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We study FJf, a concurrent object calculus with future types and operations for getting

the values and releasing the control. Programs in FJf may manifest locks (deadlocks or

livelocks) due to badly programmed release points. In order to statically detect possible

misbehaviours, we develop a technique for the lock analysis based on contracts, which

are abstract descriptions of method’s behaviours. Contracts are derived by a type

inference algorithm and are modeled by finite state automata whose states retain

information on caller-callee dependencies. A potential lock is detected when a circular

dependency is found in some state of the automata.

1. Introduction

Concurrent object-oriented programming is a common model of concurrency that dates back to

the 80-ies (Yonezawa, 1990; America et al., 1986) and is nowadays widely used by the mainstream

programming languages (Java, C#. C++, Objective C, etc.). Since the beginning, prompted by

the need of combining object-orientation with distributed programming and taking inspiration

from Agha’s Actors (Agha, 1986), method calls have been modeled as asynchronous message

sendings, that is the caller continues executing in parallel with the called method. More re-

cently, standard method invocations have been reintroduced in a “loosely-coupled” fashion by

using future types (Liskov and Shrira, 1988; Niehren et al., 2006) and explicit operations for

getting the values of invocations and explicitly releasing the control. In fact, a number of exten-

sions that include these features have been designed, often as libraries, for the above popular

languages C++ (Lavender and Schmidt, 1995), Java (Welc et al., 2005), C#, Visual Basic and

.NET (Torgersen, 2010), as well as novel prototypes have been proposed (Johnsen and Owe,

2007).

While explicit scheduling mechanisms (such as getting values, releasing the control, etc.)

allow flexible patterns of synchronization that are attractive for optimizing purposes or for

avoiding unneeded busy waitings, debugging programs using such mechanisms may be very

difficult because of inconsistencies between release points in separate, yet cooperating, methods.

Following the practice to define lightweight fragments of languages that are sufficiently small to

ease proofs of basic properties, we define an object-oriented calculus with futures and operators

for releasing the control and develop a technique for the analysis of deadlocks.

Our object-oriented language, called Featherweight Java with futures, FJf in brief, is an exten-

sion of Featherweight Java (Igarashi et al., 2001). In FJf, objects have multiple tasks in execution

and there is at most one task per object that is active at each point in time. The active task may
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explicitly return the control in order to let another task of the same object progress. Tasks are

created by method invocations: the caller activity continues after the invocation and the called

code runs on a different task. The synchronization between the caller and the called methods

is performed when the result is strictly necessary. In order to decouple method invocation and

returned value, FJf uses future variables, which are pointers to values that may be not available

yet. Clearly, the access to values of future variables may require waiting for the value to be

returned.

In a model with objects and explicit scheduling operation, a typical (dead- or live-)lock oc-

curs when one or more tasks are waiting for each other termination to return a value. A simple

circular dependency involves only one task as in the method

Int fact(Int n){ return if (n==0) then 1 ;

else n*(this!fact(n-1).get) ; }

that defines the factorial function (for the sake of the example we include primitive types Int

and conditional into the FJf syntax – see Section 3.1). In the body of fact, the recursive invo-

cation this!fact(n-1) is postfixed by a get operation that retrieves the value returned by the

invocation. Yet, get does not releases the lock of the caller object; therefore the task evaluating

this!fact(n-1) is fated to be delayed forever because its object is the same of the caller.

Our main goal is the development of a technique for the static detection of deadlocks and

livelocks in FJf programs. The technique we propose is based on contracts, which are abstract

descriptions of behaviours that retain the necessary information to detect locks (Kobayashi,

2006; Laneve and Padovani, 2007). For example, the contract of fact (assuming the method

belongs to a class Maths without fields) is a[ ](){ Maths.fact a[ ]().(a,a) }. This contract

declares that the invocation of fact on an object a will call (recursively) fact on the same object

a and the invocation introduces an object name dependency (a, a). The dependency specifies that

the object of the caller, stored in the first element of the pair, is released as soon as the callee

gets and releases its own object, which is stored in the second element of the pair.

We define a type inference system for associating a contract to every method of the program

and to the expression to evaluate. The type system is demonstrated to be sound with respect

to the operational semantics of FJf – namely typing is preserved by transitions.

In order to statically detect potential locks in FJf programs, we introduce a finite model called

finite state automata for lock analysis, lafsa in brief, whose states retain information on caller-

callee dependencies, and whose transitions mimic the concrete transitions of the FJf semantics.

In particular, every state of a lafsa is a relation on object names and a potential misbehaviour

(a deadlock or a livelock) is signaled by the presence of a circularity in some state of its. We then

define a lafsa semantics for contracts that, given the type systems for methods and expressions,

allows one to associate a lafsa to every FJf program. For example, the model of the above

method fact is a single state lafsa whose state is {(a, a)}. A pair as (a, a) in a state signals a

circular object name dependency, which allows us to conclude that fact may manifest a lock –

in this case a deadlock. In fact, the above fact is a wrong implementation of the factorial in

FJf. (Correct implementations are discussed in Section 6.)

The key technical point of the contribution is the proof of correctness of our technique: a

transition of a FJf program from state S to state S′ is such that the states of the lafsa of

S′ contain less object name dependencies than the states of the lafsa of S. Said otherwise,

correctness means that the precision of our technique does not decrease as the computation

progresses. It is worth to notice that the lafsas of S and S′ are those of their contracts, which

must exist for well-typed programs by the soundness of the type system.
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class C extends Object {
Object f ;

C m() { return new C(this.f) ;} }
class D extends C {

C n(D c) { return (c!m()).await.get ;} }
class E extends C {

C n(E c) { return (c!m()).get ;} }

Table 1. Simple classes in FJf

The paper is organized as follows. Section 2 introduces the main ideas of FJf by discussing

few sample programs. Section 3 presents the syntax and operational semantics of FJf. Section 4

defines contracts and the type system for deriving contracts of expressions and methods. Sec-

tion 5 introduces the model of our contracts – the lafsa – and defines the operations that are

used in the semantics of contracts. Section 6 defines the semantics of contracts in terms of lafsas

and demonstrates its correctness – a program whose lafsa does not manifest a lock – i.e. an

object name circularity – will never deadlock nor livelock. Section 7 surveys related works, and

we give conclusions and indications of further work in Section 8.

2. FJf in a nutshell

In FJf a program is a collection of class definitions plus an expression to evaluate. A simple

definition in FJf is the class C in Table 1 that defines a class with a field f and a method m.

When m is invoked, a new object of class C is created (with f containing the same value of the

creator) and returned. FJf also supports inheritance: the class D in Table 1 extends C with a

method n.

Method invocations in FJf are asynchronous; for this reason we use the exclamation mark

rather than the usual dot notation when methods are invoked – see the body of method n in

Table 1.

FJf features explicit processor release points in method definitions, thus allowing the caller

to decide the transfer of control at runtime. For example, in the scope of Table 1 declarations,

the invocation

x!n(x)

where x is an object of class D, brings to executing the body of m on the object x. Since the

caller method n and the method m called in the body of n share a same object, the code of m

cannot be evaluated until the caller n explicitly releases the control. The await operation in

(c!m()).await.get exactly lets the control be released. The following get operation is used for

retrieving the value of the invocation, once the callee terminates.

The operations await and get permit very flexible patterns of synchronization. As usual,

when flexibility grows safety reduces and FJf does not escape from this principle. For example,

if x is an object of class E in Table 1, the above expression x!n(x) gets stuck because the task

executing the body of n does not release the control on the object x. Therefore the body of m

cannot be evaluated.

To detect the dangerous synchronization patterns as the one above, FJf uses behavioural

types, called contracts. For example, the contract of the method m of Table 1 is derived using

the rule

Γ + this : (C, a[f : X]) `a new C(this.f) : (C, b[f : X]) , 0

Γ ` C m (){return new C(this.f); } : a[f : X](){0} b[f : X] in C
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(which is an instance of (T-Method) in Table 5 where trivially true hypotheses are omitted).

The contract a[f : X](){0} b[f : X] specifies the object receiver of m, namely a[f : X], where a

is the object name and X is the value of the field f, and the returned object b[f : X], which has

a different object name from a but the same value of the field. The contract also specifies the

behaviour, which is empty (= 0) in this case. The premise of the above rule has a judgment of

the form Γ `a e : (T, r) , c, where Γ is the environment, a is the object name of the method

containing the expression e, e is a FJf expression, T is its (standard) type, r is a future record

that we explain in a while, and the contract c bears information about caller-callee dependencies

among object names.

The typing of n in Table 1 follows by the proof tree

Γ + this : (D, a[f : X]), c : (D, b[f : Y ]) `a c!m() : (Fut(C), b  b′[f : Y ]) , D.m b[f : Y ]()

Γ + this : (D, a[f : X]), c : (D, b[f : Y ]) `a c!m().await : (Fut(C), b  b′[f : Y ]) , D.m b[f : Y ]().(a, b)a

Γ + this : (D, a[f : X]), c : (D, b[f : Y ]) `a c!m().await.get : (C, b′[f : Y ]) , D.m b[f : Y ]().(a, b)a

Γ ` C n (D c){return c!m().await.get ;} : a[f : X](b[f : Y ]){D.m b[f : Y ]()→ b′[f : Y ].(a, b)a} b′[f : Y ] in D

(the rules used are instances of (T-Await), (T-Get), and (T-Method) in Table 5 where,

as before, trivially true hypotheses are omitted). This proof highlights that FJf types also

include future types. In particular, when the returned type of a method is declared to be C,

the corresponding invocations return future values of type Fut(C) because the context of the

invocations cannot assume the presence of the returned value. The operation retrieving values,

called get, takes an expression of type Fut(C) and returns C. As the reader may expect, the

operation releasing the control, called await, takes an expression of type Fut(C) and returns

Fut(C).

Back to the judgment Γ `a e : (T, r) , c, the future record r stores the object names to access

to future values. These values, being the results of method invocations, are available provided

the control of the objects of the invoked methods has been acquired. For example, the above

expression new C(this.f), being its type the (standard) class C, has b[f : Y ] as future record.

The expression c!m(), being its type Fut(C), has b  b′[f : Y ] as future record. This means

that, if the context needs the value of c!m() – a future record b′[f : Y ] –, as it is the case in

the body of n, then it is necessary to get the control of the object with name b (otherwise m

cannot be executed). By storing object names, future records r play a critical role to enforce

the aforementioned constraint.

The method n has contract D.m b[f : Y ]( ) → b′[f : Y ].(a, b)a, where a is the object name of

the caller and b is the object name of the callee This contract shows up that n invokes m and

waits for m termination by releasing the control on its object a – the pair (aa, ba). Said otherwise,

the method n may complete provided the control on the object name b is released. It is worth

to notice that the get operation does not add further commitments to the contract of n: a get

after an await always succeeds therefore it is never displayed in contracts.

