
PiDuce – a project for experimenting

Web services technologies ?

Samuele Carpineti a, Cosimo Laneve a,∗, Luca Padovani b

aUniversity of Bologna, Department of Computer Science,
Mura Anteo Zamboni, 7, 40127 Bologna, Italy

bUniversity of Urbino, Information Science and Technology Institute,
Piazza della Repubblica, 13, 61029 Urbino, Italy

Abstract

The PiDuce project comprises a programming language and a distributed runtime
environment devised for experimenting Web services technologies by relying on solid
theories about process calculi and formal languages for XML documents and schemas.

The language features values and datatypes that extend XML documents and
schemas with channels, an expressive type system with subtyping, a pattern match-
ing mechanism for deconstructing XML values, and control constructs that are based
on Milner’s asynchronous pi calculus. The runtime environment supports the execu-
tion of PiDuce processes over networks by relying on state-of-the-art technologies,
such as XML schema and WSDL, thus enabling interoperability with existing Web
services.

We thoroughly describe the PiDuce project: the programming language and its
semantics, the architecture of the distributed runtime and its implementation.

Key words: pi calculus, XML schema, type system, subschema relation, WSDL, Web
services.

? Aspects of this investigation were supported in part by a Microsoft initiative in
concurrent computing and Web services.
∗ Corresponding author.

Email addresses: carpinet@cs.unibo.it (Samuele Carpineti),
laneve@cs.unibo.it (Cosimo Laneve), padovani@sti.uniurb.it (Luca
Padovani).

Preprint submitted to 29 January 2009

1 Introduction

Web services are part of a recent emerging paradigm where computational
elements are autonomous, platform-independent and can be described, pub-
lished, discovered, and orchestrated for developing networks of collaborating
applications distributed within and across organizations. Various technologies
and languages have been proposed for describing and designing Web services
by the major Information Technology vendors.

In order to give a first insight into these technologies, let us look at Figure 1,
which presents a simplified WSDL [31–33] fragment describing a Web service
for purchasing books online. Without entering the technicalities of WSDL, we
can easily identify three main sections in this description: lines 3–11 describe
the type of messages exchanged between the service and its clients: the xsd-
prefixed elements belong to the XML-Schema language [27–29], which describes
the structure of XML values; lines 13–16 list the operations provided by the
service. A Web service operation can be thought of as a method provided by
an object. In this case we have just one operation named BookSelection.
Finally, lines 18–23 provide information about how to physically invoke the
service operations by specifying the location of the service (the content of
the soapAction attribute) and the communication protocol(s) supported by
the service. In summary, a WSDL document describes in a declarative way the
interface exposed by a Web service, without revealing any information about
how it is implemented.

At a greater level of detail, the same Web service can also be described by
means of the WS-BPEL [4] document in Figure 2. In this description we see
the implementation of the BookSelection operation: the Web service waits
for invocations of the operation (lines 2–4) and stores the message sent by the
client into a variable called BookSelectionRq (line 4); two fields are extracted
from the message (lines 6–11) and copied in local variables BookRequest (the
ordered book) and ClientId (the client’s identity); then, the Web service
concurrently invokes the deposit and the credit department (lines 13–20) for
verifying the client identity and the book availability, and finally it commu-
nicates whether the purchase is successful (lines 23–26) or not (lines 27–29)
back to the client.

While similar descriptions may be given in terms of other Web services process
languages such as BizTalk [26] and XLANG [38], basically all of these languages
and technologies, with the exception of some parts of XML-Schema, are only
informally specified and lack a mathematical model. As a matter of fact, they
often describe activities vaguely (e.g. the execution of compensation handlers
in transactional activities), they lack verification tools, and they provide very
few hints about possible implementations.

