
From biochemistry to stochastic processes

Cosimo Laneve1, Sylvain Pradalier2, and Gianluigi Zavattaro1

1 Dipartimento di Scienze dell’Informazione, Università di Bologna
laneve@cs.unibo.it, zavattar@cs.unibo.it

2 Ecole Polytechnique, Paris
sylvain.pradalier@lix.polytechnique.fr

Abstract. The nanoκ calculus is a formalism for modelling biochemical
systems following a reactive-oriented approach. We study the implemen-
tation of nanoκ into the Stochastic Pi Machine that complies with the
stochastic behaviors of solutions. Our implementation allows us to use
nanoκ as a front-end for a process-oriented simulator, thus being intelli-
gible to biochemists, and to reuse theories and tools already developed
for process calculi.

1 Introduction

Several stochastic formalisms emerged in the last few years as models for the
representation of biological systems (see e.g. [3, 10, 1, 5, 7, 6] just to mention a
few). These formalisms usually follow either a reactive-oriented (as [3, 1, 10] in the
list above) or a process-oriented approach (as [5, 7, 6]). According to the former
approach – inspired by traditional chemical kinetics – a system is specified as a
set of reactions; according to the latter – inspired by process calculi – a system
is specified by defining each molecule as a process, and deriving the overall
behaviour by means of communication rules.

Process-oriented descriptions depart from ordinary biochemical models be-
cause they define the sequences of actions once and for all with ad-hoc syntaxes,
use discrete data, and become entangled when specify fine-grain distributed con-
trols. As a consequence, such descriptions are not intelligible to biochemists. On
the other hand, process-oriented calculi retain several simulators and tools, which
make them attractive for experiments in silico.

In this paper we bridge the gap between the two approaches by implement-
ing the nanoκ calculus [8], a reactive-oriented formalism, into the Stochastic
Pi Machine [5], spim calculus in the following, a simulator for the stochastic
π-calculus [16, 5]. In nanoκ molecules may react by means of three types of reac-
tions - creations, destructions, and exchanges - and retain a stochastic semantics.
For example

ρ1 A(a),B(b)
λ1_ A(ax),B(bx)

models a creation of a bond between the site a of the molecule A and the site b
of B. The real number λ1 is the rate of the reaction. The reaction

ρ2 A(ax),B(bx)
λ2_ A(a),B(b)

defines a destruction that is opposite to the above creation. The rate λ2 may be
different from λ1, thus yielding equilibria in accordance with them. The reaction

ρ3 A(ax),C (c)
λ3_ A(a),C (x)

is an exchange rule defining a bond flipping from the site a of A to c of C.
Despite the simplicity of these reactions, it is hard to implement them into the
spim calculus because of the stochastic semantics. Let us examine the problems.

An implementation of nanoκ into spim should project the behaviour of each
molecule out of the data base of reactions and collect them into a process defi-
nition. For example, the spim process Â of the molecule A in the above examples
is

Â(z) = behaviour-of A in ρ1
+ behaviour-of A in ρ2
+ behaviour-of A in ρ3

That is, a molecule is implemented by a parametric process denition, where the
parameters define the values of fields and sites (fields in nanoκ are intended to
model the state of the molecule, such as its shape or its hydrogen groups or
phosphor groups). Next, the “behaviour-of A in ρ1” might be defined as

[z = ε] ρ1 (x).Â(x)

where

– [z = ε] means that such a behaviour may be triggered provided the site a is
unbound (has value ε);

– in this case the channel ρ1 is used to output a fresh name (modelling the
bond). We expect that the behaviour of B will perform a corresponding input
when the site b is unbound as well. We also expect that the rate of the channel
ρ1 has been declared to be λ1;

– then Â will continue as the process Â(x).

This analogy reaction-names as channels fails for modelling destructions. For
example, if the “behaviour-of A in ρ2” is defined as

[z = ¬ε] ρ2 ().Â(ε)

then an Â might interact with the wrong B̂ in the implementation of A(ax),B(bx),
A(ay),B(by). This means that we should profit of the names encoding bonds –
that are shared exactly by the two connected molecules – in order to send the
disconnection signal. So the “behaviour-of A in ρ2” becomes

[z = ¬ε] z ().Â(ε)

where we are assuming that B̂ will input on z and that the rate of z is λ2. But
this solution is also inadequate because we might have a further destruction on
the site a of A:

ρ4 A(ax),C (cx)
λ4_ A(a),C (c)

2

with λ4 6= λ2. Because of this inequality, it is not possible to use the channel
x anymore. One should rather use a channel for every reaction addressing the
bond. In the above example:

Â(z1, z2) = [z1 = ε] ρ1 (x : λ2). Â(x, z2)
+ [z1 = ¬ε] z1 (). Â(ε, z2)
+ [z2 = ¬ε] z2 (). Â(z1, ε)
+ · · ·

where ρ1 (x : λ2) creates a channel x with rate λ2. However this solution is
defective, too. Consider the two rules