Contracts are inputs to our deadlock and livelock analysis technique developed in the second

part of the paper. The technique returns finite state automata, called lafsa, where states are

relations on object names. Figure 1(i) illustrates the (single state) lafsa of the contract D.m b[f :

Y ]( ) → b′[f : Y ].(a, b)a (the one of D.n). The state contains only the pair (a, b)a because the

invocation D.m b[f : Y ]( ) has contract 0 like the homonymous method in C. Figure 1(ii) illustrates

the (single state) lafsa of the contract E.m b[f : Y ]( )→ b′[f : Y ].(a, b) (the one of E.n). These

two automata do not manifest any problematic dependency between object names as long as

they are invoked with values of this and of the argument that are different (a 6= b). However,
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(a,b)

(i) (ii)

(a,b) (b,a),(a,c),(b,c)

(aa,ba)

Fig. 1. Sample lafsa for methods of Table 1: (i) for the method n of D, (ii) for the method

n of E

a critical pair appears if a = b – an object-circularity –, as in the invocation x!n(x), where x

is an object of class E. In fact, in this case, the program deadlocks. On the contrary, if x is an

object of class D, being Figure 1(i) the lafsa modelling the contract of D.n, the state becomes

{(aa, aa)} which is not a critical pair in FJf. In fact, in this case, the program terminates.

3. The calculus FJf

The syntax and the semantics of FJf are illustrated in the following two subsections; the last

subsection is devoted to the discussion of examples.

3.1. Syntax

The syntax of FJf uses four disjoint infinite sets of names: class names, ranged over by A, B, C,

· · · , field names, ranged over by f, g, · · · , method names, ranged over by m, n, · · · , and variables,

ranged over by x, y, · · · . The special name this is assumed to belong to the set of variables.

The notation C̄ is a shorthand for C1; · · · ;Cn and similarly for the other names. Sequences of

pairs are abbreviated as C1 f1; · · · ;Cn fn with C̄ f̄. The concatenation of sequences is denoted

by a semicolon; the empty sequence is written as • and is omitted when it is clear the presence

of an empty sequence from the context.

The abstract syntax of class declarations CL, method declarations M, expressions e, and types

T of FJf is the following

CL ::= class C extends C {T̄ f̄ ; M̄}
M ::= T m (T̄ x̄){ return e ; }
e ::= x | e.f | e!m(ē) | new C(ē) | e; e | e.get | e.await

T ::= C | Fut(T)

Sequences of field declarations T̄ f̄, method declarations M̄, and parameter declarations T̄ x̄ are

assumed to contain no duplicate names.

A program is a pair (ct, e), where the class table ct is a finite mapping from class names

to class declarations CL and e is an expression. In what follows we always assume a fixed class

table ct.

According to the syntax, every class has a superclass declared with extends. To avoid cir-

cularities, we assume a distinguished class name Object with no field and method declarations

and whose definition does not appear in the class table. In types, the terms Fut(T) are called

futures of type T.

Let fields(C), mtype(m, C), and mbody(m, C) be the lookup functions that are reported in Table 2

(these are the same as in FJ (Igarashi et al., 2001)). We write m ∈ C when mtype(m, C) is defined

(m is a method of C). The class table satisfies the following well-formed conditions:
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Field lookup:

fields(Object) = •
ct(C) = class C extends D {T̄ f̄; M̄} fields(D) = T̄′ ḡ

fields(C) = T̄ f̄, T̄′ ḡ

Method type lookup:

ct(C) = class C extends D {T̄ f̄; M̄}
T′ m (T̄′ x̄){return e; } ∈ M̄

mtype(m, C) = T̄′ → T′

ct(C) = class C extends D {T̄ f̄; M̄}
m 6∈ M̄

mtype(m, C) = mtype(m, D)

Method body lookup:

ct(C) = class C extends D {T̄ f̄; M̄}
T′ m (T̄′ x̄){return e; } ∈ M̄

mbody(m, C) = x̄.e

ct(C) = class C extends D {T̄ f̄; M̄}
m 6∈ M̄

mbody(m, C) = mbody(m, D)

Table 2. Lookup auxiliary functions

(i) Object /∈ dom(ct);

(ii) for every C ∈ dom(ct), ct(C) = class C · · · ;
(iii) every class name occurring in ct belongs to dom(ct);

(iv) the least relation <: , called subtyping relation, over types T, closed by reflexivity and

transitivity and containing

T1 <: T2

Fut(T1) <: Fut(T2)

ct(C1) = class C1 extends C2 {· · · }
C1 <: C2

is antisymmetric.

3.2. Semantics

The operational semantics of FJf uses two additional infinite sets of names: object names, ranged

over by a, b, · · · and task names, ranged over by t, t′, · · · . Object names are partitioned

according to the class they belongs. We assume there are infinitely many object names per class

and the function fresh(C) returns a new object name of class C. Given an object name a, the

function class(a) returns its class.

Values v, v′, · · · , are terms defined by the following grammar:

v ::= t | a[f̄ : v̄]

For example a[ ] is a value of a class without fields (like Object). Values as a[f̄ : v̄] are named

records, where a is the name and v̄ are the values stored in the fields f̄. The operational semantics

uses object names to implement mutual exclusion between tasks of the same object. (The analysis

in Section 6 will use object names to catch circular dependencies between tasks.) In the following,

with an abuse of notation, values, as well as expressions, will be ranged over by e, e′, · · · .
Let states S, S′, · · · , be sets of tasks t :`a e, where t is a task name, a is an object name, ` is

either > (if the task owns the control of a) or ⊥ (if not), and e is an expression. The operational

semantics of FJf is the transition relation
a−→ between states defined in Table 3 where the

following notations and shortenings are used:
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(Field)

f : v ∈ f̄ : v̄

t :>a E[b[f̄ : v̄].f]
a−→ t :>a E[v]

(Invk)

mbody(m, class(b)) = x̄.e t′ = freshtask( )

t :>a E[b[f̄ : v̄]!m(v̄′)]
a−→ t :>a E[t′], t′ :⊥b e[b[f̄ : v̄]/this][v̄

′
/x̄]

(New)

fields(C) = T̄ f̄ b = fresh(C)

t :>a E[new C(v̄)]
a−→ t :>a E[b[f̄ : v̄]]

(Seq)

t :>a v; e
a−→ t :>a e

(Get)

t :>a E[t′.get], t′ :b v
a−→ t :>a E[v], t′ :b v

(AwaitT)

t :>a E[t′.await], t′ :b v
a−→ t :>a E[t′], t′ :b v

(AwaitF)
e 6= v

t :>a E[t′.await], t′ :b e
a−→ t :⊥a E[t′.await], t′ :b e

(Release)

t :>a v
a−→ t :⊥a v

(Lock)
e 6= v

t :⊥a e
a−→ t :>a e

(State)

S
a−→ S′ unlocked(S′′, a)

S, S′′
a−→ S′, S′′

Table 3. The transition relation of FJf.

– evaluation contexts E whose syntax is:

E ::= [ ] | E!m(ē) | E.f | a[f̄ : v̄]!m(v̄,E, ē) | new C(v̄,E, ē) | E.get | E.await | E; e

– the predicate unlocked(S, a) that returns true if every t :`a e in S is such that ` = ⊥;

– the function freshtask( ) always returns a new task name;

– in t :`a e, the superscript ` is omitted when it is not relevant.

The rules defining field selection, object creation, and sequence, namely (Field), (New),

(Seq), are standard; we therefore discuss the other ones. Rule (Invk) defines the method invo-

cation. According to this rule, the evaluation of b[f̄ : v̄]!m(v̄′) produces a future reference t′ to

the value returned by m. The task evaluating the called method is created and the evaluation of

the caller can continue – the invocation is asynchronous; however the evaluation of the called

method m cannot begin until its value of ` becomes >. Rule (Get) permits the retrieval of

the value returned by a method. Rules (AwaitT) and (AwaitF) model the await operation:

if the task t′ is terminated – it is paired to a value – then await is unblocking; otherwise the

control of the object is released by t. Rule (Release) models task termination, which amounts

to store the returned value in the state and releasing the control of the object. According to the

transition relation, a task t :`a e moves provided ` = >, except for rule (Lock). This rule allows

a task with a non-value expression to get the control. The rule must be read in conjunction with

rule (State) that lifts transitions
a−→ to complex states and enforces the property that there

is always at most one task per object owning the control. This means that (Lock) cannot be

used if the state has a task t′ :>a e′.

The following statement guarantees that the property “there is at most one task that has the

control per object” is an invariance of the transition relation.
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Proposition 3.1. Let S be sound if, for every a, there is at most one task t :`a e with ` = >.

If S is sound and S
a−→ S′ then S′ is sound as well.

The initial state of a program (ct, e) is t :>a e[a[ ]/this] where a is a name of class Object.

We write S −→∗ S′ if there are a1, · · · , an such that S
a1−→ · · · an−→ S′.

3.3. Examples

As a first example, we detail the evaluation of the expression (new D(this))!n(new D(this)),

where the class D is defined in Table 1 (this in the initial state is a value of class Object).

t :>a (new D(a[ ]))!n(new D(a[ ]))
a−→ t :>a b[f:a[ ]]!n(new D(a[ ])) (1) (New)
a−→ t :>a b[f:a[ ]]!n(c[f:a[ ]]) (2) (New)
a−→ t :>a t1, t1 :⊥b c[f:a[ ]]!m().await.get (3) (Invk)
b−→ t :>a t1, t1 :>b t2.await.get, t2 :⊥c new C(c[f:a[ ]].f) (4) (Invk)
c−→ t :>a t1, t1 :>b t2.await.get, t2 :>c new C(c[f:a[ ]].f) (5) (Lock)
c−→ t :>a t1, t1 :>b t2.await.get, t2 :>c new C(a[ ]) (6) (Field)
c−→ t :>a t1, t1 :>b t2.await.get, t2 :>c d[f:a[ ]] (7) (New)
b−→ t :>a t1, t1 :>b t2.get, t2 :>c d[f:a[ ]] (8) (AwaitT)
b−→ t :>a t1, t1 :>b d[f:a[ ]], t2 :>c d[f:a[ ]] (9) (Get)

The reader may notice that, in the final state, the tasks t, t1 and t2 will terminate one after

the other by releasing the controls of the corresponding objects.

Consider the code of n in class E of Table 1 and let b be an object name of class E. Let us

evaluate the state t :>a b[f : a[ ]]!n(b[f : a[ ]]) (corresponding to the expression x!n(x) that has

been already discussed in Section 2, here we are detailing its semantics):

t :>a b[f : a[ ]]!n(b[f : a[ ]])
a−→ t :>a t1, t1 :⊥b b[f:a[ ]]!m().get (Invk)
b−→ t :>a t1, t1 :>b b[f:a[ ]]!m().get (Lock)
b−→ t :>a t1, t1 :>b t2.get , t2 :⊥b new C(b[f:a[ ]].f) (Invk)

The last state is a deadlock because t2 will never get the control on the object b, which is owned

by t1.

Deadlocks may be difficult to discover when they are caused by schedulers’ choices. For ex-

ample, let F be the following extension of the class E in Table 1:

class F extends E {
Fut(C) p(E b, E c){ return b!n(c);c!n(b) ;}

and consider the state t :>a (new F(new Object))!p(new F(new Object), a[f: b[ ]]), where
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a is an object of class F. Its evaluation is as follows (
a−→
k

means
a−→ · · · a−→︸ ︷︷ ︸
k times

):

t :>a (new F(new Object))!p(new F(new Object), a[f: b[ ]])
a−→

4
t :>a (a ′[f : b′])!p(a ′′[f : b′′], a[f : b[ ]]) (New)

a−→ a′
−→ t :>a t1, t1 :>a′ (a ′′[f : b′′])!n(a[f : b[ ]]); (a[f : b[ ]])!n(a ′′[f : b′′]) (Invk)+(Lock)

a′
−→ t :>a t1, t1 :>a′ t2; (a[f : b[ ]])!n(a ′′[f : b′′]), t2 :⊥a′′ (a[f : b[ ]])!m().get (Invk)

a′
−→

2

t :>a t1, t1 :>a′ t3, t2 :⊥a′′ (a[f : b[ ]])!m().get, t3 :⊥a (a ′′[f : b′′])!m().get(Seq)+(Invk)
a−→ t :⊥a t1, t1 :>a′ t3, t2 :⊥a′′ (a[f : b[ ]])!m().get, t3 :⊥a (a ′′[f : b′′])!m().get (Release)

a′′
−→

2

t :⊥a t1, t1 :>a′ t3, t2 :>a′′ t4.get, t3 :⊥a (a ′′[f : b′′])!m().get, t4 :⊥a new C(a[f : b[ ]].f)

(Lock)+(Invk)

The last state is the critical one: there are two tasks t3 and t4 that are waiting to get the control

on the object a. According to scheduler’s choice leans towards t3 or t4 one gets a deadlocked

state or not, respectively.

