
webπ at work

Cosimo Laneve Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A.Zamboni 7, I-40127 Bologna, Italy.

laneve,zavattar@cs.unibo.it

Abstract. webπ is a recent process calculus that has been inspired by
the emerging Web Services technologies. In this paper we explore the
expressivity of webπ by discussing two case studies. The first case study
is about the formal semantics of the transactional construct of BPEL –
the scope construct. The second case study is about a standard pattern
of Web Services composition – the speculative parallelism – that allows
several alternative activities to start; only the first one that completes is
taken into account while the other ones are aborted.

1 Introduction

Web Services technologies are emerging mechanisms for describing the services
available on the web, as well as their interfaces and the protocols for locating and
invoking such services. A challenging issue in this area is the definition of lan-
guages and tools for composing services. In fact it is often the case to define new
services out of finer-grained subtasks that are likely available as Web Services.
As a consequence, several proposals for service composition have been recently
devised – the so called Web Services orchestration and choreography languages.
Among the others we recall XLANG [9], WSFL [8], BPEL [1], and WS-CDL [6].

Most of Web Services orchestration and choreography languages use long-
running transactions as basic mechanisms for composing services. These trans-
actions – that we will call web transactions – usually do not grant any isolation or
atomicity property. As regards isolation, it requires that different activities have
the same effect whether they are executed in sequence or in parallel. This is usu-
ally enforced by locking the resources used by each activity until the transaction
commits. In the context of Web Services, the processes involved in a transaction
may belong to different companies, and there is no chance to lock resources of
other companies. Additionally, commercial transactions usually last long periods
of time, even months, and it is not feasible and not reasonable to block resources
so long. For similar reasons, it is not adequate supplying a perfect rollback in
the context of Web Services composition. As a matter of facts, in Web Services
orchestration and choreography languages, the transaction isolation is delegated
to explicit protocols realized through messages; whilst the roll-back mechanisms
are defined by ad-hoc programs.

Despite of the great interest for web transactions, the Web Services commu-
nity has not reached a common agreement on a unique notion of this form of

1



transaction. Additionally, the semantics that is usually defined is informal and
requires a mathematical analysis. Exceptions we are aware of rely on specific
proposals: the work [5] that is mainly inspired by XLANG, the calculus of Butler
and Ferreira [4] is inspired by BPBeans, the πt-calculus [2] considers BizTalk,
the work [3] deals with short-lived transactions in BizTalk.

A different approach has been recently taken in [7], where a process calculus is
explicitly designed for modelling web transactions. This calculus, called webπ, is
independent of the different proposals and allows to grab the key concepts. Three
major aspects are considered in webπ: interruptible processes, failure handlers
that are activated when the main process is interrupted, and time. Time has been
considered because it is fundamental for dealing with the typical latency of web
activities or with message losses. The above three aspects are analyzed in a model
consisting of a network of locations that contain processes. In this model time
proceeds asynchronously at the network level, while it is constrained by the local
urgency property inside a location. Local urgency entails the fact that process
reductions in a location cannot be delayed to favour idle steps. Said otherwise,
local urgency means that the time may elapse in a location either because the
process inside progresses or because no progress is possible. We refer to [7] for
a discussion about the model of webπ, and its extensional semantics – the timed
bisimilarity.

The aim of this paper is to explore the expressivity of webπ in two non-
trivial case studies inspired by the Web Services technology. The first case study
is about the formal semantics of BPEL. This language, being the conjoint effort
of three major information technology companies, is becoming the standard de
facto for Web Service orchestration. Defining its formal semantics is therefore
a valuable task. In this paper we focus on the unique transactional mechanism
in BPEL – the scope construct – and we define its semantics by means of webπ.
The scope construct associates a failure handler, a compensation handler, and an
event handler to a primary activity. The failure handler is activated in case a fault
condition occurs during the execution of the primary activity. The compensation
handler is executed in case the execution of the primary activity is required to
be undone after is has provisionally committed. The event handler is activated
if the primary activity is executing and specific messages or allarms triggered
by time-outs occur. In this paper we only define the formal semantics of fault
and compensation handlers. The webπ semantics of event handlers, apparently
possible since time is also considered in webπ, has still to be provided.