2

1 <wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
2 targetNamespace="http://buy_a_book.com/bookseller/">
3 <wsdl:types>
4 <xsd:element name="BookSelectionRQ">
5 <xsd:sequence>
6 <xsd:element name= "BookRequest" type="xsd:string" />
7 <xsd:element name= "ClientId" type="xsd:string" />
8 </xsd:sequence>
9 </xsd:element>

10 <xsd:element name="BookSelectionRS" type="xsd:string" />
11 </wsdl:types>
12

13 <wsdl:operation name="BookSelection">
14 <wsdl:input message="BookSelectionRQ" />
15 <wsdl:output message="BookSelectionRS" />
16 </wsdl:operation>
17

18 <wsdl:binding>
19 <wsdl:operation name="BookSelection">
20 <soap:operation
21 soapAction="http://buy_a_book.com/bookseller/BookSelection"/>
22 </wsdl:operation>
23 <wsdl:binding>
24 </wsdl:definitions>

Fig. 1. WSDL description of the book selling service.

Any reader barely knowledgeable of process calculi will find the constructs in
Figure 2 quite familiar: sequential (sequence) and parallel (flow) composi-
tion, input (receive) and output (invoke) operations, as well as constructs
that are typical of sequential languages (switch). Furthermore, most Web
services languages are heavily based on XML-related technologies, not merely
because many of them use XML as their concrete syntax (as we have seen above),
but because Web services send and receive messages encoded in XML, they de-
scribe XML messages by means of XML-Schema (as in wsdl:types section in
Figure 1), they analyze the structure of XML messages by means of XML-based
query languages (the queries on lines 7 and 17 in Figure 2 are simple XPath

patterns [14]).

Thus, process calculi such as pi calculus [34] and join calculus [17], can be
quite natural formal models for Web services languages, provided that they
are adequately equipped with XML values, schemas and patterns. For instance,
the book selling service above may be written into an algebraic term such as
the following

Order_in?(request).

3

1 <sequence>
2 <receive partnerLink="client" portType="OrderPT"
3 operation="BookSelection" variable="BookSelectionRq"/>
4

5 <copy> <from variable="BookSelectionRq"
6 query="/BookSelectionRq/BookRequest"/>
7 <to variable="BookRequest"/> </copy>
8 <copy> <from variable="BookSelectionRq"
9 query="/BookSelectionRq/ClientId"/>

10 <to variable="ClientId"/> </copy>
11

12 <flow>
13 <invoke partnerLink="DepositDept" portType="DepositDeptPT"
14 operation="VerifyBookSelection"
15 inputVariable="BookRequest"
16 outputVariable="BookResponse"/>
17 <invoke partnerLink="CreditDept" portType="CreditDeptPT"
18 operation="VerifyCredit" inputVariable="ClientId"
19 outputVariable="CreditResponse"/> </flow>
20

21 <switch>
22 <case condition="getVariableData(BookResponse) == true
23 && getVariableData(CreditResponse) == true)">
24 <reply partnerLink="client" portType="OrderPT"
25 operation="BookSelection" value="OK"/> </case>
26 <otherwise>
27 <reply partnerLink="client" portType="OrderPT"
28 operation="BookSelection" value="NO"/> </otherwise>
29 </switch>
30 </sequence>

Fig. 2. WS-BPEL description of the book selling service.

match request with {
BookSelectionRq[BookRequest[book], ClientId[id]] ⇒
CreditDept_out!(id) | DepositDept_out!(book) |
CreditDept_in?(creditOk).
DepositDept_in?(bookOk).
match creditOk, bookOk with {

true, true ⇒ Order_out!("OK")
| _, _ ⇒ Order_out!("NO") }

}

The symbols ? and ! respectively identify receive and send operations: re-
ceive operations are used for implementing the operations provided by the
service (Order_in) as well as for waiting for responses from other invocations
(CreditDept_in and DepositDept_in). Send operations are used for invoking

4

other services (CreditDept_out and DepositDept_out) as well as for sending
responses to the client (Order_out). The operators . and | respectively rep-
resent sequential and parallel composition of activities: the credit and deposit
services are inquired concurrently, while the response to the client is only in-
voked when both departments have answered. Finally, the match construct
provides pattern matching capabilities over possibly structured values. In the
example, it is used for extracting the book and the client identifier from the
client’s request, and for checking the answers from both departments.