A last example discusses an expression that yields a livelock state. Let G be the following

extension of the class D in Table 1:

class G extends D {
C p(D b) { return b!n(this).get ;}

}

and let us consider the evaluation:

t :>a (new G(new Object))!p(new D(new Object))
a−→

2 a−→
2
t :>a a ′[f : b′[ ]]!p(a ′′[f : b′′[ ]]) (1) (New)

a−→ t :>a t1, t1 :⊥a′ a ′′[f : b′′[ ]]!n(a ′[f : b′[ ]]).get (2) (Invk)

a′
−→

2

t :>a t1, t1 :>a′ t2.get, t2 :⊥a′′ a ′[f : b′[ ]]!m().await.get (3) (Lock)+(Invk)

a′′
−→

2

t :>a t1, t1 :>a′ t2.get, t2 :>a′′ t3.await.get, t3 :⊥a′ new C(b′[ ]) (4) (Lock)
a′′
−→ t :>a t1, t1 :>a′ t2.get, t2 :⊥a′′ t3.await.get, t3 :⊥a′ new C(b′[ ]) (5) (Await)

...

From state (4) onwards, t1 is blocked while t2 continuously gets an releases the lock on a′′

waiting for the termination of t3. In turn t3 will never get the control of the object a′ (that is

got by t1), therefore it will not terminate.

4. Inference of contracts in FJf

4.1. Preliminaries: contracts and substitutions

The analysis technique we develop in the rest of the paper uses abstract descriptions of methods

and expression behaviours, called contract methods and contracts, respectively. The syntax of

these descriptions uses an infinite set of record names, ranged over by X, Y , Z, · · · .Future records

r, s, · · · , and contracts c, c′, · · · are defined by the following grammar:

r ::= X | a[f̄ : r̄] | a  r

c ::= 0 | C.m r(r̄)→ r
′ | C.m r(r̄)→ r

′.(a, a ′) | C.m r(r̄)→ r
′.(a, a ′)a | (a, a ′) | (a, a ′)a | c # c
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A record name X represents a variable that may be possibly instantiated by substitutions. The

future record a[f̄ : r̄] defines the object name and the future records of values stored in its fields.

The future record a  r specifies that, in order to access to r one has to acquire the control

of the object with name a (and to release this control once the method has been evaluated).

Future records as a  r are associated to method invocations: the object name a represents the

object of the invoked method. The name a in a[f̄ : r̄] and a  r will be called the root of the

future record and is returned by the (partial) function root(·).
The contract c collects the method invocations inside expressions and the object name depen-

dencies. A contract may be empty, noted 0, specifying that the method behaviour is irrelevant

for our analysis; or C.m r(r̄)→ r
′, specifying that the method m of class C is going to be invoked

on an object r, with arguments r̄, and an object r′ will be returned; or C.m r(r̄) → r
′.(a, a ′),

indicating that the current method execution requires the termination of method C.m running

on a ′ to release the object with name a; or C.m r(r̄) → r
′.(a, a ′)a, indicating that the current

method execution requires the termination of method C.m running on a ′ to continue (the object

with name a may be released meanwhile); or just (a, a ′) (resp. (a, a ′)a) when the dependency

is due to a get (resp. an await) operation on a field or on a parameter, which have contract

0, instead of being directly on a method invocation. Pairs (a, a ′) and (a, a ′)a are called object

name dependencies. The contract c #c′ defines the abstract behaviour of sequential composition

of expressions.

As an example of contracts, let us discuss the terms:

(a) C.m a[f:b[]]()→a′′[f:b[]] # C.m a ′[f:b′[]]()→ b′′[f:b′[]]

(b) C.m a[f:b[]]()→ a ′′[f:b[]].(a ′′′, a) # C.m a ′[f:b′[]]()→ b′′[f:b′[]].(a ′′′, a ′)a

The contract (a) defines a sequence of two invocations of method m in Table 1; the future record

of the first one is a[f : b[ ]], the future record of the second one is a ′[f : b′[ ]]. This contract is not

enforcing any constraint on object names because the values of invocations are not needed in

the context. As we will see below, an FJf expression retaining this contract is x!m() ; y!m(),

with x and y variables of class C. The contract (b) defines two invocations of method m as

(a) and, additionally, expresses that the value of the first invocation is required as well as the

termination of the second invocation. An FJf expression retaining this contract is x!m().get ;

y!m().await, with x and y variables of class C.

A future record is linear if the object names and the record names occur linearly. The function

names(·) returns the object and record names. Method contracts, ranged over by C, C′, · · · , are

terms of the form

r(s̄) {c} r′

where

1. future records r and in s̄ are linear and

2. object and record names occurring in r and in s̄ are pairwise different (for every s ∈ s̄,

names(r)∩ names(s) = ∅ and for different arguments s, s′ ∈ s̄, names(s)∩ names(s′) = ∅)

and

3. record names occurring in c or in r
′ are a subset of those in names(r) ∪ names(s̄).

It is worth to remark that 3. does not apply to object names occurring in c or in r
′, which may

be not occurring in names(r) ∪ names(s̄).

The subterm r(s̄) of a method contract r(s̄) {c} r′ is called header ; r′ is called returned future

record. The header and the returned future record, written r(s̄) → r
′, are called interface. We

observe that, in an interface r(s̄) → r
′, r and s̄ and r

′ are subjected to the constraints 1., 2.

and 3. above.
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In r(s̄) {c} r′, (object and record) names in the header bind the (object and record) names

occurring in c and in r
′. For example

— the term a[f : b[ ]]() {0} a ′[f : b[ ]] is the method contract of C.m in Table 1. The name

b in the header binds the occurrence of b in the returned future record. The name a ′ in

the returned future record is fresh, namely it is unbound by the header. This means that m

returns an object that has been created during its evaluation.

— the term a[f : X](a ′[f : b[ ]]) {E.m a ′[f : b[ ]]() → a ′′[f : b[ ]].(a, a ′)} a ′′[f : b[ ]] is the

method contract of method E.n in Table 1. Few remarks are in order: (i) the field f of the

object of n is never accessed in its body; for this reason we have a place-holder record name

X instead of a future record; (ii) the names a, a ′ and b in the header of the method contract

bind the occurrences of object names in the body and of the name b in the returned future

record; (iii) the name a ′′ in the returned future record is fresh. The returned future record

of n is an heredity of the method contract of m.

A future record substitution σ is a finite mapping from object names to object names and from

record names to future records. For example, [a
′
/a][b[f̄ : r̄]/X] indicates a substitution mapping

a to a ′, and X to b[f̄ : r̄]. The application of a substitution to an object type is defined in the

standard way as follows:

σ(X) =

{
r if σ(X) = r

X if X 6∈ dom(σ)

σ(a) =

{
b if σ(a) = b

a if a 6∈ dom(σ)

σ(a[f̄ : r̄]) = σ(a)[f̄ : σ(r̄)]

σ(a  r) = σ(a) σ(r)

Record substitutions are extended homomorphically to sequences of object types (σ(r1, . . . , rn) =

σ(r1), . . . , σ(rn)) and to contracts. Additionally, when r is linear, we also define s[r
′
/r] by in-

duction on the structure of r:

s[r
′
/r] =


s[r
′
/X] r = X

s[b/a][r̄
′/r̄] r = a[f̄ : r̄] and r

′ = b[f̄ : r̄′]

s[b/a][r
′′′
/r′′] r = a r

′′ and r
′ = b r

′′′

It is worth to notice that s[r
′
/r] is partial because it requires the match between the patterns

of r and r
′; for instance s[b[ ]/a X] and s[a X/b[ ]] are not defined.

The composition of substitutions σ and σ′, written σ ◦ σ′ is defined in the standard way as

(σ ◦ σ′)(r) = σ′(σ(r)).

In the following type system, we use the operation G defined below.

Definition 4.1. Let (a, a ′)[a] range over pairs (a, a ′) and (a, a ′)a. Then:

0 G (a, a ′)[a] = (a, a ′)[a] (1)

c # C.m r(s̄)→ r
′ G (a, a ′)[a] = c # (C.m r(s̄)→ r

′.(a, a ′)[a]) (2)

c # (a, a ′) G (a, b)[a] = c # (a, a ′) # (a, b)[a] (3)

c # (C.m r(s̄)→ r
′.(a, a ′)) G (a, b)[a] = c # (C.m r(s̄)→ r

′.(a, a ′)) # (a, b)[a] (4)

c # (a, a ′)a G (a, a ′)[a] = c # (a, a ′)a (5)

c # (C.m r(s̄)→ r
′.(a, a ′)a) G (a, a ′)[a] = c # (C.m r(s̄)→ r

′.(a, a ′)a) (6)
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The purpose of G is to manage accumulations of pairs (a, b)[a]. in particular, rule (1) applies

when a get or an await operation is performed on a variable or a field, which have contract 0.

Rule (2) applies when a get or an await operation is perfomed on a method invocation. Rules

(3) and (4) apply when the expression to be typed is of the form e.get.get or e.get.await. In

these cases the first get retrieves a value, that must be a future reference for the subsequent

get to evaluate (similarly for await). Thus the new object name dependency (a, b) is separated

from the previous one (a, a ′) because it does not contribute to locks resulting from the first get

operation. The dependency (a, b) contributes to a new chain of dependencies. We remark that

the first component of the two pairs is the same because it refers to the current object. Rules (5)

and rule (6) apply when the typing expressions are of the form e.await.await and e.await.get;

in these cases the new object name dependency is ignored, since if the first await has succeeded,

then no lock would be arisen because of the second operation. Additionally, if the first await

results in a lock, then the second operation will be never performed.

Since method contracts are binders for object and record names, we identify those terms that

are equated by injective renaming of (free and bound) names and let =α be the least equivalence.

For example

a[f : b[ ]]() {0} a ′[f : b[ ]] =α b[f : b[ ]]() {0} a[f : b′[ ]]

and

a[f : X](a ′[f : b[ ]]) {E.m a ′[f : b[ ]]()→ a ′′[f : b[ ]].(a, a ′)} a ′′[f : b[ ]]

=α b[f : Z](c[f : a[ ]]) {E.m c[f : a[ ]]()→ d[f : a[ ]].(b, c)} d[f : a[ ]]

4.2. The type system for contracts

The typing judgments rely on environments Γ that bind variables to pairs (T, r) and methods

C.m to interfaces r(s̄)→ r
′. The judgments have the form

Γ `a e : (T, r) , c

and must be read: the expression e that occurs in a method of an object with root a has type

T, future record r, and contract c in the environment Γ. The judgements for expressions are

defined in Table 4. In this table we use the same notation c̄ to indicate a tuple of contracts

(c1, · · · , cn), when it occurs in the judgement of a tuple of expressions ē, and to indicate a

sequential composition of contracts c1 # · · · # cn, when it appears in the judgement of a single

expression.