The second case study is about a prototypical pattern of service composi-
tion – the so-called speculative parallelism. This pattern generalizes the request-
response pattern between a client and a server, to cases in which the response
can be produced by more than one server. In these cases, the client sends the
request to all the possible (alternative) servers. The accepted response is the
first one that is received, the other responses are deleted. The non-trivial is-
sue of speculative parallelism is the synchronization of the winner server (the
one producing the accepted response) with the communications of failure to the

2



other servers. We model the pattern of speculative parallelism in webπ, together
with a number of erroneous patterns that manifest subtle misbehaviours.

The paper is structured as follows. In Section 2 we recall the syntax of webπ
and we discuss informally its semantics (the formal definition is reported in
Appendix A). In Section 3 we discuss the first case study while in Section 4 we
discuss the second one. We conclude in Section 5.

2 The calculus webπ

In this Section we recall the syntax of webπ and informally describe its semantics.
The formal definition is reported in Appendix A.

The syntax uses a countable set of names, ranged over by x, y, z, u, · · ·. Tuples
of names are written ũ. The syntax of webπ includes machines and processes.

M ::= (machines) P ::= (processes)
0 (nil) 0 (nil)
| [P ]x̃ (location) | x ũ (message)
| (x)M (machine restriction) | x(ũ).P (input)
| M |M (network) | (x)P (restriction)

| P |P (parallel composition)
| !x(ũ).P (replicated input)
| 〈|P ; P |〉nx (transaction)

A location [P ]x̃ is a uniprocessor machine; the names x̃ indicate that the
location is responsible for accepting messages on such names. Locations possess
their own clock that is not synchronized with the clock of other locations (time
progresses asynchronously between different locations). Namely, if M and N are
locations, and M evolves in M′ then also M |N evolves in M′ |N (the clock of N
remains unchanged).

Processes extend the asynchronous π-calculus with transactions 〈|P ; Q|〉nx ,
where P and Q are the body and the compensation, respectively, n indicates
the deadline, and x is the name of the transaction. The body of a transaction
executes either until termination or until the transaction fails. On failure, the
compensation is activated. A transaction may fail in two different ways, either
explicitly (when the abort message x is consumed, where x is the name of the
transaction to be aborted) or implicitly (when the deadline is reached). The
deadline may be reached either because of computational steps of the body or
because of computational steps of processes in parallel in the same location.

The model of time of webπ is such that, within a location, operations cannot
be delayed in favour of idle operations – this property is called local urgency. For
example, consider two processes running on the same location: a printer process
of a warning message with a timeout and an idle process waiting for an external
event. Local urgency means that, if the external event doesn’t occur, then the
printer process cannot be delayed. Said otherwise, the time elapses in a location
either because the process inside progresses or because no progress is possible.

3



In webπ networks names always index a unique location. Formally, let ln(M)
be defined as ln(0) = ∅, ln([P ]x̃) = x̃, ln((x)M) = ln(M)\{x}, and ln(M |N) =
ln(M) ∪ ln(N). Networks M |N are constrained to satisfy the property ln(M) ∩
ln(N) = ∅. This constraint permits to deliver messages to the unique machine
in the network that is responsible for accepting that message. However it is also
possible to consume messages in the same machine in which they have been
produced. This appears a bit counterintuitive: a machine that is not responsible
to accept messages on a given name may actually consume messages that have
been produced locally. In fact, in practice this scenario never occurs. If a machine
defines a name x and exports it to other machines, then the machines receiving
x may use it with output capability only. Since webπ processes are unrestricted,
the present communication model for machines is a conservative extension of the
practical scenario.