ρ5 A(ax),C (c)
λ5_ A(a),C (x)

ρ6 C (cx),B(bx)
λ6_ C (c),B(b)

with λ6 6= λ2. If the creation of x amounted to the creation of the channel in
the first argument of Â then one is in trouble when B̂ is going to be defined.
This because B may destroy the bond x on b by reacting either with A (with rate
λ2) or with C (with rate λ6). Therefore the same channel cannot be used in the
behaviours of the two destructions ρ2 and ρ6 in B̂. This means that the behaviour
of ρ1 must create (at least) two channels that will be used by the behaviours of
ρ2 and ρ6, respectively. It is worth to remark that a communication between Â
and B̂ may create a channel that will be used in a communication between two
other processes.

To be accurate, a bond in nanoκ should be represented in spim by a tuple
whose length is the number of reactions that address that bond directly or
indirectly through sequences of exchanges. (In the above examples, addressing
was performed by destructions, but a bond may be addressed by creations and
exchanges, as well.) Actually, for simplicity, our solution over-approximates the
“precise” solution, by representing bonds with tuples whose length is the number
of reactions in the database – a gang, in our terminology.

There is another subtle issue about encodings of stochastic calculi. Our
encoding [[·]] of nanoκ into spim is such that S

λ7−→nanoκ T if and only if
[[S]] λ7−→spim [[T]] (we are subscribing the reductions for reader’s convenience).
In particular S and [[S]] are strongly stochastic bisimilar [2]. This is different
from usual implementations that almost never preserve the granularity of tran-
sitions. This strong relationship can be hardly weakened because stochastic rates
of transitions correspond to an exponential law controlling the waiting before a
transition can be fired (the sojour time). Since the sum of exponentials is not
an exponential, it will be difficult to assert the correctness of an encoding that
maps one transition to several.

Related works. In [17], it has been shown that systems of molecular interactions
with explicit bonds might be represented and simulated using the stochastic π-
calculus. Our encoding corrobates this result since the spim calculus is a subset of
the stochastic π-calculus. We remark that the example provided in [17] and, we

3

believe, the descriptions done in this approach can be rewritten in spim calculus
and even in sub-calculus of its, since our encodings doesn’t use its full power.

In [4], Cardelli has encoded chemical systems into process algebra and back
preserving both the stochastic and the ODE semantics. Our encoding extends
these encodings because the CGF process algebra used in [4] is a subset of the
spim calculus and because the nanoκ calculus extends the language of chem-
ical reactions of [4] with explicit bonds between molecules and with internal
states. However, our results are weaker than those in [4], since we only assert
the correctness of the encoding with respect to the stochastic semantics.

Encodings from the full κ calculus to nanoκ calculus, or to π-calculus are pre-
sented in [11] and [9]. Yet, they only preserve non-stochastic semantics. Indeed,
encodings preserving the stochastic semantics do not exist, due to the negative
results of [14]).

Structure of the article. The rest of the article is organized as follows. First we
recall the syntax of nanoκ and spim, and present their basic stochastic semantics.
Then in part 3, we present the encoding. It is down in two steps, in 3.1 we modify
nanoκ in order to introduce tuples of names – the gangs – and in 3.2 we complete
the definition of the encoding. The correctness of each step with respect to the
basic stochastic semantics is asserted by theorems 1 and 2. In part 4 we present
the collective stochastic semantics and present the theorem 3 which states the
correctness of the encoding with respect to the collective stochastic semantics.

2 The stochastic calculi

We shortly present the two stochastic calculi we analyze in this paper: a subcalcu-
lus of nanoκ calculus, where reactants share at most one bond, and a subcalculus
of spim. Examples and additional details can be found in [8] and [5].

2.1 The nanoκ calculus

Terms, called solutions, are sequences of molecules. Each molecule belongs to a
species and retain an internal state, which is determined by a tuple of fields, and
an interface, which is a tuple of sites that may be bound to other sites. Formally,
a molecule will be written A[u](σ), where

A is the species. The molecules of a species retain the same set of fields and the
same set of sites that are finitely many; fields and sites will be addressed by
numbers 0, 1, 2, · · · ;

u – called the evaluation – is a total map from fields of A to finite sets (the
internal states of molecules are always finitely many);

σ – called the interface – is a total map from sites of A to either bonds, which
are names of a totally ordered countable set ranged over by x, y, z, · · · , or
ε, a special value indicating that the site is not bound.

4

For example, A[1 7→ 0; 2 7→ 1](1 7→ ε; 2 7→ x; 3 7→ ε) is a molecule with two
fields 1 and 2 and three sites 1, 2, and 3. The fields 1 and 2 have values 0 and 1,
respectively; the site 2 is the only one that is bound and the bond is x. In order
to ease the reading, we write this molecule as A[10 + 21](1 + 2x + 3) (the value ε
is always omitted). Let ∅ be the empty map. We write A(σ) instead of A[∅](σ),
A[u] instead of A[u](∅), and simply A instead of A∅. We denote by ran(σ)
the range of an interface σ deprived of ε and by bonds(S) the set of the bonds
appearing in the solution S.