Rule (T-Field) defines the judgment for accessing to fields of an object produced by e. The

rule constraints e to have a class type (not a future) and to have a future record as a ′[f̄ : r̄].

Rule (T-Invk) defines the judgments of method invocations e!m(ē). Let a ′[f̄ : r̄](s̄) → r be

the interface of C.m stored in Γ. Object names and record names in this interface are actually

place-holders for actual values. Therefore, in order to type e!m(ē), there must exist a substitution

σ such that Γ `a e : (C, σ(a ′[f̄ : r̄])) , c and Γ `a ē : (T̄, σ(s̄)) , c̄. (It is possible to use a unique

σ since names in a ′[f̄ : r̄] and s̄ are disjoint.) The (standard) type of e!m(ē) is a future type

Fut(T′), where T′ is determined with standard arguments for object-oriented languages. The

future record of e!m(ē) is σ(a ′) σ(r) indicating that the value may be returned as soon as the

control of σ(a ′) is acquired. The contractual issue of e!m(ē) is almost obvious: it composes in

sequence the contracts of e, ē and the method invocation.

Rule (T-New) types object creations that, in the type system, amounts to using a fresh

object name – called a ′ in the rule – for the root of its future record. The remaining part of the

judgment is almost standard.
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(T-Var)

Γ `a x : Γ(x) , 0

(T-Field)

Γ `a e : (C, a ′[f̄ : r̄]) , c

fields(C) = T̄ f̄ T f ∈ T̄ f̄ f : r ∈ f̄ : r̄

Γ `a e.f : (T, r) , c
(T-Invk)

Γ(C.m) = a ′[f̄ : r̄](s̄)→ r

Γ `a e : (C, σ(a ′[f̄ : r̄])) , c Γ `a ē : (T̄, σ(s̄)) , c̄
mtype(m, C) = T̄′ → T′ T̄ <: T̄′

Γ `a e!m(ē) : (Fut(T′), σ(a ′) σ(r)) , c # c̄ # C.m σ(a ′[f̄ : r̄])(σ(s̄))→ σ(r)

(T-New)

Γ `a ē : (T̄, r̄) , c̄ fields(C) = T̄′ f̄ T̄ <: T̄′ a ′ fresh

Γ `a new C(ē) : (C, a ′[f̄ : r̄]) , c̄

(T-Get)

Γ `a e : (Fut(T), a ′  s) , c

Γ `a e.get : (T, s) , c G (a, a ′)

(T-Await)

Γ `a e : (Fut(T), a ′  s) , c

Γ `a e.await : (Fut(T), a ′  s) , c G (a, a ′)a

(T-Seq)

Γ `a e : (T, r) , c Γ `a e′ : (T′, r′) , c′

Γ `a e ; e′ : (T′, r′) , c # c′

Table 4. Typing rules of FJf expressions

(T-Method)

Γ(C.m) = a[f̄ : r̄](s̄)→ r′ Γ + x̄ : (T̄, s̄) + this : (C, a[f̄ : r̄]) `a e : (T′, r′) , c T′ <: T

C <: D and m ∈ D imply mtype(m, D) = T̄→ T′

Γ ` T m (T̄ x̄){return e ;} : a[f̄ : r̄](s̄){c} r′ in C

(T-Class)

Γ ` M̄ : C̄ in C

Γ ` class C extends D {C̄ f̄; M̄} : {mname(M̄) 7→ C̄}

Table 5. Typing rules for method declarations and class declarations

Rules (T-Get) and (T-Await) define types for e.get and e.await expressions. In these cases,

the type of e has to be Fut(T) and, correspondingly, the future record type has the pattern

a ′  s. In case of (T-Get), the type of e.get is reduced to (T, s), while, in case of e.await, it

is not changed. As regards contracts, (T-Get) and (T-Await) extend the contract of e with

the pairs (a, a ′) and (a, a ′)a, respectively, where the index a of the judgment defines the first

element of the object name dependency – a stores the root of the object whose method contains

the expression e.get or e.await. The element a ′ of the object name dependency is the root of

the future record of e.

Table 5 extends the rules of Table 4 for typing methods and classes. Let mname(M̄) be the

sequence of method names in M̄. Rule (T-Method) defines the type and the contract of a method

and is similar to the corresponding rule in Featherweight Java. Rule (T-Class) types a class

definition associating to it a mapping from method names to method contracts.

Definition 4.2. The contract class table, noted cct, of a FJf program (ct, e) is a map C 7→
{m̄ 7→ C̄}, with dom(cct) = dom(ct), that satisfies the following constraints:
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there is an environment Γ such that

(a) Γ ` ct(C) : cct(C), for every C;

(b) Γ(C.m) is the interface of cct(C)(m), for every C.m;

(c) cct is consistent, namely

for every ct(C) = class C extends D {· · · } :

m ∈ C and m ∈ D implies cct(C)(m) =α cct(D)(m)

Example 4.3. According to the typing rules of Tables 4 and 5, the contract class table for the

classes C, D and E of Table 1 is:

C.m, D.m, E.m 7→ a[f:X](){ 0 } b[f:X]
D.n 7→ a[f:X](b[f:Y]){D.m b[f:Y]()→ c[f:Y].(a,b)a} c[f:Y]
E.n 7→ a[f:X](b[f:Y]){E.m b[f:Y]()→ c[f:Y].(a,b)} c[f:Y]

In particular, the above contract class table is consistent.

In the following, a FJf program is a triple (ct, e,cct), where ct is the class table, e is

the expression to evaluate, and cct is a contract class table. It is worth to notice that the

consistency predicate constrains method redefinitions in subclasses to retain the same contract

of the super-class method. This constraint may be weakened: we defer to future works the issue

of studying a sub-contract relation that is correct with respect to class inheritance.

4.3. Properties of the type system

The proof of correctness of the type system in Tables 4 and 5 requires additional rules for run-

time configurations. To this aim we extend environments Γ to also bind task names t to pairs

(Fut(T), a  r) and to include the rules accounting for run-time values a[f̄ : r̄] and tasks t :a e:

(T-Record)

Γ `a v̄ : (T̄, r̄) , 0 fields(C) = T̄′ f̄ T̄ <: T̄′ a ′ object name of class C

Γ `a a ′[f̄ : v̄] : (C, a ′[f̄ : r̄]) , 0

(T-Task)

Γ `a e : (T, r) , c Γ(t) = (Fut(T), a  r)

Γ ` t :a e : (T, r) , c

(T-Configuration)

t :a e ∈ S implies Γ ` t :a e : (T, r) , c

Γ ` S

We are now ready to state our main result on contracts for the transition relation of Table 3.

Additional lemmas and the proofs appear in Appendix A.

Theorem 4.4 (Subject reduction). Let Γ ` S and S
a−→ S′. Then there is Γ′ such that

Γ′ ` S′.

Actually, in Appendix A we prove a stronger result than one stated in the above theorem.

Namely, each task in S has the same contract in S′ but at a later stage. In particular, we define a

later stage relation E (see Definition A.3) between contracts that identifies the consumption of
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contracts over reduction steps and we show that homonymous tasks in S and S′ bear contracts

in this later stage relation.

4.4. The contract inference algorithm

As it is, the type system for contracts in Tables 4 and 5 does not allow to infer the contract class

table. In particular it is not specified how to define the interfaces Γ(C.m) that match with the

method contracts in cct(C)(m). Actually, the solution to this issue is almost standard and rely

on unifications (and most general unifiers). In this section we briefly overview our algorithm,

discussing a couple of rules.

Definition 4.5. A substitution σ unifies

— a record equation r = s if σ(r) and σ(s) are identical;

— an interface equation r(r̄)→ r
′ = s(s̄)→ s

′ if σ unifies r = s and r̄ = s̄ and r
′ = s

′;

— a record disequation s � r if s and the substitution instance σ(r) are identical;

— two environments Γ and Γ′ if (i) for every C.m, σ unifies Γ(C.m) = Γ′(C.m), and (ii) for every

x, σ unifies Γ(x) = Γ′(x).

A substitution σ is a more general unifier than σ′ if there is σ′′ such that σ′ = σ ◦ σ′′. A

substitution σ is a most general unifier, written mgu, if it is more general than every other

unifier.

The algorithm for inferring contracts begins with an environment binding C.m to the interface

aC.m[f : XC.m](YC.m)→ ZC.m such that

— interfaces associated to different pairs C.m have no (object and record) name in common.

These interfaces are stepwise refined by renaming object names and instantiating record names

through unification. To illustrate the algorithm, consider the rule for method invocation:

Γ `a e : (C, r) , c (Γi `a ei : (Ti, si) , ci)
i∈1..n

mtype(m, C) = T̄′ → T′ T̄ <: T̄′

σ is the mgu such that (σ 
 Γ = Γi)
i∈1..n

σ(Γ)(C.m) = r
′(r̄)→ r

′′ implies r � r
′ and s̄ � r̄

σ(Γ) `a e!m(ē) : (Fut(T′), σ(root(r)) r
′′[σ(r)/r′][σ(s̄)/r̄]) , σ(c # c̄) # C.m σ(r)(σ(s̄))→ r

′′[σ(r)/r′][σ(s̄)/r̄]

The major difference between this rule and (T-Invk) is the presence of distinct environments

in the judgments for e and ē in the premise. These environment have been instantiated in the

corresponding proof trees in order to comply with different requirements. For instance, in e it is

required to access to a given field of this, thus Γ must define its future record, while ei needs

to access to another field, whose future record is defined in Γi. To merge the differences in the

environments, the rule requires their unification by means of the (most general) substitution σ.

Another interesting rule of the inference algorithm is the one for method declaration:

Γ + x̄ : (T̄, s̄) + this : (C, r) `a e : (T′, r′) , c root(r) = a T′ <: T

C <: D and m ∈ D imply mtype(m, D) = T̄→ T′

σ unifies r(s̄)→ r
′ � Γ(C.m)

σ(Γ) ` T m (T̄ x̄){return e ;} : r(s̄){c} r′ in C

In this case, it is possible that the interface of m stored in Γ is less specific than the future records

for typing this, the arguments of the method and the method body e. If this is the case, the

rule permits to type the method provided Γ is opportunely instantiated.
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(a,b)

(i) (ii)

(a,b) (b,a),(a,c)

(aa,ba)

Fig. 2. A simple two-state lafsa.

5. The abstract method behaviours: lock analysis finite state automata

Let O be the set of object names and Oa be the set of a-tagged object names. Let also Og/a =

(O× O) ∪ (Oa × Oa).

Definition 5.1. A finite state automaton for lock analysis, in brief lafsa, is a tuple (W,→, w, w′)
where W – the set of states – is a finite subset of P(Og/a), → – the transition relation – is a

relation on W , w and w′ are the initial state and the final state, respectively – they are element

of W .

Lafsas are ranged over byW,W ′, · · · and are illustrated as finite graphs. For example, in Figure 2

we illustrate a simple two state lafsa where the initial state is represented by an entering dangling

edge and the final state is represented by a double circle. The object pairs in the states are

respectively {(a, b)} and {(b, a), (a, c)} (the brackets {...} are omitted in the figures).