We illustrate the semantics by discussing few examples. The process

z |x | 〈|x().0 ; y |〉nz

has the following two computations (n > 0):

z |x | 〈|x().0 ; y |〉nz → z | 〈|0 ; y |〉n−1
z

z |x | 〈|x().0 ; y |〉nz → x | 〈|x().0 ; y |〉0z

Transactions with time stamps equal to 0 are terminated. There are two kinds
of terminated transactions: (a) the committed transactions, such as 〈|0 ; y |〉n−1

z

that is (structurally) equivalent to 〈|0 ; y |〉0z, whose bodies do not contain input-
guarded processes, and (b) the failed transactions, such as 〈|x().0 ; y |〉0z, whose
body contains input-guarded processes. The input operations in the body of
failed transactions can no longer be executed: the transaction is actually failed
because it has not completed its tasks. In committed transactions the compen-
sation handler is no more considered. This is reflected in the first computation
by the fact that the message y cannot be produced. This message is syntacti-
cally part of the process but it cannot be consumed. In failed transactions the
compensation process becomes active. This is made clear in the second compu-
tation, where the message z explicitly abort the transaction thus making the
time stamp equal to 0. After abortion, the message x cannot be consumed.

The process x | 〈|x().0 ; u |〉1z | 〈|x().0 ; v |〉1z′ evolves as follows

x | 〈|x().0 ; u |〉1z | 〈|x().0 ; v |〉1z′ → 〈|0 ; u |〉0z | 〈|x().0 ; v |〉0z′

(and in a similar way, but consuming the input of z′ instead of the input of z).
This reduction shows the progress of time in a location: a computational step
of a process makes the time elapse of one unit. This is manifested by decreas-
ing the time stamps of every transaction in parallel (in the previous case, of
〈|x().0 ; v |〉1z′). We note that the transaction 〈|0 ; u |〉0z is completed, therefore
the message u is never emitted. On the contrary, 〈|x().0 ; v |〉0z′ is failed, thus v
is emitted.

4



In webπ, the delivery of one message to its receptor machine is modeled by
the computation step [x w̃ | P ]ỹ | [Q]z̃x → [P ]ỹ | [x w̃ | Q]z̃x.
Asynchrony between machines may give rise to unpredictable delays in commu-
nication. This latency could make timed transaction fail. Consider, for instance,
the machine (tailing 0 are omitted)

[ 〈|x | y() ; z |〉nx ]y | [x().y ]x

where the leftmost location sends the message x to the rightmost one and waits
the answer y . Due to asynchrony between machines, the following computation
is possible (let m < n and n < m + m′):

[ 〈|x | y() ; z |〉nx ]y | [x().y ]x →m [x | 〈|y() ; z |〉n−m
x ]y | [x().y ]x

→ [ 〈|y() ; z |〉n−m
x ]y | [x | x().y ]x

→ [ 〈|y() ; z |〉n−m
x ]y | [ y ]x

→m′
[ 〈|y() ; z |〉0x ]y | [ y ]x

→ [ y | 〈|y() ; z |〉0x ]y | [0]x

where →k is used to denote the effect of k subsequent reductions. In the final
state the message y cannot be consumed by the transaction 〈|y() ; z |〉0x as the
time stamp is 0.

A usual source of failure in networks is the loss of messages. Such failures have
not been explicitly considered in webπ because they are modelled by indefinitely
delaying messages.

3 The scope construct in BPEL

The first case study we discuss is the modelling of the the scope construct
of BPEL. This construct defines transactional activities by associating a failure
handler and a compensation handler to a primary activity 1. The failure handler
is activated in case a fault condition occurs during the execution of the primary
activity. The compensation handler is executed in case the execution of the
primary activity is required to be undone after is has provisionally committed.
In fact, the primary activity could be part of a more complex task that fails,
thus requiring to cancel those subactivities that provisionally completed.