Definition 1. A solution is a term defined by the grammar

S ::= A[u](σ) | S,S

The operator “,” is assumed to be associative, so (S,T),R is equal to S,(T,R)
(therefore parentheses are always omitted).

Bonds always occurs at most twice in solutions. A solution is proper if every
bond therein occurs exactly twice.

The nanoκ calculus semantics is defined by means of reaction rules. Few
preliminary definitions are in order:

– we write σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) 6= ε then
σ(i) = σ′(i) (the two interfaces may differ on sites mapped to the empty
value ε by σ: σ′ may map such sites to bonds);

– a pre-solution is a sequence of terms A[u](σ) where u and σ are partial
functions (with an abuse of notation, we denote partial and total functions
in the same way);

– a pre-solution is proper when every bond therein occurs exactly twice.

In the following when we write u+ u′ and σ + σ′ we assume that the functions
are all partial and dom(u) ∩ dom(u′) = ∅ and dom(σ) ∩ dom(σ′) = ∅.

Definition 2. Reactions of nanoκ calculus are either creations, destructions,
or exchanges that are labelled by rates, which are positive real numbers or ∞.
Creations have format

A[u](σ),B [v](ρ)
λ
_ A[u′](σ′),B [v′](ρ′),C1 [w1](η1), · · · ,Cn [wn](ηn)

where σ ≤ σ′, ρ ≤ ρ′, dom(u) = dom(u′), dom(v) = dom(v′), and wi and ηi are
total. Destructions have formats

A[u](σ),B [v](ρ)
λ
_ A[u′](σ′),B [v′](ρ′)

A[u](σ),B [v](ρ)
λ
_ A[u′](σ′)

where σ ≥ σ′, dom(u) = dom(u′), and, in the first case, ρ ≥ ρ′, dom(v) =
dom(v′) and, in the second case, ρ has to be total. Exchanges have one of the
formats:

A[u](σ),B [v](ρ)
λ
_ A[u′](σ),B [v′](ρ)

A[u](ax + σ),B [v](b+ ρ)
λ
_ A[u′](a+ σ),B [v′](bx + ρ)

5

where the pre-solutions A[u](σ),B [v](ρ) and A[u](a+ σ),B [v](b+ ρ) are proper
and dom(u) = dom(u′) and dom(v) = dom(v′).

In the rest of the paper we assume that reactants share at most one bond,
i.e. ran(σ) ∩ ran(ρ) is either an empty set or a singleton.

Creations produce new bonds between two unbound sites and/or synthesize
new molecules. Destructions behave in the other way around. Exchanges either
leave the interfaces unchanged or move one bond from a reactant to the other
(bond-flipping exchange).

It is worthwhile to remark that reactions do not address every field and site
of the reactants (evaluations and interfaces are partial). The intended meaning is
that two molecules reacts if they are instances of the left-hand side of a reaction.
We will formalize this notion later on in the section.

2.2 The spim calculus

The spim calculus uses two sets of identifiers: names, which is totally ordered and
ranged over by x, y, u, · · · , agents, ranged over by A, B, · · · . Names have a rate
that is a positive real number or ∞. This rate may be explicitly declared in the
process or globally defined (for free names). The following syntactic categories
are used in spim calculus:

M ::= [u = v]
∣∣ MM matches

α ::= x (ũ)
∣∣ x ũ

∣∣ x(ũ : λ̃) actions
P ::= 0

∣∣ A(ũ)|P terms

Matches are sequences of equalities between values. Actions are either input x (ũ)
on x of a tuple ũ, or output x ũ on x of a tuple ũ, or bound output x (ũ : λ̃) on
x of a tuple ũ with rates λ̃. Terms can be the inert 0 or a parallel composition
of agent invocations. The parallel operator | is assumed to be associative. Agent
declarations have the form:

A(x̃) ,
∑
i∈I

Miαi.Pi

Notation. Whenever a match has the form [u = u], or a sum has only one
branch we omit to write them explicitely. For instance A(x̃) , Σ

i∈{1}
[x̃i = x̃i]α.P

is written A(x̃) , α.P .
A process is a term (x̃ : λ̃) P – the set of agent definitions is kept implicit –

where λ̃ are rates. The term x̃ : λ̃ has to be considered a set with the constraint
that every two different elements have different names. Processes are ranged over
by P, Q, · · · .

Scope restrictions bind names, that is in (x : λ) P the x free in P is bound by
x : λ. Likewise, input x (ũ).P and bound output x (ũ : λ̃).P bind ũ with scope
P . The agent definition A(ũ) ,

∑
i∈IMiαi.Pi binds ũ with scope the right hand

6

side of the definition. Names that are not bound are called free and we write
fn(T) for the set of such names in T .