Lafsas have at least one state (that, in the extreme case is initial and final) and retain an

order relation � that is defined as follows: (W1,→1, w1, w
′
1) � (W2,→2, w2, w

′
2) if there is a total

map f : W1 →W2 such that

1. for every w: w ⊆ f(w);

2. w2 = f(w1);

3. if w′1 →1 w′′1 then f(w′1)→2 f(w′′1 );

According to this definition, the lafsa ({∅},∅,∅,∅), noted 0, is the least element of the order

�. By definition, ({Og/a}, {(Og/a,Og/a)},Og/a,Og/a) is the greatest lafsa. Given � on lafsa, it is

standard to define a partial order on cartesian products of lafsas by imposing the coordinatewise

order defined by(
W1, · · · ,Wk

)
�
(
W ′1, · · · ,W ′k

)
def
= for every i : Wi � W ′i

A number of operations on lafsa are defined:

addition: (W,→, w, w′)⊕(a, b)
def
= ({w′′∪{(a, b)} | w′′ ∈W}, {(w′′∪{(a, b)}, w′′′∪{(a, b)}) | w′′ →

w′′′}, w ∪ {(a, b)}w′ ∪ {(a, b)}) (similarly for (W,→, w, w′)⊕ (aa, ba));

sequence: y is defined as follows:

– 0 y (W2,→2, w2, w
′
2)

def
= (W2,→2, w2, w

′
2);

– (W1,→1, w1, w
′
1) y 0

def
= (W1,→1, w1, w

′
1);

– (otherwise) (W1,→1, w1, w
′
1) y (W2,→2, w2, w

′
2)

def
= (W1∪W2,→1 ∪ →2 ∪{(w′1, w2)}, w1, w

′
2);

parallel: (W1,→1, w1, w
′
1) | (W2,→2, w2, w

′
2)

def
= [(W1,→1, w1, w

′
1)× (W2,→2, w2, w

′
2)]D, where

– the cartesian product (W1,→1, w1, w
′
1)×(W2,→2, w2, w

′
2)

def
= (W1×W2,→1 × →2, (w1, w2), (w′1, w

′
2)),

where →1 × →2 is the least set of ((w, w′), (w′′, w′′′)) such that either (i) w →1 w′′ and

w′ = w′′′ or (ii) w′ →2 w′′′ and w = w′′;

– the downgrading [·]D turns pairs (w, w′) into sets w∪w′. Formally, [(W,→, (w1, w
′
1), (w2, w

′
2))]D

def
=

({w1 ∪ w2 | (w1, w2) ∈W}, {(w1 ∪ w2, w
′
1 ∪ w′2) | (w1, w2)→ (w′1, w

′
2)}, w1 ∪ w′1, w2 ∪ w′2).
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It is worth to notice that the lafsas obtained from 0 applying the above operations are either 0

or contain at least a nonempty state and with initial and final states that are nonempty. This

property follows from the definition of sequence that discharges 0 arguments.

A relevant property for the following theoretical development is the one below. The proof is

detailed in the Appendix B.

Proposition 5.2. An operation op is monotone with respect to �, if, whenever W1 � W2 then

op(W1) � op(W2) (similarly for binary operations).

The operations of addition, sequence, and parallel are all monotone with respect to �.

The following abstract semantics associates pairs of lafsas 〈W,W ′〉 to expressions and meth-

ods. To illustrate the need of pairs, consider the contract c = C.m b[ ]( ).(a, b). This contract

adds the dependency pair (a, b) to the current state. If the method m of class C only performs a

method invocation, let it be D.n b[ ]( ) (without any get or await), then the invocation C.m b[ ]( )

does not contribute to the current state with other pairs. However it is possible that D.n b[ ]( )

introduces dependency pairs that affect the future states and that have nothing to do with

(a, b). The same arguments apply in the cases when D.n is an automaton: future dependency

pairs are added according to the schedule prescribed by the automaton. Therefore, in order to

augment the precision of our (compositional) abstract semantics, we keep separate the above

sets of dependencies in the construction of the abstract model by using pairs of lafsas. When

the construction terminates, the pair 〈W,W ′〉 returned by the following algorithm for the input

FJf program, must be interpreted as the (single) lafsa W yW ′. That is, futures are simply the

states after the final state of the first lafsa in the pair.

The following operations on pairs of lafsas are used:

pair addition: 〈W,W ′〉 ⊕ (a, b)
def
= 〈W ⊕ (a, b),W ′〉; (similarly for 〈W,W ′〉 ⊕ (aa, ba));

pair sequence:

〈W1,W ′1〉 # 〈W2,W ′2〉
def
=


〈W1,W ′1 | W ′2〉 ifW2 = 0

〈W1y(W2 | W ′1) ,W ′1 | W ′2〉 otherwise

We notice that, by Proposition 5.2, pair addition and pair sequence are monotone (on pairs of

lafsas).

5.1. The finite approximants of abstract method behaviours

The abstract model of a FJf program is obtained by means of a standard fixpoint technique. A

basic operation of the technique is the replacement of object names in the states of a lafsa with

other names. In particular, let W[b/a] be W where every occurrence of a has been replaced by

b. Similarly to what we have done with contracts in Section 4, it is possible to define W[s/r].

The details are omitted because standard. We let 〈W,W ′〉[s/r] = 〈W[s/r],W ′[s/r]〉.

Definition 5.3. Let cct be a contract class table of a FJf program and (· · · 〈WC,m,W ′C,m〉, · · · )
be a tuple of pairs of lafsas such that, for every C, m in the program there is a corresponding

pair 〈WC,m,W ′C,m〉.
The lafsa transformation of cct, denoted(

· · · , rC,m(sC,m).cC,m, · · ·
)

such that cct(C)(m) = rC,m(sC,m) {cC,m} r′C,m, is defined as follows
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1. let b =
⋃

C,m names(cC,m) \ names(rC,m, sC,m). These are the object names that are created at

every transformation step;

2. let b′ be fresh object names (they will replace b);

3. the transformation rC,m(sC,m).cC,m(· · · 〈WC,m, W ′C,m〉, · · · ) gives a pair of lafsas 〈W ′′C,m, W ′′′C,m〉
defined as follows:

–
(
〈0, 0〉 ⊕ (a

[a]
1 , a

[a]
2 )
)

[b′/b] (W-GAzero)

if cC,m = (a1, a2)[a];

–
(
〈0,WD,n yW ′D,n〉

)
[r
′
/rD,n][

s′/sD,n][
r′′/r′D,n][

b′/b] (W-Invk)

if cC,m = D.n r′(s′)→ r
′′ and cct(D)(n) = rD,n {sD,n} r′D,n

–
(
〈WD,n,W ′D,n〉 ⊕ (a

[a]
1 , a

[a]
2 )
)

[r
′
/rD,n][

s′/sD,n][
r′′/r′D,n][

b′/b] (W-GAinvk)

if cC,m = D.n r′(s′)→ r
′′.(a1, a2)[a] and cct(D)(n) = rD,n {sD,n} r′D,n

– rC,m(sC,m).c
′
C,m(· · · 〈WC,m,W ′C,m〉, · · · ) # rC,m(sC,m).c′′C,m(· · · 〈WC,m,W ′C,m〉, · · · ) (W-Seq)

if cC,m = c
′
C,m # c′′C,m.

We notice that, in item 1., we are not assuming that free names in C.m and free names in D.n of

the cct do not clash. However, a cct with disjoint sets of free names in the contract methods

yields more precise results of our technique. We also notice that the lafsa transformation of

Definition 5.3, being defined as a composition of monotone operators, see Proposition 5.3, is

monotone. Therefore, starting with the tuple
(
· · · 〈WC,m

0, W ′C,m
0〉, · · ·

)
=
(
· · · 〈0, 0〉, · · ·

)
, we

obtain a non-decreasing sequence (with respect to �)(
· · · 〈WC,m

0,W ′C,m
0〉, · · ·

)
,
(
· · · 〈WC,m

1,W ′C,m
1〉, · · ·

)
,
(
· · · 〈WC,m

2,W ′C,m
2〉, · · ·

)
, · · ·

following the standard Knaster-Tarski technique. The pair 〈Wi
C,m,W ′C,m

i〉 is the i-th finite approx-

imant of the model of C.m. In our lafsa domain, because of the creation of new object names, the

fixpoint of the above sequence may not exist. For example, the contract C.m b[ ]( )→ b[ ].(a, b),

where cct(C)(m) = a[ ]( ) {{C.m b[ ]( )→ b[ ].(a, b)}} b[ ], yields the infinite sequence(
〈0, 0〉

)
,
(
〈{(b0, b1)}, 0〉

)
,
(
〈{(b0, b1), (b1, b2)}, 0〉

)
,
(
〈{(b0, b1), (b1, b2), (b2, b3)}, 0〉

)
, · · ·

where a set of pairs W represents the one-state/no-transition lafsa ({w},∅, w, w). The above

sequence has no upper bound in the domain of lafsas (which are all finite). Therefore, in order

to arrive at a decision, we run the Knaster-Tarski technique on a finite set of object names.

If the n-th approximant is not a fixpoint and consumes the object names, then the (n + 1)-th

approximant will reuse the same object names used by the n-th approximant, and similarly

for the (n + 2)-th approximant till a fixpoint is reached. This method is called a saturation

technique at n. For example, in the case of the above sequence, if the usable object names

are {b0, b1} the saturation technique at 1 terminates in two steps yielding the pair of lafsas

〈{(b0, b1), (b1, b1)}, 0〉.

Definition 5.4. Let (ct, e,cct) be an FJf program and let
(
· · · 〈WC,m

n+h, W ′C,m
n+h〉, · · ·

)
be

the fixpoint obtained by the saturation technique at n. The abstract class table at n, written

act[n], is a map that takes C.m and returns 〈WC,m
n+h,W ′C,m

n+h〉.

Let (ct, e,cct) be an FJf program, c be the contract such that Γ + this : (Object, a[ ]) `a
e : (T, r) , c where Γ maps C.m to the interface of cct(C)(m), and let act[n] be the corresponding

abstract class table at n. The abstract semantics saturated at n of e is

a[ ]( )c
(
· · · ,act[n](C.m), · · ·

)



Deadlocks and Livelocks in Concurrent Objects with Futures 19

that, by definition, is a pair of lafsas. The abstract semantics of FJf programs is discussed

through a number of examples.

Example 5.5. It is time to complete our sample code in Table 1 with its abstract class table.

By the contract class table detailed in Example 4.3, we compute the abstract class table at 1

(which is the fixpoint).

C.m, D.m, E.m 7→ 〈0, 0〉 (since cC,m = cD,m = cE,m = 0)

D.n 7→ 〈0, 0〉 ⊕ (aa, ba) = 〈{(aa, ba)}, 0〉 (W-GAinvk)

E.n 7→ 〈0, 0〉 ⊕ (a, b) = 〈{(a, b)}, 0〉 (W-GAinvk)

By these mappings, we may write the lafsas of the expression x!n(x) discussed in Section 2,

where x is either of class D or of class E. In particular, they are the lafsas of the above methods

D.n and E.n where a and b are instantiated with a same object name, that is 〈{(aa, aa)}, 0〉 and

〈{(a, a)}, 0〉, respectively.