We denote the scope construct with scopex(P ; F ; C), where P is the pri-
mary activity, F is the failure handler, and C is the compensation handler. The
name x is used to signal either the occurrence of a failure during the execution of
the primary activity, or the external request of compensation. We assume that
P , F , and C are asynchronous π-calculus processes.

Before discussing the webπ semantics of scope, we present a prototypal ex-
ample about scopes. Consider a travel organization service that requires to or-
chestrate an hotel and a flight reservation service. We first define the last two
services, then we show how to orchestrate them using the scope construct.
1 The scope construct in BPEL also specifies an event handler. In our simplified model-

ing we only consider fault and compensation handlers used to deal with exceptional
bahaviours.

5



The hotel reservation service is (abstractly) modeled as follows:

HOTEL = [ !resh(arr , dep, conf h).(idh)(conf h 〈idh〉 | idh )
| !cancelh(idh).idh()

]resh,cancelh

The service receives reservation requests indicating the arrival date arr, the
departure date dep, and a channel to be used for communicating the reserva-
tion confirmation conf h. Each reservation has a unique identifier idh, which is
communicated through the reservation confirmation channel conf h. The service
keeps track of the reservation by producing an internal message idh . In case
of cancellation, this message is consumed. This occurs when the name idh is
received back through the channel cancelh.

The flight registration service is modeled similarly, with the unique difference
that the reservation could fail. Let P ⊕ Q be the process (x)(x |x().P |x().Q),
assuming that x 6∈ fv(P ) ∪Q.

FLIGHT = [ !resf (arr , dep, conf h, t). ((idf )(conf f 〈idf 〉 | idf ) ⊕ t )
| !cancelf (idf ).idf ()

]resf ,cancelf

The flight reservation request, besides the arrival and departure dates and the
confirmation channel, carries a fourth name t used in case of reservation failure.
After the reservation request is received, the service internally choose either to
accept or reject it; in case of failure, a message on the channel t is produced.

We are now in place for programming an orchestrator – the travel organiza-
tion service – that combines the above services:

TRVL = (conf h, conf f , storeh, storef , t)
[ scopet( resh 〈arr, dep, conf h〉

| conf h(idh).( storeh 〈idh〉 | resf 〈arr, dep, conf f , t〉
| conf f (idf ).storef 〈idf 〉 )

; storeh(idh).cancelh 〈idh〉
; storeh(idh).cancelh 〈idh〉 | storef (idf ).cancelf 〈idf 〉 )

]conf h,conf f ,t

The travel service uses two local channels storeh and storef to store the identi-
fiers of the hotel and flight reservations, respectively. The primary activity first
sends a request to the hotel reservation service, then to the flight reservation
service. The failure handler manages those cases in which the flight reservation
does not succeed; in these cases the hotel reservation is cancelled. The compen-
sation handler, on the other hand, manages those cases (that we do not model
explicitly) in which the travellers decides to cancel its travel after it has been
fully reserved; in this case both the hotel and the flight reservations are cancelled.

The whole reservation system is modeled as the parallel composition of the
three services described above:

HOTEL | FLIGHT | TRVL

6



The semantics of scope is defined by the following function [[·]] translating the
term scopex(P ; F ; C) for any name x and asynchronous π-calculus processes
P , F , and C. Let zf , zc 6∈ {x} ∪ fn(P |F |C).

[[scopex(P ; F ; C)]] = (zc, zf )
〈|zf | (y)([[P ]]y | y().zf ().(zc | (v)v())) ; zf ().F | zc().C|〉x

The webπ process associated to scope is a timeless transaction having the same
name x. The body of this transaction cannot commit because of the ending
process (v)v() that is deadlocked. The channels zf and zc are used to indicate
whether the failure or the compensation handler should be activated in case the
transaction is aborted. In particular, the message zf activates the failure handler,
while zc activates the compensation handler. The message zf is present during
the execution of the primary activity. If the primary activity completes, the
message zf is replaced by zc . In order to detect the completion of the primary
activity P we use a continuation passing style.