We assume that all terms meet the following well formed properties:

– in (x̃ : λ̃)P , x̃ ⊆ fn(P) (there is no garbage);
– bound names in agent definitions never clash with free names (this allows us

to avoid alpha-conversions).

The reductions of spim calculus are communications on a channel. Since
they are fixed, they will not play any relevant role in the following Definition 4.
(They will be embodied in the (init) item of the definition.) Therefore we omit
the formal definition here.

2.3 Basic transition relations

Reactions only define the (biochemical) changes of the reactants. These descrip-
tions are used to infer transitions of solutions consisting of several possible re-
actants. Such transition relations are given in two steps: a first one, called basic
transition relation, that records the position of the reactants in the whole solu-
tion; a second one, called collective transition relation, that computes the rate
of a transition by summing the rate of the basic transitions that produce the
same solution (regardless the position of the molecules/agents). Below we define
the basic transition relation for nanoκ and spim calculi. (The two definitions are
very close, this is why they have been collected in this subsection.) Our result
of correctness of the encoding of nanoκ in spim regards the basic transition re-
lation, even if it is intensional. It follows that this correcteness also holds for the
collective semantics, since it is derived in the same way from the basic transition
relation (see theorem 3 in Section 4).

The definition of the basic transition relation of the nanoκ calculus requires
few notations. Let µ range over ρL and ρR and let ρL = ρR and ρR = ρL (notice
that µ = µ). The nanoκ reactions may be addressed by:

A[u](σ),B [v](ρ)
λ
_ A[u′](σ′),S

where S may also be empty (denoted by). The special term is considered a
unit for the ”,” operator (the solutions ,S, S, and S are equal). With an abuse
of notation we lift a renaming ı to a solution by applying it pointwise.

Definition 3. The basic transition relation of nanoκ, written either
ρ,ı−→`,`′ or

µ,ı−→`, is the least relation that satisfies the following rules:

– (init) let ρ = A[u](σ),B [v](φ)
λ
_ A[u′](σ′),S. Then both A[u + w](σ ◦ ı +

ν)
ρL,ı−→1 A[u′ + w](σ′ ◦ ı+ ν) and B [v + w](φ ◦ ı+ ν)

ρR,ı−→1 T, where T is
either B [v′ + w](φ′ ◦ ı + ν),ı(S) or ı(S), according to the shape of the right
hand side, where ı is an injective renaming and where ran(i) ∩ ran(ν) = ∅;

7

– (lifts) if S
µ,ı−→` S′ and (bonds(S′) \ bonds(S)) ∩ bonds(T) = ∅, then both

S,T
µ,ı−→` S′,T and T,S

µ,ı−→`′+` T,S′, where T has `′ molecules;
– (communications) if S

µ,ı−→` S′ and T
µ,ı−→`′ T′ and ı is an order-preserving in-

jection that map bonds into the least ones not used in S,T then S,T
ρ−→`,`′′+`′

S′,T′, where ρ is the rule of µ and S has `′′ molecule.

The indexes of the basic transition relation identify the position of the reac-
tants since solutions are sequences of molecules. In the case (init), the position
is always 1 because the solution consists of one molecule. In the case of (lifts),
the index is increased by the number of the molecules on the left, if any. The last
case models a reaction: the solution is split into two parts S and T containing
the reactants at positions ` and `′, respectively. In the composite solution S,T,
the reactants are at position ` and `′′ + `′, where `′′ is the number of molecules

of S. For example let kM be M, · · · ,M︸ ︷︷ ︸
k times

and let ρ : H (1),H (1)
λ
_ H (1u),H (1u)

be the hydrogen gas reaction. Then the following three transitions are possible

3H (1)
ρ−→1,2 2H (1x),H (1)

3H (1)
ρ−→1,3 H (1x),H (1),H (1x)

3H (1)
ρ−→2,3 H (1),2H (1x)

The basic transition relation is labelled by finite injective renamings. To
clarify this point, consider the creation % = Na(1x + 2),Na(1x + 2)

10
_ Na(1x +

2y),Na(1x + 2y) (a bond is created between two sodium molecules provided
they are already bound). Then take the solution Na[ion0](1z+2),Na[ion0](1v+
2),Na[ion1](1z + 2), Na[ion0](1v + 2). We derive the expected transition

Na[ion0](1z + 2),Na[ion0](1v + 2),Na[ion1](1z + 2),Na[ion0](1v + 2)
%−→1,3 Na[ion0](1z + 2w),Na[ion0](1v + 2),Na[ion1](1z + 2w), Na[ion0](1v + 2)

following a structured operational semantics approach [15]. Namely, we focus on
the single reactants and lift the transitions to “,”-contextes. This is correct inas-
much as one records the instantiation of bonds in the left-hand sides of reactions
with the actual names of the molecules: the two reactants must instantiate bonds
in the same way. This is the reason why the first two molecules of the above solu-
tion cannot react with %. More precisely, Na[ion0](1z+2)

%L,ı−→1 Na[ion0](1z+2w),
where ı = [x 7→ z, y 7→ w], and Na[ion0](1v + 2) 6%R,ı−→1.

