
The interval analysis of multilinear expressions

Cosimo Laneve1 Tudor Lascu1 Vania Sordoni2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna
2 Dipartimento di Matematica, Università di Bologna

June 2, 2010

Abstract

Expressions are multilinear when variable occurrences are linear and
products have factors using different variables. We demonstrate that mul-
tilinear expressions are either constant or have never a local minimum or
a local maximum. Therefore the interval of multilinear expressions may
be computed precisely studying their values at the bounds of the variables
therein. We then propose a technique for the interval analysis of generic
expressions that transforms them into multilinear ones and compute the
interval of the latters.

1 Introduction

Interval analysis is a static analysis technique that abstractly computes pro-
grams using ranges of variables’ values rather than specific values. For example,
if x ∈ [1, 2] and y ∈ [0, 4] and one performs the assignment z := x+y, then, in the
final state, z ∈ [1, 6], which is the outcome of the interval addition [1, 2] + [0, 4].

It is well-known that the lost of precision in interval computations is due to
the evaluation of nonlinear expressions such as x∗ (y−z)+z. In this case, when
x ∈ [0, 1], y ∈ [0, 10] and z ∈ [0, 10], the current interval techniques compute
the expression [0, 1] ∗ ([0, 10] − [0, 10]) + [0, 10] and yield the interval [−10, 20],
which is a strict over-approximation of the precise result [0, 10]. This lost of
precision is caused by the double occurrence of the variable z that, in a precise
evaluation, may reduce the range of the result (because every occurrence of a
variable must be replaced by the same value). In an interval evaluation the
two occurrences of z disappear because they are replaced by the corresponding
interval. The same argument may be used for polynomials in several variables,
which is a computational equivalent problem.

In facts, finding the (precise) range of an expression in several variables has
been proved to be NP-hard by Gaganov [2] with respect to the number of vari-
ables and the degree of the expression. The problem seems practically unfeasible
even if we constrain either the degree or the number of variables of the expres-
sion. In particular, the problem is NP-hard as long as the degree is greater than
1. If the number n of variables is fixed, Grigoriev and Vorobjov have designed
an O(dk) algorithm, where d is the degree of the expression [3]. Unfortunately,
the constant k is equal to n2, which makes the algorithm expensive even for
small values of n. The survey [6] reports the main results about this problem.

1

Constraining either the degree or the number of variables are two somehow
extreme restrictions. Other restrictions, retaining simple and even more perfor-
mant algorithms than O(dn2

), may be proposed. To this aim, we have parsed
several programs that have been developed for different purposes (several thou-
sands lines) and we noticed that a large number of expressions were multilinear.
An expression is multilinear when variable occurrences are linear – the expo-
nent is 1 – and products have factors using different variables. For example
x ∗ (y − z) + z and x ∗ (y ∗ z − u) + y ∗ u are multilinear (for simplicity we are
omitting constant coefficients) and x ∗ (y + x) is not.

We demonstrate that multilinear expressions never manifest a local minimum
or a local maximum. That is, if a multilinear expression E has variables x1, · · · ,
xn that ranges over [a1, b1], · · · , [an, bn], respectively, then the least and greatest
values of E can be found at the vertices of the hypercube [a1, b1]×· · ·× [an, bn].
Therefore, the range of multilinear expressions may be computed in a precise
way by collecting the values of E at the 2n vertices and taking the least and
greatest ones. This simple algorithm has a computational complexity O(n ·22n).

We then use this result to design a technique for evaluating generic expres-
sions. The idea is to transform an expression into a multilinear one and then
compute the range of the latter. The transformation amounts to replace nonlin-
ear variables with fresh linear ones whose interval is defined by the corresponding
exponential variable (directly, rather than as a sequence of products). In doing
this replacement, we keep the dependencies between variable’s occurrences as
much as possible. For example, the expression x3y+x2z+xyz, with x ∈ [−1, 1],
is transformed into uxy + uz + xyz by letting u = x2 and u ∈ [0, 1]. The tech-
nique is sound, i.e. it introduces over-approximations as in the transformation
of the expression x4y + x3z + xyz, with x ∈ [−2, 2]. In this case we obtain
uxy + uz + xyz, by letting u = x3 and u ∈ [−8, 8], and we notice that the range
of the subexpression ux is [−16, 16], whilst it is [0, 16] in the original expression.