Let [[P ]]y be the function that executes P and produces y when P terminates.
Let also assume that y, y′, y′′ are always fresh names:

[[0]]y = y

[[x ũ]]y = x ũ | y
[[x(ũ).P ]]y = x(ũ).[[P ]]y

[[(x)P ]]y = (x)[[P ]]y
[[P |Q]]y = (y′, y′′)([[P ]]y′ | [[Q]]y′′ | y′().y′′().y )

[[!x(ũ).P ]]y = !x(ũ).[[P ]]y

The definition of [[P ]]y is standard; we comment only the rule dealing with the
parallel composition P |Q. Two new names y′ and y′′ are used to communicate
the completion of the two processes P and Q, respectively. When both y′ and
y′′ are produced, the overall process completes (thus y is produced).

4 Speculative parallelism

The second case study is about a special pattern of client-services interaction:
the so-called speculative parallelism. Speculative parallelism is used by a client
that engages (in parallel) request-response interactions with several services in
such a way that if one of the services completes – the winner –, the remaining
services – the losers – are abandoned.

Before discussing a formal representation of speculative parallelism, we con-
sider a simpler case of request-response protocol between one client and one
service. The protocol is modelled in webπ using the following network:

RP = [ 〈|req .resp().(ack | success ) ; fail |nack |〉nt ]resp

| [ req().(resp | ack().done |nack().abort ) ]req,ack,nack

The client (the machine on the first line) sends a request req to the service (the
machine on the second line) and blocks waiting for the response message resp .

7



If the response arrives in due time (i.e. before the timeout n expires), the client
produces the message success ; otherwise, it produces the message fail . The
service produces the message done in the case the request-response interaction
succeeds, abort otherwise. This is achieved by letting the client to produce ack
(respectively, nack ) when it succeeds (respectively, fails).

Informally, the request-response protocol is correct if it satisfies the following
property: every partial computation may be completed in such a way that both the
client and the service communicate their final state; moreover, the final states of
the client and the service are consistent. The transliteration of this property in
the network RP is: “every computation may be completed in such a way that the
client emits success or fail , while the service emits done or abort ; additionally,
success and abort cannot be both produced, as well as fail and done ”.

To be more formal, let M ↓ x, read M has barb x, be the predicate defined by

M ↓ x if and only if M ≡ (ỹ)([x w̃ |P ]z̃ |N) for some ỹ, w̃, P, z̃,N

The following auxiliary notations are also used:

M ↓ 〈x1 . . . xn〉 if M ↓ xi for i ∈ 1 . . . n
M ↓/ 〈x1 . . . xn〉 if M ↓ 〈x1 . . . xn〉 does not hold
M ⇓ 〈x1 . . . xn〉 if M →∗ M′ for some M′ and M′ ↓ 〈x1 . . . xn〉

where →∗ denotes the reflexive and transitive closure of the reduction relation →
defined for machines. Then the correctness property may be rewritten as follows:
for every machine M such that RP →∗ M, the following two conditions hold:

– M ⇓ 〈success, done〉 or M ⇓ 〈fail , abort〉,
– M ↓/ 〈fail , done〉 and M ↓/ 〈success, abort〉.

It is not difficult to verify that RP is a correct request-response protocol.
We now move to the more general case of speculative parallelism. For sim-

plicity, we consider the case of one client and two services; the generalization to
more than two services is trivial. Let the client send in parallel two requests to
two different services. If at least one response reaches the client in due time, that
service is completed and the other one must be aborted. If no response arrives
before the time-out expires, both services must be aborted.