Example 5.6. A basic technique for detecting locks uses sets instead of lafsas. However such a

technique would returns too much false negatives. For instance, the following extension of class

E of Table 1

class H extends E {
C p(H b){ return (b!q(this).get; new C(this)!m().get)}
Fut(C) q(E a){ return (this!n(a));}

}

has contract class table

H.m = E.m

H.n = E.n

H.p 7→ a[f:X](b[f:Y]){ H.q b[f:Y](a[f:X])→(b  e[f : X]).(a,b); C.m c[f:X]()→ d[f:X].(a,c)} d[f:X]
H.q 7→ a[f:X](b[f:Y]){ E.n a[f:X]( b[f:Y])→(a  d[f : Y])} a  d[f : Y]

and abstract class table

H.p 7→
(
〈0, {(b′, a ′)}〉 ⊕ (a, b)

)
[b[f : Y ]/b′[f : Y ′]][a[f : X]/a ′[f : X′]]#

(
〈0, 0}〉 ⊕ (a, c)

)
= 〈{(a, b)}, {(b, a)}〉 # 〈{(a, c)}, 0〉
= 〈{(a, b)}y {(b, a), (a, c)}, {(b, a)}〉

H.q 7→
(
〈0, {(b′, a ′)}〉

)
[b[f : Y ]/b′[f : Y ′]][a[f : X]/a ′[f : X′]]

= 〈0, {(b, a)}〉

The leftmost lafsa of H.p is the one depicted in Figure 2, which has no pair (a, a) in its states.

However, if the states are flattened by taking their union, the pair (a, a) shows up immediately

(thus signaling a lock, see below).

Example 5.7. This example discusses the approximation performed by our technique due to

the object name creation. Consider the class

class C extend Object {
C m() { return ((new C)!m.get ; this) ; }

}
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The contract class table for this class and the abstract class table at n are respectively

C.m 7→ a[ ](){ C.m b[ ]()→ a[ ].(a,b) } a[ ]

C.m 7→ 〈[{(a1, a2), (a2, a3), · · · , (an−1, an), (an, an)}]tc, 0〉

We notice that the leftmost lafsa of C.m has a pair (an, an), for every index n of saturation (an

object-circularity, see below).

6. Deadlock and livelock analysis in FJf

We begin with the formal definition of deadlocks and livelocks, generically called locks.

Definition 6.1. Let S be a state containing the tasks ti :`iai ei, with 1 ≤ i ≤ n (n ≥ 1). Then S

is locked (e.g., deadlocked or livelocked) if, letting i+ 1 = 1 when i = n:

1. ai = ai+1 implies ei is not a value and `i+1 = > and ei+1 = Ei+1[ti+2.get], for some Ei+1;

2. ai 6= ai+1 implies (i) ei = Ei[ti+1.get] and `i = > or (ii) ei = Ei[ti+1.await], for some Ei;

3. there is i such that ei = Ei[ti+1.get], for some Ei.

A state S is lock-free if it is not locked and, for every S
a−→ S′, S′ is lock-free. A program

(ct, e,cct) is lock-free if its initial configuration is lock-free.

This definition identifies locked states by detecting chains of dependencies between tasks that

cannot progress. For example

– the state t1 :⊥a1 e1, t2 :>a1 t2.get is a lock, actually a deadlock, because of 1;

– the state t1 :>a1 t2.get, t2 :>a2 t3.await is a lock, actually a livelock, because of 2;

– the state t1 :>a1 t2.get, t2 :⊥a2 e2, t3 :>a2 t4.get, t4 :⊥a4 e4, t5 :>a4 t1.get is a lock because of 1

and 2;

(the three examples all satisfy 3).

We notice that the definition of locked state also takes into account states that are never

exhibited by FJf programs such as the deadlocks t :>a t.get and t1 :>a1 t2.get, t2 :>a2 t1.get. To

produce these states, it would be necessary to create two (or more) tasks at the same time and

to pass the reference of one task to the other and conversely. This is not possible in FJf due to

its functional nature. On the contrary, the extension of FJf with either field update or variable

update admits codes such as

this.f1=a!m(this) ; this.f2=b!n(this) (1)

where f1 and f2 are two fields of the object this and the methods m and n respectively perform

x.f2.get and x.f1.get, with x being their argument. This means that our technique can be

profitably used for detecting these misbehaviours in the imperative version of FJf. Yet, the

imperative version of FJf admits states that are locks, in particular livelocks, which are not

addressed by Definition 6.1. For example consider the above code (1) when the methods m and n

respectively perform x.f2.await and x.f1.await, with x being their argument. The execution

of the program yields a state t1 :⊥a1 t2.await, t2 :>a2 t1.await, which is a livelock that does not

match with Definition 6.1 because of item 3. We might have delivered a weaker definition of

lock by removing the third item. However, while this extension has no effect on FJf programs, it

would require a more complex analysis for separating wrong states as the one above from “safe”

states as t1 :⊥a1 t2.await, t2 :>a1 e (e does not contain t1). This issue is discussed in some detail

in Section 8.
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Below we demonstrate the correctness of our analysis technique. Since it is not possible to

discover in an exact way the lock-free programs, by “correctness” we mean that not lock-free

programs are detected, whilst lock-free programs may be tagged as not lock-free. In order to

(partially) measure the distance between lock-freeness and the results of our algorithm, we

introduce the notion of object-circularity.

Definition 6.2. A state has

(i) an object name dependency (a, b) if it contains the tasks t :>a E[t′.get], t′ :b e and e is not

a value;

(ii) an object name dependency (aa, ba) if it contains the tasks t :a E[t′.await], t′ :b e and e is

not a value.

Given a set A of object name dependencies, let the get-closure of A, noted Aget, be the least

set such that

1. A ⊆ Aget;

2. if (a, b) ∈ Aget and (b[a], c[a]) ∈ Aget then (a, c) ∈ Aget, where (b[a], c[a]) denotes either the

pair (b, c) or the pair (ba, ca).

A state contains an object-circularity if the get-closure of its object name dependencies has

a pair (a, a).

Notice that, while in case (i) of definition of object name dependency, the lock of t is >
because the corresponding expression is a get, in case (ii) the lock of t may be either > or ⊥
because the corresponding expression is an await. It is also worth to remark that the notion of

get-closure and object-circularity apply to every subset of Og/a, therefore to every state of a

lafsa.

Proposition 6.3. If a state is locked then it has an object-circularity. The converse is false.

Proof. The statement is a straightforward consequence of the definition of locked state. To

show that the converse is false, consider the state

t1 :a1 t2.await, t2 :>a2 t3.get, t3 :a1 a1.f

where f is a field of a1. This state has the object name dependencies {(aa
1, a

a
2), (a2, a1)}. The

get-closure of this set contains the object-circularity (a2, a2). However the state is not locked.

Let (ct, e,cct) be a FJf program, act[n] be the abstract class table at n, and let S be a state

of its operational semantics. Let also Γ ` S and, for every t :a e in S, let Γ ` t :a e : (Tt, rt) , ct.

— The abstract semantics of the task t :a e, written [[t :a e]][n], is a[f̄ : X̄]( )ct
(
· · · ,act[n](C.m), · · ·

)
;

— the abstract semantics of the state S, written [[S]][n], is
∏

t:ae∈S
[[t :a e]][n], where

∏
i∈1..m〈Wi,W ′i〉

def
=

〈W1 | · · · | Wm,W ′1 | · · · | W ′m〉.

Theorem 6.4. Let (ct, e,cct) be an FJf program, act[n] be its abstract class table at n, and

S be a state of its operational semantics.

1. If S has an object-circularity then at least one state of the lafsas [[S]][n] has an object-

circularity;

2. if S
a−→ S′ and a state of [[S′]][n] contains an object-circularity then an object-circularity is

already present in a state of [[S]][n].

An immediate consequence of Theorem 6.4 is:
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Corollary 6.5. Let (ct, e,cct) be an FJf program and let the abstract semantics saturated

at n of e be 〈W,W ′〉. If no state of W and W ′ manifest an object-circularity then the program

is lock-free.

6.1. Additional remarks on the deadlock and livelock analysis

We discuss weaknesses of our technique in this sections. The first one is due to name creations.

Back to the bugged code of the factorial in Section 1, there are two correct patches:

Int a better fact(Int n){ return if (n==0) then 1 ;

else n*(this!fact(n-1).await.get) ; }

and

Int another fact(Int n){ return if (n==0) then 1 ;

else n*((new Maths)!fact(n-1).get) ; }

The first solution, i.e. the method a better fact, is recognized to be correct by our technique

(well, we need to model the if-then-else operator, but it is standard: take the union of the

object name dependencies in the two branches of the conditional). The second solution, i.e. the

method another fact, uses the expedient of performing a get on a new object. An invocation

of another fact will never produce a lock, while our technique manifests an object-circularity

as discussed in Example 5.7.

A different problem follows by the presence in a state of the lafsa of pairs (a, b), (ba, aa).

This is an object-circularity, according to Definition 6.2, and this circularity allows us to refuse

codes like method p of class G in Section 3.3. However, in this way we returns false negatives in

those case where the await operation is performed before the get. For example, in the following

extension of Table 1:

class I extends C {
C n(I a) { return (a!m().get) ;}
Fut(C) p() { return ((new I(this.f))!n(this).await) ;}

}

The program (new I(new Object))!p() does not manifest any lock, however its pair of lafsas

– the reader is invited to compute it – has (a, b), (ba, aa) in its unique state (the second lafsa of

the pair is 0).

7. Related work

The proposals in the literature that statically analyze deadlocks are largely based on types.

Several proposals concern process calculi (Kobayashi, 2006; Suenaga and Kobayashi, 2007; Sue-

naga, 2008; Vasconcelos et al., 2009), but there is some contribution also addressing deadlocks

in object-oriented programs (Boyapati et al., 2002; Flanagan and Qadeer, 2003; Abadi et al.,

2006). In all these papers, a type system is defined that computes a partial order of the locks

in a program and a subject reduction theorem demonstrates that tasks follow this order. On

the contrary, our technique does not computes any ordering of locks, thus being more flexible:

a computation may acquire two locks in different order at different stages, thus being correct in

our case, but incorrect with the other techniques. An example is the factorial with the recursive
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invocation underneath a await.get – the method a better factorial in Section 6.1. A further

difference with the above works is that we use contracts that are terms in simple (= with fi-

nite states) process algebras (Laneve and Padovani, 2007). The use of simple process algebras

to describe (communication or synchronization) protocols is not new. This is the case of the

exchange patterns in ssdl (Parastatidis and Webber, 2005), which are based on CSP (Brookes

et al., 1984) and the pi-calculus (Milner et al., 1992), or of the behavioral types in (Nielson

and Nielson, 1994) and (Chaki et al., 2002), which use CCS (Milner, 1982). We expect that

finite state abstract descriptions of behaviors can support very powerful verification techniques,

even more than the one used in this contribution, such as model checking using tools like the

Concurrency Workbench (Cleaveland and Sims, 1996) or like the Mobility Workbench (Victor

and Moller, 1994).

Our FJf calculus is inspired to the language Creol (Johnsen and Owe, 2007), which has

additional scheduling primitives and operations for field update. Contracts similar to the one

used in this paper have been already studied in (Giachino and Laneve, 2011) for a language in the

family of Creol (Johnsen et al., 2011) with the same purpose of checking deadlocks. The model

used in (Giachino and Laneve, 2011) is simpler than lafsas. Apart this source of inspiration, FJf

is mostly the extension of Featherweight Java (Igarashi et al., 2001) with futures and the get

operation as described in (Welc et al., 2005). We refer to these papers for additional pointers to

the literature.