The PiDuce project 1 aims at developing, both theoretically and practically,
a process calculus that may construct and deconstruct XML documents. The
calculus is intended to serve as an intermediate language powerful enough
for encoding the common operations of Web services languages, for assessing
their expressive power and for developing tools for their effective analysis.
The project also aims at designing a formally specified distributed machine
running applications that may be exported to the Web. Overall, PiDuce is not
the platform for Web service technologies, but rather it is a formal framework
for experimenting proposals, studying their theory, and implementing the most
relevant and interesting features.

In this paper we thoroughly describe the PiDuce project. While some of the
results have already appeared in conference proceedings, others are original to
this contribution. Concisely, in this paper

(1) we extend the language described in [9] with expressions and opera-
tions dealing with remote locations (receive on remote services, creations
of remote services, import of remote services); moreover, we work with
schemas and patterns that include channels with capabilities (as in [11])
but also sequences and repetitions;

(2) we extend the use of linear forwarder in [20] to the definition of remote
service creation;

(3) we modify the subschema algorithm of [11] to account for arbitrary se-
quencing, as opposed to prefixing. The algorithm follows the style of [24]
with rules for channel schemas;

(4) we enhance the PiDuce architecture described in [12] by introducing a
Web interface that deals with interoperability issues.

A more precise account of our work follows. As regards (1) and (2), PiDuce’s
syntax allows receive operations on both local and remote services. This fea-
ture has been considered because it is used in BizTalk in services with reliable
messaging, such as MSMQ and MQSeries [26]. For example, the C# fragment be-
low may be obtained in BizTalk by drawing a receive activity on a MSMQ

adapter:

1 http://www.cs.unibo.it/PiDuce/

5

1 MessageQueue q = new MessageQueue(queueAddress, false, false,
2 QueueAccessMode.Receive);
3 Message m = q.Receive();

Line 1 defines the address of a queue as consisting of a machine name –
the ServerName – and the name of the queue – QUEUE. This line creates a
reference q to a message queue. The first argument, queueAddress, is a string
containing the address of the message queue. The remaining arguments specify
how the reference will be used. In particular, the last argument constrains
the use of q for receiving messages. The receive operation is performed on
line 3. Observe that queueAddress may be the address of a local as well
as of a remote message queue and that it may have been received by the
process running this code in a previous communication. In process calculi, this
feature is known as input capability, whereby a received reference is used as the
subject of a subsequent input. Implementing input capability in a distributed
setting is a hard task because it either poses consensus problems or it requires
the migration of large input processes, with all the well-known efficiency and
security issues that process migration entails. PiDuce admits input capability
and implements it by means of linear forwarders [20]. The solution consists of
allowing just a limited atom of input capability – the linear forwarder –, such
as

uri1?(m).uri2!(m)

that forwards one message m originally sent to uri1, to uri2. This paper may
be also seen as a formal (alternative) implementation of input capability in
BizTalk, whose implementation details have not been published. The same
technique is used in defining a remote service. The server where the definition
is executed becomes an hidden server of the remote public one, which always
delegates requests by means of linear forwarders.

As regards (3), PiDuce’s type system has been strongly influenced by the
XDuce one, a functional language for XML processing [23]. With respect to
XDuce, the type system of PiDuce also considers service references. As we have
seen in Figure 1, these references are passively used in WSDL documents [31].
However, latest technologies encompass the possibility of sending and receiv-
ing Web service references in messages: it is the case of the new version of
WSDL [32,33], which uses service references in the wsdl:types part of the doc-
ument, and of the WS-Addressing specification [30], which provides guidelines
for encoding Web service references within XML messages. While process cal-
culi such as pi calculus or the join calculus allow the sending and receiving of
names (i.e. Web service references) in a very natural way, their support has
deep implications in both the theory and the practice of PiDuce. We need
to extend schemas (and patterns) with constructors describing collections of
service references exposing a given interface. Correspondingly, we need to de-

6

termine when a service reference u with a given interface can be safely used in
place of a service reference with a different interface. In Web services this calls
for retrieving the interface of u and comparing it with the other interface –
computing the subschema relation. These operations may be expensive when
performed at runtime during pattern matching [11]. Some evidence of this
aspect is exhibited by the pattern matching relation that carries an environ-
ment mapping service references to their schemas. This environment collects
the schemas that are available at run time. It may be the case that a message
carrying a service reference is received by a server that misses the correspond-
ing service schema. In this case the schema is downloaded (once for all) and
used in the pattern matching. This design decision economizes the number of
service schemas (WSDLs) transmitted at runtime.