The first machine we discuss is a direct adaptation of RP:

SP1 = [ (f)( f().fail
| 〈|req1 | resp1().(ack1 | success | t2 ) ; f |nack1 |〉nt1
| 〈|req2 | resp2().(ack2 | success | t1 ) ; f |nack2 |〉nt2 )

]resp1,resp2

| [ req1().(resp1 | ack1().done1 |nack1().abort1 )]req1,ack1,nack1

| [ req2().(resp2 | ack2().done2 |nack2().abort2 )]req2,ack2,nack2

The locations in the last two lines are the two services. They behave in much
the same way as the service in RP (the difference is that we use the indexes 1
and 2 to separate them). The client performs two transactions similar to the

8



one performed by the client in RP. Each transaction engages an interaction with
the corresponding service. The difference with RP is that, in case of success of
one transaction, the other transaction is aborted explicitly (using the message
t1 or t2 ). The local name f is used to implement failure. This is necessary in
order to avoid that two instances of fail are produced when, e.g., the time-out
expires. In this last case both the transactions fail and the two compensations
are activated.

To analyse the correctness of SP1, we generalize to two services the above
property. Let SP1 be correct if the following property holds: for every machine
M such that SP1 →∗ M, the following two conditions hold:

– M ⇓ 〈success, done1, abort2〉 or M ⇓ 〈success, abort1, done2〉 or
M ⇓ 〈fail, abort1, abort2〉,

– M ↓/ 〈done1, done2〉 and M ↓/ 〈fail, done1, abort2〉 and
M ↓/ 〈fail, abort1, done2〉 and M ↓/ 〈success, abort1, abort2〉.

We notice that SP1 is incorrect because it may happen that both transactions
commit. This occurs if both messages resp1 and resp2 reach the client when
the time stamp is n′ > 1. For instance, consider the computation

SP1 →∗ [ resp1 | resp2
| (f)( f().fail

| 〈|resp1().(ack1 | success | t2 ) ; f |nack1 |〉n
′

t1

| 〈|resp2().(ack2 | success | t1 ) ; f |nack2 |〉n
′

t2 )
]resp1,resp2

| [ ack1().done1 |nack1().abort1 ]req1,ack1,nack1

| [ ack2().done2 |nack2().abort2 ]req2,ack2,nack2

It is easy to verify that this computation may be completed yielding a machine
M such that M ↓ 〈done1, done2〉. This contradicts the second condition of the
previous property.

This problem may be avoided by enclosing the two transactions in an out-
ermost transaction that is responsible to check that at most one transaction
succeeds. This solution is implemented by the machine SP2.

SP2 = [ (r, a1, a2) 〈| 〈|req1 | resp1().(r 〈t2, a1〉 | a1().ack1 ) ; nack1 |〉t1
| 〈|req2 | resp2().(r 〈t1, a2〉 | a2().ack2 ) ; nack2 |〉t2
| r(u, v).(u | v | success )
; t1 | t2 | fail |〉nt

]resp1,resp2

| [ req1().(resp1 | ack1().done1 |nack1().abort1 )]req1,ack1,nack1

| [ req2().(resp2 | ack2().done2 |nack2().abort2 )]req2,ack2,nack2

This machine is correct. The formal proof of this result is not reported, as it is a
tedious analysis of the possible computations. We report an informal discussion
of the basic idea underlying the implementation.

9



The request-response interactions with the services are realized by the trans-
actions t1 and t2, which are inside a transaction t that is responsible for deciding
the winner and the loser. The transactions t1 and t2 send a request to the corre-
sponding service and wait for the answer. On reception of the answer, t1 and t2
communicate their end on the private channel r . The message carries two names:
the first one is the name of the opposite transaction while the second one is the
name of an input where the transaction body is waiting for an acknowledgement.
When the t-transaction receives these two names, they are used to cancel the
loser and to acknowledge the winner. Both t1 and t2 have an associated com-
pensation process that may cancel the task itself. The compensation process of
t simply invokes the compensations of t1 and t2.