We finally compare our technique with standard interval analysis and with a
recent technique proposed by Miné [5]. This comparison is rather preliminary:
a thorough study is delayed to the next future.

Related works. Several proposals for reducing the loss of precision of interval
arithmetics may be found in the literature. As usual, in every proposal there is
a trade-off between computational cost and precision.

A recent proposal, which has been integrated in ASTREÉ [1], is due to
Miné [5]. In this technique an expression is transformed into an expression of
degree 1, called affine. Intervals of affine expressions are then computed without
loss of precision. The problem of this technique is that the affine transformation
is not unique and may introduce over-approximations (Miné’s technique, applied
to x ∗ (y− z) + z, when x ∈ [0, 1], y ∈ [0, 10] and z ∈ [0, 10], yields [0, 20], which
is an interval (twice) longer than the precise result [0, 10]).

The solution in [4] requires advanced computational techniques such as the
study of monotony and the analysis of sub-intervals.

Overview of the paper. We recall the mathematical background and define
multilinear expressions and demonstrate our results in Section 2. The algorithm
for the interval analysis of multilinear expressions and the study of its compu-
tational complexity are in Section 3. In Section 4 we study the extension of our

2

technique to generic expression. Section 5 reports our conclusions.

2 Multilinear functions

A polynomial function is a function defined by a polynomial. For example,
the function f from real numbers R to R, defined by f(x) = 5x3 + 2x + 7
is a polynomial function of one argument. Polynomial functions of multiple
arguments can be defined, using polynomials in multiple variables, as f(x, y) =
xy2 + 2xy + y + 1.

The gradient of a (differentiable) function f : Rn → R, noted ∇f , is the n-
uple (∂f

∂x1
, · · · , ∂f

∂xn
). For example, when g(x, y) = x2+y2−2xy2−y4, ∇g(x, y) =

(2x − 2y2, 2y − 4xy − 4y3). The gradient of a function is relavant because
a 0-gradient, i.e. (∇g)(a1, · · · , an) = (0, · · · , 0), is a necessary condition for
(a1, · · · , an) being a local minimum or a local maximum. This condition is in
general not sufficient: in the case of the above function g, (0, 0), (1

4 , 1
2) and

(1
4 ,− 1

2) are the zeros of the gradient, however only (0, 0) is a local minimum.

Definition 2.1. A polynomial function f : Rn → R is called multilinear if

f(x1, · · · , xn) =
∑

S⊆{1,2,··· ,n}

cS ·
∏
i∈S

xi

where every cS is a constant in R.

The Taylor series of a multilinear function f : Rn → R in a neighborhood of
a point (a1, · · · , an) is a polynomial of the form

f(a1, · · · , an) +
∑

i∈{1,··· ,n}
∂f
∂xi

(a1, · · · , an)(xi − ai)
+

∑
i1,i2∈{1,··· ,n},i1 6=i2

1
2!

∂f
∂xi1∂xi2

(a1, · · · , an)(xi1 − ai1)(xi2 − ai2)
+ · · ·

For example, the Taylor series of f(x, y) = 2xy + 7y + 12 in a neighborhood of
a point (a, b) is

f(a, b) + 2b(x− a) + (2a + 7)(y − b) + (x− a)(y − b) .

The Taylor series approximate the value of functions at given points. We will
use them in the following theorem.

Theorem 2.2. Let f : Rn → R be a multilinear function. If f has a local
minimum or a local maximum then f is constant.