Our final remarks regard the rule (communications). There are possibly in-
finitely many transitions S

ρ,ı−→` T because there are infinitely many renamings
ı which satisfy the conditions of the (init) rule. However this nondeterminism is
removed when the reaction occurs because the created bonds have to be the least
names not occurring in S, and because the renaming has to be order-preserving.
Said otherwise, the relation

µ−→`,`′ , which models the evolution of a solution,
is finitely branching, while the auxiliary relation

µ−→` is not finitely branching.
It is also worth to notice that there is no rule lifting a transition

µ−→`,`′ to a

8

context “,”: we use the associativity of , to partition a solution S into S′,S′′

such that the reactants are in S′ and S′′.

The basic transition relation of the spim calculus requires few definitions:

– M is true if M is a sequence of [x = x];
– length(A1(ũ1) | · · · | An(ũn)) returns n;
– x̃ : λ̃+ ỹ : λ̃′ is the sequence z1 : λ1, · · · , zn : λn where z1, · · · , zn are pairwise

different names, {z1, · · · , zn} = x̃ ∪ ỹ, and zi : λi if either zi : λi ∈ ỹ : λ̃′ or
zi 6∈ ỹ and zi : λi ∈ x̃ : λ̃.

– [(x̃ : λ̃)P]GC = (z̃ : λ̃′)P such that y : λ′′ is in z̃ : λ̃′ if y ∈ fn(P) and y : λ′′

is in x̃ : λ̃.
– with an abuse of notation we lift a renaming ı to a tuple of names or to a

process by applying it pointwise.

Let bn(α) be ũ if µ is either x (ũ) or x (ũ : λ̃); it is ∅ if α = x ũ.

Definition 4. The basic transition relation of the spim calculus, written either
α−→`.i,`′.j or τλ−→`.i,`′.j or α−→`.i, is the least one satisfying the following rules:

– (init) let A(ũ) =
∑
i∈IMiαi.Pi and let Mj{ev/eu} be true. If αj{ev/eu} = x w̃

then A(ṽ) x ew−→1.j Pj; if αj{ev/eu} = x (w̃ : λ̃) then A(ṽ)
x (ı(ew):eλ)−→ 1.j ı(Pj); if

αj{ev/eu} = x (w̃) then A(ṽ)
x (ı(ew))−→ 1.j ı(Pj), where ı is an injective order-

preserving renaming;
– (lifts) if P α−→`.i P

′ and bn(α) ∩ fn(Q) = ∅ and `′ = length(Q), then both
P | Q α−→`.i P

′ | Q and Q | P α−→`′+`.i Q | P ′;
– (comunications) let `′′ = length(P), λ be the rate of x, and Q

x (eu)−→`′.i′ Q
′.

If P x ev−→`.i P
′ then (z̃ : λ̃′)(P | Q) τλ−→`.i,`′+`′′.i′ [(z̃ : λ̃′)(P | Q{ev/eu}]GC ;

if P
x (ev:gλ′′)−→ `.i P

′ then (z̃ : λ̃′)(P | Q) τλ−→`.i,`′+`′′.i′ [(z̃ : λ̃′ + ṽ : λ̃′′)(P ′ |
Q′{ev/eu})]GC where ṽ are the least names not occurring in P | Q. Simmetri-
cally when P performs an input and Q performs an output.

As for nanoκ, there is always at most one (z̃ : λ̃′)P ′ such that (x̃ : λ̃)P
τλ′′−→`,i,`′,i′

(z̃ : λ̃′)P ′ because alpha-conversion is never considered in the basic transition
relation, because created names are the least possible ones and because the re-
namings are order-preserving.

3 Encoding the nanoκ calculus into the spim calculus

The definition of the encoding of nanoκ calculus into spim calculus is presented
in two steps. The first one defines an internal translation of nanoκ calculus that
expands every bond into tuples of bonds. The bond in the tuple are an over-
approximations of the reactions that use the bond. We call these tuples of newly
generated names gangs. The second step defines a translation from nanoκ (with
gangs) to the spim calculus.

9

3.1 Gangs: a dedicated name for every reaction

In the following we use tuples that will be ordered as follows: (x1, . . . , xm) ≤
(y1, . . . , ym) if and only if, for every i, xi ≤ yi. Let εm be a tuple of m elements
ε.

Definition 5. Let R = {ρi : Li
λi_ Ri | i ∈ 1..n} be a set of nanoκ reaction

rules and let  be an bijective function that maps ε to εn and bonds to n-tuples
of bonds such that if x ≤ y then (x) ≤ (y) (such a  exists because the set of
names is countable).