8. Conclusions

We have developed a technique for the deadlock analysis in a concurrent object-oriented calculus

that is based on abstract descriptions of methods behaviours. The abstract descriptions are then

analyzed by building a finite-state model and checking the object names dependencies.

This study can be extended in several directions. One direction is the study of techniques for

augmenting the accuracy of the fixpoint algorithm on lafsa, which is imprecise at the moment

when contracts bear name creation. One possibility is to use finite state automata with name

creation, such as those in (Montanari and Pistore, 2005), in the modelling step of Section 5 and

study deadlocks in these automata. Alternatively, one may try to recognize recurrent patterns of

object-name creations and of object name dependencies. Then these patterns should be modeled

in some finite way and should be verified whether they are lock-safe or not in the algorithm of

Section 6.

Other directions address extensions of the language FJf. One of these extensions is to (re)introduce

synchronous method invocations for re-entrant recursive calls (usually used for tail recursions).

This extension is burdensome because it requires revisions of semantics rules, of contract rules

in Table 4, and of the modeling technique, but it is not theoretically difficult. A more complex

extension concerns the introduction of field updates and variable updates. In this case there are

extensive changes in the semantics of FJf, such as the introduction of heaps, and, as discussed

in Section 6, there are relevant patches to the Definition 6.1 of locked state, by removing the

third item, and Definition 6.2 of get-closure. We leave this direction to future research.
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Appendix A. Proof of the Subject Reduction Theorem.

In the following we consider redexes as the active (to be reduced) part in an expression:

r ::= a[f̄ : v̄].f | a[f̄ : v̄]!m(v̄′) | new C(v̄) | t.get | t.await.

Lemma A.1. Given a well-typed runtime expression e that is not a value and different for x,

there exist E and r such that e = E[r].

Proof.

Case e.f.Either e = a[f̄ : v̄], for some a, f̄ and v̄, then the evaluation context we seek is the

empty one, or we can apply the induction hypothesis to e deriving that there is an evaluation

context E such that e = E[r] for some redex r. Therefore E.f is the evaluation context for

e.f.

Case e.m(ē).Either e = a[f̄ : v̄], for some a, f̄ and v̄, or we can apply the induction hypothesis

to e deriving that there is an evaluation context E such that e = E[r] for some redex r.

Therefore, E.m(ē) is the evaluation context for e.m(ē). If e = a[f̄ : v̄], either for all e′ ∈ ē we

have that e′ = a ′[f̄′ : v̄′] for some a ′, f̄′ and v̄′, in which case the expression is a redex and

the evaluation context is [ ], or there is a minimum j such that ej is not an object and for

all k < j the expression ek is an object. In this case we apply the induction hypothesis to

ej deriving that there is an evaluation context E such that ej = E[r] for some r. Therefore,

a[f̄ : v̄].m(v1, . . . , vj−1,E, ej+1, . . .) is the evaluation context for e.m(ē).

Case e; e′ .If e is not a value we can apply the induction hypothesis to e deriving that there

is an evaluation context E such that e = E[r] for some r. Therefore, E; e′ is the evaluation

context for e; e′. If e is a value, then the expression is a redex and [ ] is the evaluation context

for the expression.
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Remaining Cases.Similar to the previous ones.

Lemma A.2. If Γ `a E[r] : (T, r) , c, then Γ `a r : (T′, r′) , c′, for some T′, r′, and c
′ s.t.

c = c
′ # c′′ or c = 0̄ # c′ # c′′ or c = c

′ G (a, a ′); c′′ or c = c
′ G (a, a ′)a; c′′, for some a ′, c′′.

Proof. The proofs is by straightforward induction on the derivation of Γ `a E[r] : (T, r) , c.

Below we demonstrate that if S
a−→ S′ then every task in S has the same contract in S′ but

at a later stage. The notion of “later stage” is expressed by the operation E on contracts.

Definition A.3 (E). Let c E c
′, say c is at a later stage than c

′, be the least relation such

that

(1)

c E c

(2)

0 E c

(3)

(a, a ′)[a] E C.m r(s̄)→ s.(a, a ′)[a]

(4)

C <: D

C.m : r(r̄)→ s E D.m : r(r̄)→ s

(5)

c1 E c2

c1 # c E c2 # c

Lemma A.4. Let E[r] be such that Γ `a E[r] : (T, r) , c and Γ `a r : (T′, r′) , c
′ and

Γ `a v : (T′′, r′) , 0, with T′′ <: T′. Then Γ `a E[v] : (T′′′, r) , c′′ such that T′′′ <: T, c′′ E c.

Proof. By induction on evaluation contexts E.

Case [ ]. Immediate.

Case E!m(ē). Let Γ `a E[r]!m(ē) : (T, r) , c where Γ `a r : (T′, r′) , c′, and let v be such that

Γ `a v : (T′′, r′) , 0, with T′′ <: T′. By typing rule (T-Invk) we have that

Γ(C.m) = a ′[f̄ : r̄](s̄)→ s

Γ `a E[r] : (C, σ(a ′[f̄ : r̄])) , c0 Γ `a ē : (T̄, σ(s̄)) , c̄

mtype(m, C) = T̄′ → T0 T̄ <: T̄′

T = Fut(T0) c = c0 # c̄ # C.m σ(a ′[f̄ : r̄])(σ(s̄))→ σ(s) r = σ(a ′) σ(s)

By induction hypothesis on E we have that Γ `a E[v] : (D, σ(a ′[f̄ : r̄])) , c′0 for some D <: C

and c
′
0 E c0.

Since we consider a well-typed expression w.r.t. a well-typed class table, then if m is defined

in D, then mtype(m, C) = mtype(m, D) and Γ(C.m) =α Γ(D.m). Applying typing rule (T-Invk)

we have that Γ `a E[v]!m(ē) : (Fut(T0), σ(a ′)  σ(s)) , c1, where c1 = c
′
0 # c̄ # D.m σ(a ′[f̄ :

r̄])(σ(s̄))→ σ(s) and, by Definition A.3, c1 E c.

Case b[f̄ : v̄].m(v̄′,E, ē). Let Γ `a b[f̄ : v̄].m(v̄′,E[r], ē) : (T, r) , c where Γ `a r : (T′, r′) , c′,

and let v be such that Γ `a v : (T′′, r′) , 0, with T′′ <: T′. By typing rule (T-Invk) we have

that

Γ(C.m) = a ′[f̄ : r̄](s̄, s0, s̄
′)→ s

Γ `a b[f̄ : v̄] : (C, σ(a ′[f̄ : r̄])) , 0

Γ `a v̄′ : (T̄′, σ(s̄)) , 0 Γ `a ē : (T̄′′, σ(s̄′)) , c̄ Γ `a E[r] : (T′′′, σ(s0)) , c0

mtype(m, C) = T̄→ T0 T̄′T′′′T̄′′ <: T̄

T = Fut(T0) c = 0̄ # c0 # c̄ # C.m σ(a ′[f̄ : r̄])(σ(s̄, s0, s̄
′))→ σ(s) r = σ(a ′) σ(s)

By induction hypothesis on E we have that Γ `a E[v] : (T′′′1 , σ(s0)) , c′0 for some T′′′1 <: T′′′
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and c
′
0 such that c

′
0 E c0. Applying typing rule (T-Invk) we have that Γ `a b[f̄ :

v̄].m(v̄′,E[v], ē) : (Fut(T0), σ(a ′) σ(s)) , c1, where c1 = 0̄#c′0#c̄#C.m σ(a ′[f̄ : r̄])(σ(s̄, s0, s̄
′))→

σ(s) and, by Definition A.3, c1 E c.

Remaining Cases. Similar to the previous ones.

Lemma A.5. Let Γ `a e : (T, r) , c. If Γ ⊆ Γ′, then Γ′ `a e : (T, r) , c

Proof. Straightforward induction on the derivation of Γ `a e : (T, r) , c.

Lemma A.6 (Substitution). If Γ, x̄ : (C̄, r̄) `a e : (T, r) , c, and Γ `a v̄ : (D̄, r̄) , 0̄ where

D̄ <: C̄, then Γ `a e[v̄/x̄] : (T′, r) , c, for some T′ <: T.

Proof. By straightforward induction on the derivation of Γ, x̄ : (C̄, r̄) `a e : (T, r) , c.

Lemma A.7. If mtype(m, C) = T̄→ T, mbody(m, C) = x̄.e, and a[f̄ : r̄](s̄) {c} s ∈ cct(m), then,

for some D, s.t. C <: D, there exist T′ <: T and σ such that

D.m : a[f̄ : r̄](s̄)→ s, x̄ : (T̄, σ(s̄)), this : D, σ(a[f̄ : r̄](s̄)) `a e : (T′, σ(s)) , σ(c).

Proof. By straightforward induction on the derivation of mbody(m, C).

Proof of Theorem 4.4 Let Γ ` S and S −→ S′. Then there is Γ′ such that Γ′ ` S′.

Proof. The proof is by case analysis on the operational semantics rule used.

Case (Invk). Then

t :>a E[b[f̄ : v̄]!m(v̄′)]
a−→ t :>a E[t′], t

′ :⊥b e[b[f̄ : v̄]/this][v̄
′
/x̄]

where class(b) = C and mbody(m, C) = x̄.e and t′ = freshtask( ).

Since Γ ` t :>a E[b[f̄ : v̄]!m(v̄′)], by rule (T-Configuration) we get Γ `a t :>a E[b[f̄ : v̄]!m(v̄′)] :

(T, r) , c, for some T, r and c. By rule (T-Task) we have

Γ `a E[b[f̄ : v̄]!m(v̄′)] : (T, r) , c Γ(t) = (Fut(T), a  r)

By Lemma A.2 and typing rule (T-Invk) we have that there exists a substitution σ such

that Γ `a b[f̄ : v̄]!m(v̄′) : (Fut(T′), σ(a ′) σ(r′)) , 0 # 0̄ # C.m σ(a ′[f̄ : r̄])(σ(s̄))→ σ(r′) and:

Γ `a b[f̄ : v̄] : (C, σ(a ′[f̄ : r̄])) , 0 Γ `a v̄ : (T̄, σ(s̄)) , 0̄

Γ(C.m) = a ′[f̄ : r̄](s̄)→ r
′ mtype(m, C) = T̄′ → T′ T̄ <: T̄′

where σ(a ′) = b.

By Lemmas A.5, A.6, and A.7, we get Γ, x̄ : (T̄′, σ(s̄)), this : (D, σ(a ′[f̄ : r̄])) `a e[b[f̄ : v̄]/this][v̄
′
/x̄] :

(T′′, σ(r′)) , σ(c′), with C <: D, T′′ <: T′, and c
′ ∈ cct(C.m).

Let Γ′ be such that Γ′ = Γ, t′ : (Fut(T′′), b  σ(r′)), 0, x̄ : (T̄′, σ(s̄)), this : (D, σ(a ′[f̄ : r̄])).

