing WS-Transaction, An Arjuna Technologies Report -
http://www.arjuna.com.

[11] C.Laneve, M.Mazzara, G.Zavattaro - Foundations of Web Transactions.
[www.cs.unibo.it/ mazzara/fwt.pdf].

[12] F.Leymann - Web Services Flow Language (WSFL 1.0)
[www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf].

[13] F. Leymann and D. Roller - A quick overview of BPEL4WS, IBM
DeveloperWorks, August 2002 [www-106.ibm.com/developerworks/].

[14] M.Mazzara, R.Lucchi - A Framework for Generic Error Handling in Business
Processes. First International Workshop on Web Services and Formal Methods
(WS-FM), 2004.

17

C. Guidi, R. Lucchi, M. Mazzara

[15] L.G. Meredith, Steve Bjorg - Contracts and Types. Communication of the ACM,
October 2003.

[16] Microsoft Corp. Biztalk Server [http://www.microsoft.com/biztalk].

[17] Robin Milner - Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[18] R. Milner - Function as Processes. Mathematical Structures in Computer
Science, 2(2):119-141, 1992.

[19] Robin Milner, Joachim Parrow, David Walker - A Calculus for Mobile Processes.
Journal of Information and Computation, 100:1-77. Academic Press, 1992.

[20] Chris Peltz - Web Services Orchestration and Choreography. IEEE Computer
October 2003 (Vol.36, No 10), pages 46-52.

[21] SOAP - Simple Object Access Protocol [www.w3.org/TR/soap].

[22] S.Thatte - XLANG: Web Services for Businnes Process Design
[www.gotdotnet.com/team/xml/wsspecs/xlang-c]
Microsoft Corporation, 2001.

[23] David N. Turner - The Polymorphic Pi-calculus: Theory and Implementation.
PhD thesis, University of Edinburgh, 1995.

[24] Mirko Viroli - Towards a Formal Foundation to Orchestration Languages. First
International Workshop on Web Services and Formal Methods (WS-FM), 2004.

[25] WS-Coordination Specification - http://www.w3.org.

[26] WS-Transaction Specification - http://www.w3.org.

[27] XML - Extensible Markup Language 1.0 [http://www.w3.org/TR/2000/REC-
xml-20001006].

18