The solution [[S]] is S where every z being either a bond or ε is replaced by

(z). The set of reactions [[R]] is {ρi : [[Li]]
λi_ [[Ri]] | i ∈ 1..n}.

Namely [[R]] and [[S]] are such that

– interfaces map sites to tuples of bonds of length n – a gang ;
– two distinct tuples do not contain the same name;
– tuples preserve the order of bonds in R and S.

We let [[ı]] =  ◦ ı ◦ −1 and [[µ]] be either ρL, [[ı]] or ρR, [[ı]], according to µ
is ρL, ı or ρR, ı. The correctness of the encoding of Definition 5 is stated in the
following theorem.

Theorem 1. 1. if S
µ−→` T then [[S]]

[[µ]]−→` [[T]] (similarly for S
ρ−→`,`′ T);

2. if [[S]]
µ−→` T then there exists S′ and µ′ such that: [[S′]] = T, S

µ′

−→l S′, and
µ = [[µ′]] (similarly for [[S]]

ρ−→`,`′ T).

(The proof is omitted because it is a standard induction on the proof trees of
the transitions.)

3.2 From gangs to the spim calculus: agents as molecules

The second step of our translation encodes the nanoκ calculus with gangs of
bonds into processes of spim. As discussed in the Introduction, we encode a
species A by a parametric agent definition Â(x̃) = P , whose parameters x̃ repre-
sent the possible values of fields and sites of the molecules of that species. The
body P is a choice with a branch for every reaction involving the species A. A
molecule A[u](σ) is an invocation Â({[u, σ]}).

We begin by defining {[u, σ]}. Let ε and ¬ε be two distinguished channels.
Then {[u, σ]} is equal to {[u]}0, {[σ]}1, {[σ]}2, where

– {[u]}0 yields the tuple of the values of the fields in u;
– {[σ]}1 yields the concatenation of the gangs in the range of σ;
– {[σ]}2 yields a tuple of the same length of {[σ]}1 such that the i-th element

is ε if the i-th element of {[σ]}1 is ε and it is ¬ε otherwise.

Then we continue with a sequel of notational definitions. We assume given a
set of n reactions R.

10

– [x1, · · · , xm]u is the sequence of matches [xi = u(i)]i∈dom(u) (u is a partial
map);

– [x1, · · · , xm]σ is the sequence of matches (Mi,j)i∈dom(σ),j≤n where Mi,j =
[xn∗(i−1)+j = ε] if the j-th element of the tuple σ(i) is ε, and Mi,j =
[xn∗(i−1)+j = ¬ε] if not;

– set(x̃, u) is the tuple where the i-th element is u(i) whenever i ∈ dom(u), it
is the i-th element of x̃, otherwise;

– set1(x̃, σ) is the tuple where the element n ∗ (i− 1) + j is the j-th element of
the tuple σ(i), when i ∈ dom(σ), and xn∗(i−1)+j otherwise;

– set2(x̃, σ) is the tuple where the element n ∗ (i − 1) + j is ε if σ(i) = εn, it
is ¬ε if i ∈ dom(σ) and σ(i) 6= εn, and it is xn∗(i−1)+j otherwise;

– proj(x̃, a) is the tuple (xn∗(a−1)+i)i≤n and proj(x̃, a, i) is xn∗(a−1)+i;

– if A[u](σ),B [v](φ)
λ
_ A[u′](σ′),S ∈ R then both A[u](σ)

λ
_ A[u′](σ′) ∈L R

and B [v](φ)
λ
_ S ∈R R;

– If ρ is a creation, CR(ρ,R) is a sequence (x1 : λ1, · · · , xm : λm) where
every subsequence (xi×n : λi×n, xi×n+1 : λi×n+1, · · · , xi×n+n−1 : λi×n+n−1)
correspond to the i-th bond created by ρ and λi×n, · · · , λi×n+n−1 are the
rates of the reactions in R.

Every preliminary notation is in place for the definition of the encoding from
nanoκ with gangs to spim.

Definition 6. Let R be a set of n reactions in nanoκ. The spim agent corre-
sponding to the species A is:

Â(x̃, ỹ, z̃) =
∑
ρ:A[u](σ)

λ
_A[u′](σ′) ∈LR

[x̃]u [z̃]σ αρ,L . Pρ,L
+
∑
ρ:A[u](σ)

λ
_S ∈RR

[x̃]u [z̃]σ αρ,R . Pρ,R

where the length of x̃ is the number of fields of A, and the lengths of ỹ and z̃ are
the number of sites of A times n. In addition:

– if ρ is a creation with an empty set of bonds in the left-hand side then αρ,L =
ρ (ũ : λ) and αρ,R = ρ (ũ) and (ũ : λ) = CR(ρ,R);