As regards time, the time stamp n is associated to the transaction t, while t1
and t2 are timeless. It is worth noting that, if t1 and t2 where timed, the protocol
turns out to be incorrect. In fact, the time-outs of t1 and t2 may expire after
the transaction t has received a message on the channel r, but before the winner
transaction is notified. To clarify this circumstance, let SP2′ be the machine SP2
where the time stamp n is also associated to the transactions t1 and t2. It is
possible to obtain

SP2′ →∗ [ (r, a1, a2) 〈| 〈|a1().ack1 ; nack1 |〉0t1
| 〈|req2 | resp2().(r 〈t1, a2〉 | a2().ack2 ) ; nack2 |〉0t2
| t2 | a1 | success

; t1 | t2 | fail |〉0t
]resp1,resp2

| [ ack1().done1 |nack1().abort1 ]req1,ack1,nack1

| [ req2().(resp2 | ack2().done2 |nack2().abort2 )]req2,ack2,nack2

The reader may verify that this computation may be extended reaching a ma-
chine M such that M ↓ 〈success, abort1, abort2〉 thus contradicting the second
condition of the property formalized above.

5 Conclusion

We have explored the expressivity of webπ for modeling and reasoning about
typical mechanisms of Web Services orchestration and composition. In particular,
two case studies have been considered, one inspired by the orchestration language
BPEL and another one based on the pattern of services combination known as
speculative parallism.

In the next future we intend to consider a more significant fragment of BPEL,
in particular the so-called event handlers, as well as composition mechanisms
of other emerging languages such as WS-CDL. We also intend to model and
compare a whole class of patterns of composition for services. In this respect,
the library of patterns described in [10] will be taken as the main source of
inspiration for the protocols to be considered.

10



References

1. T. Andrews and et.al. Business process execution language for web services. Version
1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel
Systems, 2003.

2. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long running transactions.
In FMOODS’03, Proceedings of the 6th IFIP International Conference on Formal
Methods for Open Object-based Distributed Systems, volume 2884 of LNCS, pages
124–138. Springer-Verlag, 2003.

3. R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join cal-
culus. In CONCUR 2002: Proceedings of the 13th International Conference on
Concurrency Theory, volume 2421 of LNCS, pages 321–337. Springer Verlag, 2002.

4. M. Butler and C. Ferreira. An operational semantics for stac, a language for mod-
elling long-running business transactions. In COORDINATION’04, Proceedings of
the 6th International Conference on Coordination Models and Languages, volume
2949 of LNCS, pages 87–104. Springer-Verlag, 2004.

5. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transac-
tions. In Proceedings of 25 Years of CSP, London, 2004.

6. N. Kavantzas, G. Olsson, J. Mischkinsky, and M. Chapman. Web services chore-
ography description languages. W3C Web Services Choreography Working Group,
2003.

7. C. Laneve and G. Zavattaro. Foundations of web transactions. In FOSSACS
2005: Proceedings of Foundations of Software Science and Computation Structure,
volume to appear of LNCS. Springer Verlag, 2005.

8. F. Leymann. Web services flow language (wsfl 1.0). Technical report, IBM Software
Group, 2001.

9. S. Thatte. XLANG: Web services for business process design. Microsoft Corpora-
tion, 2001.

10. M. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and Parallel Databases, 14, 2003.

A Operational semantics of webπ

This section is devoted to the formal definition of the semantics of webπ. We
refer to [7] for a detailed discussion of the rules.

The input x(ũ).P , restriction (x)P , replicated input !x(ũ).P , and machine
restriction (x)M are binders of names ũ, x, and ũ, and x, respectively. The scope
of these binders are the processes P and the machine M. We use the standard
notions of α-equivalence, free and bound names of processes, and machines, noted
fn(P ), bn(P ), fn(M), bn(M), respectively. In particular,

– fn(〈|P ; Q|〉nx) = fn(P )∪fn(Q)∪{x} and α-equivalence equates (x)(〈|P ; Q|〉nx)
with (z)(〈|P{z/x} ; Q{z/x}|〉

n
z ) provided z 6∈ fn(〈|P ; Q|〉nx);

– fn([P ]x̃) = x̃ ∪ fn(P ).