Proof. Let f(x1, · · · , xn) =
∑

S⊆{1,2,··· ,n} cS ·
∏

i∈S xi be a multilinear function
and let (a1, · · · , an) be such that ∇f(a1, · · · , an) = 0. Then there are constants
dS , with S ⊆ {1, 2, · · · , n}, such that f may be rewritten as:

f(x1, · · · , xn) =
∑

S⊆{1,2,··· ,n}

dS ·
∏
i∈S

(xi − ai) .

where d∅ = f(a1, · · · , an) (c.f. the Taylor series in a neighborhood of (a1, · · · , an)).
We have the following cases:

3

1. Let T = {i1, i2, · · · , i`} be a minimal set with ` > 0 such that dT 6= 0. We
demonstrate that (a1, · · · , an) cannot be a local minimum or a local maxi-
mum. We observe that T cannot be a singleton because ∇f(a1, · · · , an) =
0.

There are two subcases: ` odd and ` even:

– when ` is odd, consider h(a1,··· ,an) : R→ R
n defined as follows:

(h(a1,··· ,an)(t))j =
{

t + aj if j ∈ T
aj otherwise

Then we have f(h(a1,··· ,an)(t)) = f(a)+dS ·t` and f(h(a1,··· ,an)(−t)) =
f(a)− dS · t`. Hence, for t > 0:

(f(h(a1,··· ,an)(t))−f(a1, · · · , an))(f(h(a1,··· ,an)(−t))−f(a1, · · · , an)) < 0 .

Since, for every ε > 0, h(a1,··· ,an)(]−ε, ε[) is contained in an hypercube
H =

∏n
i=1]ai−ε, ai+ε[of Rn, then there are two points x̃, ỹ ∈ H such

that (f(x̃) − f(a1, · · · , an))(f(ỹ) − f(a1, · · · , an)) < 0 and then one
can conclude that the point (a1, · · · , an) cannot be a local maximum
or a local mimimum.

– when ` is even, consider h−(a1,··· ,an) : R→ R
n defined as follows

(h−(a1,··· ,an)(t))j =

 aj − t if j = i1;
aj + t if j ∈ T \ {i1};
aj if j /∈ T .

Then we have f(h−(a1,··· ,an)(t)) = f(a)− dS · t`. Hence, for t > 0:

(f(h(a1,··· ,an)(t))− f(a))(f(h−(a1,··· ,an)(t))− f(a)) < 0

and, as before, it is possible to conclude that (a1, · · · , an) cannot be
a point of local maximum or local mimimum.

2. S` = ∅ (that is ` = 0) and dS`
6= 0 and every other S is such that dS = 0.

Then f(x1, · · · , xn) = d∅, that is f is constant.

An immediate consequence of Theorem 2.2 is the following.

Corollary 2.3. Let f : Rn → R be a multilinear function. The least and upper
bounds of f in the hypercube H = [a1, b1] × [a2, b2] × · · · × [an, bn] occur at the
vertices of H.

Proof. By Theorem 2.2, the least and upper bounds cannot be found inside
H. Therefore they are on the borders with respect to some variable. Let it
be x1. This means that least and upper bounds are either in f(a1, x2, · · · , xn)
or in f(b1, x2, · · · , xn), which are multilinear functions from R

n−1 to R. We
reiterate the argument on these functions. The process terminates with constant
functions.

4

Theorem 2.2 and Corollary 2.3 may be generalized as follows. Let f :
R

n+m → R be almost-multilinear if

f(x1, · · · , xn, y1, · · · , ym) = c∅(y1, · · · , ym) +
∑

S⊆{1,2,··· ,n}

cS(y1, · · · , ym) ·
∏
i∈S

xi

and every cS : Rm → R is a polynomial function. Interestingly, the bounds
of almost-multilinear functions may be found by studying the non-multilinear
parts.

Proposition 2.4. Let f : Rn+m → R be almost-multilinear with linear vari-
ables x1, · · · , xn. If f has a local minimum or a local maximum at a point
(c1, · · · , cn, c′1, · · · , c′m) then c1, · · · , cn are bounds (either lower or upper) of x1,
· · · , xn.