As regards (4), observe that PiDuce processes interacting with real-world Web
clients and services must address various interoperability issues related to the
involved technologies. For example, a PiDuce client invoking the book-selling
service in Figure 2 must import the public description of the service – the WSDL
in Figure 1 – to figure out whether the channels used for communication with
the service are typed in accordance with what declared in the client. Symmet-
rically, a Web service implemented in PiDuce must export its operations by
means of a WSDL resource. Such import/export procedures entail a mapping
between the PiDuce schemas and, say, XML schema, which is the language typ-
ically used in WSDL resources to describe the valid documents exchanged with
a Web service. This mapping is problematic because the two systems do not
have the same expressive power. For example, in PiDuce service references are
first-class values; therefore PiDuce schemas include channel types, which are
not supported in XML schema. More generally, PiDuce schema retain features
that are fundamental in order to guarantee the typability of processes (cf. non-
deterministic unions of schemas) but which are not found in XML schema. Other
examples of interoperability issues concern message encoding and decoding,
as well as the implementation of various communication models (synchronous
and asynchronous) within a minimal formal framework that provides only one
of them. It is worth to notice that, while the effort for making PiDuce in-
teroperable is considerable, this mostly involves technical issues that can be
addressed separately from the actual system implementation. For this reason,
in the present paper we mostly focus on the formal system and we just sketch
how some of the most important technical issues have been addressed (see
Section 8). This focus on interoperability has made three important contribu-
tions to the PiDuce project. First of all, by describing a system that works
not only on the paper, but also “in the wild”, we are able to substantiate
the validity of our formal model with real-world examples (a working PiDuce

client interacting with Google and Amazon is shown in Section 2). Second,
we connect a rigorously specified system with the current technologies, thus
providing such technologies with a formal basis and possibly spotting their
weaknesses, ambiguities, and lines of extension. This is in sharp contrast with

7

WS-BPEL, of which several implementations and formal specification do exists,
but which are completely independent and, thus, hard to connect with each
other. Third, we provide a modular architecture where all the interoperability
issues are addressed in a well-defined and confined module, called Web inter-
face. This favors the reuse of parts of the PiDuce project in different contexts
and suggests that other languages and systems (such as those described in
Section 9) can be easily made interoperable by plugging suitable layers on top
of them.

The paper is structured as follows. Section 2 provides a tutorial introduction to
the main PiDuce language features through simple examples. Section 3 defines
the syntax of the language, which comprises schemas, expressions, patterns,
and processes. Section 4 defines the subschema relation and the static seman-
tics of the PiDuce language. Section 5 describes the pattern matching and
the operational semantics of local operations. Section 6 defines the PiDuce

distributed machine and the static and dynamic semantics of operations that
deal with remote locations. In Section 7 we finally close the gap between
PiDuce and Web service technologies by adding the notions of synchronous
communication and service operations. Section 8 sketches the architecture of
the PiDuce runtime and provides the most important remarks about the in-
teroperability features of the PiDuce prototype. Section 9 discusses related
works and Section 10 concludes with an example of PiDuce program that in-
teroperates with real-world Web services. Appendixes A and B contain proofs
of the results stated in the paper. Appendix C presents an algorithmic version
of the subschema relation.

2 Getting started

The basic elements of PiDuce are introduced through a few examples. The
formal presentation is deferred to the next section.

PiDuce values represent (parts of) XML documents. For example, the XML doc-
ument fragment

<msg>hello</msg><doc/>

is written in PiDuce as msg["hello"],doc[].