11



Definition 1. The structural congruence ≡ is the least congruence closed with
respect to α-renaming, satisfying the abelian monoid laws for parallel (associa-
tivity, commutativity and 0 as identity), and the following axioms:

for processes:

1. the scope laws:

(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,
P | (u)Q ≡ (u)(P |Q) , if u 6∈ fn(P )

〈|(z)P ; Q|〉nx ≡ (z)〈|P ; Q|〉nx , if z 6∈ {x} ∪ fn(Q)
〈|P ; (z)Q|〉0x ≡ (z)〈|P ; Q|〉0x , if z 6∈ {x} ∪ fn(P )

2. the repetition law:
!x(ũ).P ≡ x(ũ).P | !x(ũ).P

3. the transaction laws:

〈|0 ; Q|〉nx ≡ 0
〈|〈|P ; Q|〉ny |R ; R′|〉mx ≡ 〈|P ; Q|〉ny | 〈|R ; R′|〉mx

4. the floating laws:

〈|z ũ |P ; Q|〉nx ≡ z ũ | 〈|P ; Q|〉nx
〈|y(ṽ).P |P ′ ; z ũ |Q|〉0x ≡ z ũ | 〈|y(ṽ).P |P ′ ; Q|〉0x

for machines:

1. the machine scope laws:

(u)0 ≡ 0, (x)(z)M ≡ (z)(x)M,
M | (x)N ≡ (x)(M |N) , if x 6∈ fn(M)
[ (x)P ]z̃ ≡ (x)[P ]z̃x , if x /∈ z̃

2. the lifting law:
[P ]x̃ ≡ [Q]x̃ , if P ≡ Q

The dynamic behaviour of processes and machines is defined by the reduction
relation. The operation of decreasing by 1 the time stamps of active transactions
on the same machine is modelled by the time stepper function. The definitions
of this function and another auxiliary function are in order:

input predicate inp(P ): this predicate verifies whether a process contains an
input that is not underneath a transaction. It is the least relations such that:

inp(x(ũ).P )
inp((x)P ) if inp(P )
inp(P |Q) if inp(P ) or inp(Q)
inp(!x(ũ).P )

12



time stepper function φ(P ): this function decreases the time stamps by 1.
For the missing cases, φ(P ) = P .

φ((x)P ) = (x)φ(P )
φ(P |Q) = φ(P ) |φ(Q)

φ(〈|P ; R|〉0x) =
{
〈|φ(P ) ; φ(R)|〉0x if inp(P )
〈|φ(P ) ; R|〉0x otherwise

φ(〈|P ; R|〉n+1
x ) = 〈|φ(P ) ; R|〉nx

Definition 2. The reduction relation → is the least relation satisfying the re-
ductions:

for processes:
(com)

x ṽ |x(ũ).P → P{ṽ/ũ}
(fail)

x | 〈|z(ũ).P |Q ; R|〉n+1
x → 〈|z(ũ).P |φ(Q) ; R|〉0x

and closed under ≡, (x)-, and the rules:

P → Q

P |R → Q |φ(R)

P → Q

〈|P ; R|〉n+1
x → 〈|Q ; R|〉nx

P → Q

〈|y(ṽ).R |R′ ; P |〉0x
→ 〈|y(ṽ).R |φ(R′) ; Q|〉0x

for machines:

(intra)

P → Q

[P ]x̃ → [Q]x̃

(time)

P 6→
[P ]x̃ → [φ(P )]x̃

(deliv)

[x ṽ |P ]z̃ |[Q]ỹx

→ [P ]z̃ |[x ṽ |Q]ỹx

and closed under ≡, (x)-, and parallel composition.

13