Proof. Let (c1, · · · , cn, c′1, · · · , c′m) be such that ∇f(c1, · · · , cn, c′1, · · · , c′m) = 0.
Since the function f(x1, · · · , xn, c′1, · · · , c′m) is multilinear then, by Corollary 2.3,
its least and upper bounds may be found at the bounds of the linear variables,
let them be [a1, b1], · · · , [an, bn]. This means that, in order to compute the
minimum and maximum values of f(x1, · · · , xn, y1, · · · , ym), it is possible to
reduce the calculus to the minimum and maximum of the sets of functions
{f(d1, · · · , dn, y1, · · · , ym) | di ∈ {ai, bi}, 1 ≤ i ≤ n}.

For example, let f(x, y) = 2y2 + xy2, with x, y ∈ [−1, 1]. Then ∇f(x, y) =
(y2, 2y(2x + 1)), which is 0 when y = 0 (and every x). By Proposition 2.4, in
order to compute the least and upper bound of f , we may reduce to computing
the minimum and maximum of the functions f(−1, y) = y2 and f(1, y) = 3y2,
that are 0 and 3, respectively (when y ∈ [−1, 1]).

3 Interval arithmetics for multilinear functions

We apply the results of the previous section to design a new algorithm for
the interval analysis of expressions. In this section we focus on multilinear
expressions (see below).

We use an infinite set of identifiers, ranged over by x, y, z; constants in
R are ranged over by c, d, · · · . Polynomial expressions E are defined by the
following grammar:

E ::= c | x | − E | E + E | E − E | E ∗ E

Let id(E) be the set of identifiers in E. It is evident that an expression E
represents a polynomial in id(E) variables. Therefore it is a functions from R

n

to R, where n is the cardinality of id(E). An expression is called multilinear if
the corresponding polynomial is multilinear.

The algorithm multilinearExp range in Table 1 computes the bounds of
multilinear expressions by taking the minimum and maximum values of the
expression when instantiated with the least and upper bounds of variables. More
precisely, the algorithm gets (the syntax tree of) an expression E, an array of
intervals, i.e. pairs (a, b), and a natural number specifying the number of free
variables of E. It is assumed that variables are totally ordered, i.e. x1, x2,
x3, · · · , and E contains the first n variables. So, the interval of xi is defined

5

1: multilinearExp range(E,Bounds[],n)
2: for (1<= i <= n) do ai := proj1(Bounds[i]);
3: m := E{a1, · · · , an/x1, · · · , xn

} ;
4: M := m ;
5: for y1 ∈ { proj1(Bounds[1], proj2(Bounds[2] }, ...,

yn ∈ { proj1(Bounds[n], proj2(Bounds[n] } do
6: t := E{y1, · · · , yn/x1, · · · , xn

} ;
7: m := min(m, t) ;
8: M := max(M, t) ;
9: return([m,M])

Table 1: The algorithm multilinearExp range.

in Bounds[i] and we get the lower-bound and the upper-bound by means of
proj1 and proj2, respectively.

The computational complexity of multilinearExp range is determined as
follows:

– statements at lines 2, 3 and 4 do not play any relevant role;

– the for statement at line 5 has 2n iterations;

– at every iteration, the cost of line 6 is computed as follows:

– every monomial with k variables has k products (including the con-
stant) and, in the worst case, there are (n

k) of such monomials;

– the total number of operations is

n∑
k=1

(n
k) · k = n · 2n−1

Therefore line 6 costs O(n · 2n−1).

– the overall complexity of multilinearExp range is O(2n · n · 2n−1) =
O(n · 22n).