By Lemma A.5 we have Γ′ `a e[b[f̄ : v̄]/this][v̄
′
/x̄] : (T′′, σ(r′)) , σ(c′) and Γ′ `a t :>a

E[b[f̄ : v̄]!m(v̄′)] : (T, r) , c and Γ′ `a b[f̄ : v̄]!m(v̄′) : (Fut(T′), σ(a ′)  σ(r′)) , 0 # 0̄ #
C.m σ(a ′[f̄ : r̄])(σ(s̄)) → σ(r′). By Lemma A.4 and rule (T-Configuration) we get the

result:

Γ′ `a t :>a E[t′] : (T′′′, r) , c′′ Γ′ ` t :>a E[t′], t
′ :⊥b e[b[f̄ : v̄]/this][v̄

′
/x̄]

where T′′′ <: T and c
′′ E c.
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Case (Get). Then

t :>a E[t′.get], t′ :b v
a−→ t :>a E[v], t′ :b v

Since Γ ` t :>a E[t′.get], t′ :b v, by rule (T-Configuration) we get Γ `a t :>a E[t′.get] :

(T, r) , c, and Γ `b t′ :b v : (T′, r′) , 0 for some T, r, T′, r′ and c. Then by rule (T-Task) we

have that Γ `a E[t′.get] : (T, r) , c, and Γ `b v : (T′, r′) , 0, and Γ(t) = (Fut(T), a  r),

and Γ(t′)(Fut(T′), b  r
′). By Lemma A.2 and typing rule (T-Get), we have Γ `a t′.get :

(T′, r′) , 0 G (a, b). By Lemma A.4 and rule (T-Configuration) we get the result.

Remaining cases. Straightforward.

Appendix B. Monotonicity of lafsa operations

For the sake of readability, we restate the proposition.

Proposition 5.2. An operation op is monotone with respect to �, if, whenever W1 � W2

then op(W1) � op(W2) (similarly for binary operations).

The operations of addition, sequence, and parallel are all monotone with respect to �.

Proof. The proof is standard for the operations of addition and sequence. Let us focus on

parallel. We may reduce to the subcases

monotonocity from the left: if WA � W ′A then WA | WB � W ′A | WB ;

monotonocity from the right: if WB � W ′B then WA | WB � WA | W ′B ;

and we detail the monotonicity from the left; the other one being similar. Let WA = (WA,→A

, wA, w
′
A), WB = (WB ,→B , wB , w

′
B), and let f be the map such that WA � WB . We must prove

thatWA | WC � WB | WC , that is there is a map g fromWA | WC = (WA|C ,→A|C , wA|C , w
′
A|C)

to WB | WC = (WB|C ,→B|C , wB|C , w
′
B|C) such that:

1. for every w in WA|C we have w ⊆ g(w);

2. wB|C = g(wA|C);

3. if w′ →A|C w′′ then g(w′)→B|C g(w′′);

Let g be the function

g : [(wA, wC)]D 7→ [(f(wA), wC)]D .

The above items 1. and 2. are immediate. As regards 3., we must show that w→A|C w′ implies

g(w)→B|C g(w′). By definition w, w′ must be w1 ∪ w2 and w′1 ∪ w′2, respectively, with (w1, w2)→A

× →C (w′1, w
′
2) (see definition of →A × →C in the paper). By this transition in →A × →C and

the facts

g(w′) = g(w1 ∪ w2) = g(w1) ∪ w2

g(w′′) = g(w′1 ∪ w
′
2) = g(w′1) ∪ w

′
2

there are two possible cases:

(i) w1 →A w′1 and w2 = w′2
(ii) w2 →C w′2 and w1 = w′1
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In case, (i), w1 →A w′1 implies f(WA)→B f(W ′A), hence:

by definition of ×: (f(w1), w2)→B × →C (f(w′1), w2)

by definition of [·]D: f(w1) ∪ w2 →B|C f(w′1) ∪ w2

by definition of g: g(w1 ∪ w2)→B|C g(w′1 ∪ w2) .

Case (ii) is straightforward.

Appendix C. Correctness of the lock-analysis technique

For readability sake we restate the theorem.

Theorem 6.4. Let (ct, e,cct) be an FJf program, act[n] be its abstract class table at n, and

S be a state of its operational semantics.

1. If S has an object-circularity then at least one state of the lafsas [[S]][n] has an object-

circularity;

2. if S
a−→ S′ and a state of [[S′]][n] contains an object-circularity then an object-circularity is

already present in a state of [[S]][n].

Proof. To demonstrate the item 1., let [[S]][n] = 〈W,W ′〉. We prove that every object name

dependencies occurring in S is also contained in the initial state of W. By Definition 6.2, if

S has an object name dependency (a, a ′) then there is {t :>a E[t′.get], t′ :a′ e} ∈ S, where

e is not a value. By the typing rules, the contract of t :>a E[t′.get] is (a, a ′) # cE, where cE

is the contract of E. As a consequence [[t :>a E[t′.get]]][n] = 〈{(a, a ′)} y WE, W ′E〉, where

[[t :>a E[ ]]][n] = 〈WE, W ′E〉. Let [[t′ :a′ e]][n] = 〈We, W ′e〉, then [[t :>a E[t′.get]]][n]|[[t′ :a′ e]][n] =

〈({(a, a ′)}yWE)|We,W ′E|W ′e〉.
A similar argument concern object name dependencies of the form (aa, a ′a) that correspond

to pair of tasks {t′′ :>a′′ E′[t′′′.await], t′′′ :a′′′ e′}. In this case, the lafsas are 〈({(aa, a ′a)} y
WE′)|We′,W ′E′ |W ′e′〉.

In general, if k object name dependencies occur in a state S, then there is S′ ⊆ S that collects

all the tasks manifesting the object name dependencies such that

[[S′]][n] = 〈({(a
[a]
1 , b

[a]
1 )}yWE1)|We1,W ′E1 |W

′
e1〉| · · · | 〈({(a

[a]
k , b

[a]
k )}yWEk )|Wek,W

′
Ek
|W ′ek 〉

= 〈({(a
[a]
1 , b

[a]
1 )}yWE1)|We1 | · · · |({(a

[a]
k , b

[a]
k )}yWEk )|Wek,W

′
E1 |W

′
e1 | · · · |W

′
Ek
|W ′ek 〉

By definition of parallel composition in Section 5, the initial state of W will contain all the

above pairs (a
[a]
i , b

[a]
i ). We notice that the object name dependencies in [[S]][n] may be more than

those occurring in S, since tasks {t :>a E[t′.get], t′ :a′ v} do not represent an object dependency

in a state, while they do produce a pair (a, a ′) in the corresponding automata.

Let us prove the item 2. We show that the transition S
a−→ S′ does not produce new object

name dependencies. That is, the set of object name dependencies in the states of [[S′]][n] is equal

or smaller than the set of dependencies in the states of [[S]][n].

Since Γ ` S, for some Γ, then, for every t :a e ∈ S we have Γ ` t :a e : (T, r) , c for some T, r,

and c. Therefore, by Theorem 4.4, if t :a e′ ∈ S′ and e 6= e′ then Γ ` t :a e′ : (T′, r) , c′, with

T′ <: T and c
′ E c. The argument is by induction on the proof tree of c′ E c. By Definition A.3

we distinguish five cases:

1) c = c
′, then [[t :a e]][n] = [[t :a e′]][n] and [[S]][n] = [[S′]][n].
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2) c′ = 0, then t :a e ∈ S, where e is not a value, and t :a v ∈ S′. This happens when the

reduction rule applied is (Invk) (without an immediate get or await on the invocation)

or (Get) or (AwaitT). In the first subcase we refer to the treatment of new task creation

below. Otherwise, if the applied rule is (Get) or (AwaitT), then [[S]][n] contain an object

dependency that does not appear in [[S′]][n], as stated.

3) c = C.m r(s̄) → s.(a, a ′)[a] and c
′ = (a, a ′)[a], then [[t :a e]][n] = 〈WC,m ⊕ (a, a ′), W ′C,m〉 and

[[t :a e′]][n] = 〈{(a, a ′)}, 0〉. This means that the result is true with respect to t. However

when c and c
′ are as in this case, then a new task has been spawned in the reduction step.

We refer to treatment of new task creation below.

4) c = C.m : r(r̄) → s, c′ = D.m : r(r̄) → s and D <: C, then by consistency of cct (see

Definition 4.2), c =α
c
′, hence [[S]][n] = [[S′]][n].

5) c = c1 # c′′ and c
′ = c2 # c′′, where c1 E c2, then we can proceed by inductive hypothesis.

Cases 2) and 3) above need to further analysis because they may apply in the same rule when

a new thread is spawned, therefore they have to be considered in conjunction with the creation

of new tasks. The reduction step that introduces new tasks is:

(Invk)

mbody(m, class(b)) = x̄.e t′ = freshtask( )

t :>a E[b[f̄ : v̄]!m(v̄′)]
a−→ t :>a E[t′], t′ :⊥b e[b[f̄ : v̄]/this][v̄

′
/x̄]

We proceed by case analysis on the structure of E, assuming class(b)=C:

Case E = E′[[ ].get] or E = E′[[ ].await]. The type system associates to t :>a E[b[f̄ : v̄]!m(v̄′)] a

contract C.m b[f̄ : X̄](av̄′ [f̄′ : Ȳ ]).(athis, b)[a] # cE′ . Let cC,m be the contract of the body of

C.m and 〈WC,m,W ′C,m〉 be the corresponding pair of lafsas. Then the lafsa transformation will

produce a pair of lafsas of the form 〈WC,m ⊕ (a
[a]
this, b

[a]), W ′C,m〉. The abstract semantics of

task t ∈ S will be then given by 〈WC,m ⊕ (a
[a]
this, b

[a]), W ′C,m〉 # 〈WE′, W ′E′〉, that is 〈WC,m ⊕
(a

[a]
this, b

[a]) y (W ′C,m|WE′), (W ′C,m|W ′E′)〉.
Regarding S′, the type system associates to t :>a E[t′] the contract (athis, b)[a]#cE′ correspond-

ing to the pair of lafsas 〈{(a
[a]
this, b

[a])} y WE′, W ′E′〉 and to t′ :⊥b e[b[f̄ : v̄]/this] the pair of

lafsas 〈WC,m, W ′C,m〉. Therefore, [[t :>a E[t′]]][n] | [[t′ :⊥b e[b[f̄ : v̄]/this]]][n] = 〈({(a
[a]
this, b

[a])} y
WE′) | WC,m, W ′E′ | W ′C,m〉 = 〈(WC,m | {(a

[a]
this, b

[a])}) y (WC,m|WE′), W ′E′ | W ′C,m〉. It is easy

to check that WC,m ⊕ (a
[a]
this, b

[a]) =WC,m | {(a
[a]
this, b

[a])}. Hence, since no other task has been

modified by the reduction, the resulting pair of lafsas for S′ is the same as the pair of lafsa

for S.

Remaining cases. The runtime type system associates to t :>a E[b[f̄ : v̄]!m(v̄′)] a contract

C.m b[f̄ : X̄](av̄′ [f̄′ : Ȳ ]) # cE.

Let cC,m be the contract of the body of C.m and 〈WC,m, W ′C,m〉 be the corresponding pair of

lafsas. Then the lafsa transformation produces a pair of lafsas of the form 〈0,WC,m yW ′C,m〉
and the abstract semantics of t ∈ S will be then given by 〈0, WC,m y W ′C,m〉 # 〈WE, W ′E〉.
That is 〈(WC,m yW ′C,m)|WE, (WC,m yW ′C,m)|W ′E〉.
Regarding S′, the type system associates to t :>a E[t′] a contract cE corresponding to the

pair of lafsa 〈WE, W ′E〉 and to t′ :⊥b e[b[f̄ : v̄]/this] a contract 〈WC,m, W ′C,m〉. Hence, [[t :>a
E[t′]]][n] | [[t′ :⊥b e[b[f̄ : v̄]/this]]][n] = 〈WE | WC,m,W ′E | W ′C,m〉, which has a subset of the states

of [[S]][n].