– if ρ is a creation with a bond x in the left-hand side then αρ,L = proj(ỹ, a, i) (ũ : λ)
and αρ,R = proj(ỹ, a, i) (ũ), where a is the site of A bound by x, i is the index
of ρ in R and (ũ : λ) = CR(ρ,R);

– if ρ is a destruction with a bond x in the left-hand side then αρ,L = proj(ỹ, a, i) ()
and αρ,R = proj(ỹ, a, i) (), where a is the site of A bound by x and i is the
index of ρ in R;

– if ρ is an exchange with an empty set of bonds in the left-hand side or with
a bond occurring once and in A then αρ,L = ρ ũ and αρ,R = ρ (ũ), where ũ
is either empty, if there is no bond in the left-hand side, or proj(ỹ, A, a) if
the site with the bond is a;

– if ρ is an exchange with a bond x shared by the reactants then αρ,L =
proj(ỹ, A, a, i) (ũ) and αρ,R = proj(ỹ, A, a, i) (ũ), where a is the site of A

11

bound by x, i is the index of ρ in R and ũ is either empty, if there is no
bond in the left-hand side apart x, or proj(ỹ, A, a′) if A has a further bond
on the site a′.

As regards continuations, Pρ,L = Â(set(x̃, u′), set1(ỹ, σ′), set2(z̃, σ′)) and Pρ,R is
either 0, if S = , or Â(set(x̃, u′), set1(ỹ, σ′), set2(z̃, σ′)),Ĉ1({[u1]}1, {[φ1]}2, {[φ1]}3),
· · · ,Ĉh({[uh]}1, {[φh]}2, {[φh]}3) if S = A[u′](σ′),C1 [v1](φ1), · · · ,Cn [vn](φn).

The encoding of a nanoκ calculus solution with gangs is:

{[A1 [u1](σ1), · · · ,Am [um](σm)]} , (δS)(Â1{[u1, σ1]}, · · · ,Âm{[um, σm]})

where δS is the minimal set that contains

– (ρ : λ), if ρ has no bond between reactants and has rate λ,
– (xn×(i−1) : λ1, · · · , xn×(i−1)+n−1 : λn), if there is an agent invocation Â{[u1, σ1]}

and {[σ1]}2 = (· · · , xn×(i−1), · · ·xn×(i−1)+n−1, · · ·), with xi 6= ε and λ1, · · · , λn
being the rates of the reactions in R.

The next theorem states the correctness of {[.]}. If A is the `-th molecule in
S and if ρ corresponds to the i-th branch of the choice in Â, we let {[`]}ρ be the
pair (`, i). We also let {[ρL, ı]} and {[ρR, ı]} to be respectively αρ,L and αρ,R as
defined in Definition 6.

Theorem 2. 1. If S
µ−→` T then {[S]} {[µ]}−→{[`]}ρ {[T]} (similarly for S

ρ−→`,`′ T);
2. if {[S]} µ−→l.i T (resp. {[S]} ρ−→l.i,l′.j T) then there exist S′ and µ′ such that:

{[S′]} = T, S
µ′

−→` S′, and µ = {[µ′]} (similarly for {[S]} ρ−→`.i,`′.i′ T).

The proof is similar to that of Theorem 1.

4 The stochastic collective semantics

The basic transition relation we considered takes track of all the possible tran-
sitions that the molecules in a solution can perform. However, some of these
transitions are somehow “equivalent” because, for instance, they have the same
source and the targets are indistinguishable. This is the case when the solution
contains several copies of a molecule and the reaction is an homeodimerization.

The following collective semantics merges “equivalent” transitions into one
transition with an associated rate obtained as the sum of the rates of the merged
transitions. It uses the structural equivalence to formalize the indistinguishability
of solutions.

Definition 7. The structural equivalence of the nanoκ calculus is the least equiv-
alence satisfying the following rules (solutions are already quotiented by associa-
tivity of “,”):

1. S,T ≡ T,S;

12

2. S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T).

The structural equivalence of the spim calculus, that, with an abuse of nota-
tion, we also note ≡, is the least equivalence satisfying the following rules:

– P |Q ≡ Q|P
– if P is α-equivalent to Q then P ≡ Q

In order to give a unique definition of the collective semantics, we introduce
few notations. The letters F,G are used to range over solutions or processes; we
assume that transitions of the basic transition systems have shape

ρ−→∂ , where
∂ is a pair (we are considering evolutions of closed systems). Let also

– next(F) = {((ρ, ∂), G) | F ρ−→∂ G};
– next∞(F) = {((ρ, ∂), G) | F ρ−→∂ G and rate(ρ) =∞}
– F has finite rates if and only if next∞(F) = ∅
– let F be a set of pairs (X,G) (the second element is a term, the first one

is left unspecified), [F]G is the subset of F of those pairs (X,G′) such that
G′ ≡ G;

– can(F) is defined over sets of pairs (X,G) (the second element is a term, the
first one is left unspecified), such that the terms occurring as second element
of the pairs are all structurally equivalent. It returns a term G′ such that
there is X with (X,G′) ∈ S.