We observe that our algorithm has a better computational complexity than the
one designed by Grigoriev and Vorobjov – that has a cost O(dn2

). (Actually
our algorithm is better when d > 1. When d = 1 we use the standard interval
analysis, which returns the precise range.) We also observe that, while an
O(n ·22n) algorithm is prohibitive, in general, it is more affordable in the case of
expressions occurring in programs that very rarely retain more than 4 variables.
Last, we remind that interval arithmetics of multilinear expressions is computed
statically for correctness purposes. In this context it is reasonable to pay more
for an accurate analysis.

4 The general case

The technique of Section 3 may be extended to generic, polynomial expressions.
Since Theorem 2.2 cannot be generalized to non-multilinear polynomials, and

6

1: Exp range(E,Bounds[],n)
2: (x,i) := nonlinearvar(E) ;
3: while (x 6= $) do
4: (k,h) := getexponents(E,x) ;
5: if (h>1) then
6: E := replace(E,xh, xn+1) ; r:= h
7: else E := replace(E,xk, xn+1) ; r:= k;
8: Bounds[n+1] := intv(x,r,Bounds[i]);
9: n := n+1;
10: (x,i) := nonlinearvar(E) ;
11: return(multilinearExp range(E,Bounds[],n))

Table 2: The algorithm Exp range.

Proposition 2.4 does not help very much from the algorithmic point of view, we
decided to define a “reduction” technique. That is, we reduce generic expressions
to multilinear ones and compute the intervals of the latters. The ambition is
to return more precise intervals than the standard interval arithmetics or other
techniques.

As for multilinearExp range, we assume that variables are totally ordered
and E contains the first n variables, called x1, x2, · · · , xn. We also assume the
presence of the following identifiers and functions:

– $ is a dummy identifier, different from any other occurring in expressions;

– nonlinearvar(E) returns either a pair ($,-1), if the expression E is mul-
tilinear, or a pair (x,i), where x is the first nonlinear variable (in the
total ordering) occurring in E and i is its ordinal;

– getexponents(E,x) returns a pair (k,h) of naturals, with k > h, where
k is the greatest exponent of x in E and h is the exponent of an occurrence
of x that is immediately smaller than k. In case all the occurrences of x
have exponent k then h = 0.

– intv(x,r,(a,b)) returns the lower-bound and upper-bound of the ex-
pression xr, when x ∈ [a, b].

– replace(E,xh, z) replaces the occurrences of xh+h′
in E with zxh

′
.

The algorithm Exp range is defined in Table 2. Exp range takes a nonlinear
variable (line 2). In case no variable is found, then the bounds of the expressions
are computed with multilinearExp range (line 11). Otherwise, let the variable
be x. The algorithm grabs the maximum exponent k of x the exponent h, with
k > h, such that the other occurrences of x have either exponent k or exponent
lesser or equal to h (line 4). When h > 1, all the powers xk and xh in E
are replaced by xn+1xk−h and xn+1, respectively, where xn+1 is the first fresh
variable (line 6), and the interval of xn+1 is computed in a precise way (line 8).
When h = 1 or h = 0 the replacement only concerns the terms xk

i . The iteration
at line 3 terminates when the expression becomes multilinear. For example, let
E = x5−x3z + xy−xz + z, with x ∈ [−1, 2], y ∈ [1, 3], and z ∈ [2, 3]. Here, the
unique nonlinear variable is x and the two values returned by getexponents

7

are 5 and 3. Therefore, the expression E becomes vx2 − vz + xy − xz + z with
v ∈ [−1, 8]. In turn, the evaluation of this expression reduces to computing
multilinearExp range on vu− vz + xy − xz + z, with u ∈ [0, 4].

We notice that the replacement of line 6 keeps the dependencies between the
occurrences of xh, but definitely breaks those between (i) xh and the exponent
k− h and (ii) those exponents lower than h. Such a rupture causes an over-
approximation in the interval computation. In the above expression E = x5 −
x3z + xy− xz + z, the dependency of x between the first and second monomial
is retained in vx2 − vz + xy − xz + z by means of the variable v. (A greedy
strategy replacing x5 with a variable would break this dependency.) This is a
choice among several ones and it is not clear to us whether other choices may
return better results. We leave this issue to future work.

Next, we analyze the computational complexity of Exp range. Let d be the
greatest exponent in the input expression E and let n be the number of variables
therein.

– In order to turn E into an expression that is linear in x, we need, in the
worst case, d/2 iteration of lines 4-10. These iterations introduce d/2 fresh
variables. Similarly for every other nonlinear variable. In the worst case,
the iterations are n(d/2).

– At every iteration, the cost of getexponents(E,x), replace(E,xh,xn+1)
and nonlinearvar(E) depend on the size of E, let it be |E|. In the worst
case, this size grows linearly with respect to E (because of the products
xn+1xk−h that are inserted). That is, the size |E| at the beginning, 2|E|
at the second iteration, 3|E| at the third one, and so on.

– Therefore, the cost of lines 4-10 is O(|E| · nd(nd + 2)).

– Since the cost of invoking multilinearExp range at line 11 with an ex-
pression of n + n(d/2) variables is O(22n·(1+d/2)), we obtain a complexity
O(|E| · nd(nd + 2) + 22n·(1+d/2)), which is equal to O(22n·(1+d/2)).

We conclude our analysis by comparing the outputs of Exp range with other
techniques. We consider the standard interval analysis and Miné’s symbolic
technique [5].

The expression we consider is x5 − x3 ∗ z + x ∗ y− x ∗ z + z with x ∈ [−1, 2],
y ∈ [0, 2], and z ∈ [0, 2]. The precise interval of this expression is [−3, 36]. The
following table sums up the results:

algorithm output

Interval Analysis [−26, 42]
Miné’s technique [−21, 42]

Exp range [−18, 36]

If the intervals of variables are x ∈ [0, 1], y ∈ [0, 2], and z ∈ [0, 3] then the
precise interval of the above expression is [−2, 3]. The following table sums up
the results:

8

algorithm output

Interval Analysis [−6, 6]
Miné’s technique [−5, 4]

Exp range [−2, 3]

We notice that (in these cases) our techniques gives a better precision than the
other ones. While this is reasonable because Exp range has a higher computa-
tional cost than interval analysis or Minè’s technique, it is unclear, as we said,
whether this is always the case or not.

5 Conclusions

A new algorithm for the interval analysis of polynomial expressions has been
proposed and studied. The algorithm is precise when the expressions ate mul-
tilinear. A preliminary assessment of the algorithm with respect to other tech-
niques has begun and a thorough study is planned.

Our algorithm has been already successfully used for the interval analysis of
codes of control switchboards, where every expression turns out to be multilin-
ear. In facts, non-multilinear expressions are quite infrequent in programs. That
is, the message conveyed by this paper is that interval analysis of expressions
may be carried out without lost of precision in almost all the cases.

References

[1] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The astreé analyzer. In S. Sagiv, editor, ESOP, volume 3444 of
Lecture Notes in Computer Science, pages 21–30. Springer, 2005.

[2] A. Gaganov. Computational complexity of the range of the polynomial in
several variables. Cybernetics and Systems Analysis, 21(4):418–421, July
1985.

[3] D. Grigoriev and N. Vorobjov. Solving systems of polynomial inequalities
in subexponential time. J. Symb. Comput., 5(1/2):37–64, 1988.

[4] E. Hansen. Generalized interval arithmetic. In Interval Mathematics, vol-
ume 29 of Lecture Notes in Computer Science, pages 7–18. Springer Berlin
/ Heidelberg, 1975.

[5] A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In Proc. of the 7th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’06), volume 3855 of Lecture Notes in
Computer Science, pages 348–363, Charleston, South Carolina, USA, Jan-
uary 2006. Springer.

[6] A. L. V. Kreinovich and J. Rohn. Scientific Computing and Validated Nu-
merics, chapter Computational Complexity of Interval Algebraic Problems:
Some Are Feasible and Some Are Computationally Intractable - A Survey,
pages 293–306. Akademie Verlag, 1996.

9