Definition 8 (Stochastic collective transition relation). The stochastic
transition relation 7−→ induced by a basic transition relation

ρ−→∂ (∂ is a pair of
indexes) and structural equivalence ≡ on a language is the least relation satisfying
the following rules:

– if F
ρ−→∂ G and rate(ρ) =∞ then F

∞7−→ can([next∞(F)]G);
– if F

ρ−→∂ G and F has finite rates then F
λ7−→ can([next(F)]G), where

λ =
∑

((ρ,∂),G′)∈[next(F)]G

rate(ρ)

The correctness result of the collective transition relation is stated below.

Theorem 3. S
λ7−→ T in nanoκ if and only if there exists P such that {[[[S]]]} λ7−→

P and P ≡ {[[[T]]]} in spim.

Our correctness notion corresponds to the subcase of the strong stochastic
bisimulation [2] where the bisimulation relation is a bijection.

5 Future works

Our current interests are mainly about simulators and analysis tools for spim
calculus. In facts, this contribution allows us to simulate nanoκ systems. How-
ever, the same encoding makes also possible to model-check nanoκ formalizations

13

in the PRISM platform [12], since it supports verifications of probabilistic and
stochastic extensions of π-calculus [13]. More precisely, it should be possible to
wire our encoding from the nanoκ calculus to spim – a subset of stochastic π-
calculus – with the implementation in [13]. There are two questions to bother
with. Firstly, our encoding uses polyadic communications, which is still not con-
sidered in [13]. However this should be one of the next extensions of this work.
The second issue is more problematic. A relevant constraint for the efficiency
of the encoding in [13] is the absence of name creations within agent definition.
This is not the case for our encoding, because agents may perform bounded
outputs. Yet, in nanoκ subsystems where the creation of new molecules is finite,
the number of names used at every stage of the computation is finite. So, a
clever algorithm might compute this number statically (an over-approximation
is k × h, where k is the maximal number of molecules and h is the maximal
length of the arguments of an agent) and use a garbage-collection mechanism to
recycle names. This should allow the static allocation of variables in the PRISM
language to handle all the private names.

References

1. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. A calculus of looping
sequences for modelling microbiological systems. Fundamenta Informaticae, 72(1-
3):21–35, 2006.

2. M. Bernardo. A survey of markovian behavioral equivalences. In Proc. of Inter-
national School on Formal Methods for the Design of Computer, Communication,
and Software Systems 2007, volume 4486 of LNCS, pages 180–219, 2007.

3. L. Calzone, F. Fages, and S. Soliman. Biocham: an environment for model-
ing biological systems and formalizing experimental knowledge. Bioinformatics,
22(14):1805–1807, 2006.

4. L. Cardelli. On process rate semantics. Theoretical Computer Science, 391(3):190–
215, 2008.

5. L. Cardelli and A. Phillips. A corret abstract machine for the stochastic pi-calculus.
In Proc. of Workshop on Concurrent Models in Molecular Biology, 2004.

6. L. Cardelli and G. Zavattaro. On the computational power of biochemistry. In
Proc. of Algebraic Biology 2008, volume to appear of LNCS, 2008.

7. F. Ciocchetta and J. Hillston. Bio-pepa: An extension of the process algebra
pepa for biochemical networks. Electronic Notes in Theoretical Computer Science,
194(3):103–117, 2008.

8. A. Credi, M. Garavelli, C. Laneve, S. Pradalier, S. Silvi, and G. Zavattaro. Mod-
elization and simulation of nano devices in the nano-k calculus. In Proc. of Compu-
tational Methods in Systems Biology 2007, volume 4695 of LNCS, pages 168–183,
2007.

9. Pierre-Louis Curien, Vincent Danos, Jean Krivine, and Min Zhang. Computational
self-assembly. Theor. Comput. Sci., 404(1-2):61–75, 2008.

10. V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular
signaling networks. In Proc. of Asian Symposium on Programming Languages and
Systems 2007, volume 4807 of LNCS, pages 139–157, 2007.

11. V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science,
325(1):69–110, 2004.

14

12. Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and
Roberto Segala. Symbolic model checking of probabilistic processes using mtb-
dds and the kronecker representation. In TACAS, pages 395–410, 2000.

13. D.Parker G.Norman, C.Palamidessi and P.Wu. Model-checking probabilistic and
stochastic extensions of the pi-calculus. In IEEE Transactions on Software engi-
neering, 2007.

14. C. Laneve and A.Vitale. Expressivness in the κ-family. In Proc. of MFPS, ENTCS,
2008.

15. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

16. Corrado Priami. Stochastic pi-calculus. Computer Journal, 38(7):578–589, 1995.
17. Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Application

of a stochastic name-passing calculus to representation and simulation of molecular
processes. Information Processing Letters, 80:25–31, 2001.

15