PiDuce schemas are used to type values and approximate XML-Schemas. For
example, the XML-Schema

<xsd:element name="a" type="xsd:integer"/>

describing a-labelled integers is written as a[int] and the XML-Schema

8

<xsd:sequence>
<xsd:element name="a" type="xsd:integer"/>
<xsd:choice>

<xsd:element name="b" type="xsd:string"/>
<xsd:element name="c"/>

</xsd:choice>
</xsd:sequence>

is written as a[int],(b[string] + c[]). Schemas with a repeated structure are
written in PiDuce by means of the star operator. For example, the XML-Schema

<xsd:sequence minOccurs="0" maxOccurs="unbound">
<xsd:element name="a" type="xsd:string"/>

</xsd:sequece>

is written as a[string]∗. A more detailed discussion of the relationship between
XML and PiDuce schemas is undertaken in Section 8.

PiDuce processes describe Web services. For example, a printer service that
collects color and black-white printing requests is defined by the term:

print?*(x : Pdf + JPeg)
match x with {
y : Pdf => printbw!(y)

| z : JPeg => printc!(z) }

The print service accepts a value x of schema Pdf + JPeg (where “+” denotes
schema union), it checks whether the received value x belongs to either Pdf or
JPeg; in the first case it forwards the value x to the black-white printer, in the
second case it forwards the value x to the color printer. The basic mechanism
for interactions is message passing. For example print!(document) invokes
the print service with the value document. Service invocation is non-blocking
and asynchronous: the sender does not wait that the receiver really consumes
the message. The star after the question mark in the print service above
indicates that the service is permanent: the process is capable of handling an
unlimited number of requests.

The parallel execution of several activities is defined by the spawn construct.
For example

spawn { print!(document1) } print!(document2)

invokes print twice. Because of asynchrony, there is no guarantee as to which
invocation will be served first. More elaborated forms of control and commu-
nication, such as sequentiality and rendez-vous, can be encoded using explicit
continuation-passing style.

9

In PiDuce it is possible to select one input out of many. This operation,
which is similar to the homonymous system call in socket programming, to
the “pick activity” in WS-BPEL, and to the input-guarded choice in the pi
calculus, permits the definition of alternative activities. For example, consider
a printer service that after the printer request waits for the black-white or
color request and prints the document accordingly:

print?*(x : Pdf + JPeg)
select { b&w?(()) printbw!(x)

color?(()) printc!(x) }

(note the missing * after b&w? and color?). In general, the select operation
groups several input operations to be executed in mutual exclusion.

Service references may be created dynamically. In their simplest form, services
have exactly one operation whose name coincides with that of the service.
Services are declared as follows:

new print : 〈Pdf + JPeg〉O in P

(where P contains one of the previous printer services). The new operation
creates a new channel at the URL address of the runtime environment executing
this code (each service URL is made unique by appending an appropriate suffix)
and publishes a WSDL document describing the print service as accepting
documents of schema Pdf + JPeg. The capability O indicates that print is
an asynchronous – one-way, in WSDL jargon – service: clients are allowed to
send messages to print and never receive from print. The capability only
affects clients of the service, whereas the service itself, here represented by
the P process within the scope of the declaration, is not constrained in any
way. PiDuce channels are first-class citizens: they are values that can be sent
over and received from other channels and they can be examined by pattern
matching.

Multi-operation services may be also defined. For example

new cell : {get : ()→ int; set : 〈int〉O} in Q

defines a service cell with two operations: get is a synchronous operation
accepting the empty document () and returning the value of the cell, and set

is an asynchronous operation setting the value of the cell. These operations
may be addressed in Q by cell#get and cell#set, respectively (see Section 7
for the details).

We conclude this informal introduction by sketching a non-trivial PiDuce

client process, shown in Figure 3, that concretely interacts with the Web ser-
vices provided by the on-line store Amazon and the Google search engine. The
code shown is actually an streamlined version of the actual client, which needs

10

1 schema ProductInfo = ...
2 and GoogleSearchResult = ...
3 in import Amazon {
4 KeywordSearchRequest
5 : KeywordSearchRequest[KeywordRequest] → return[ProductInfo]
6 } location="http://soap.amazon.com/schemas2/AmazonWebServices.wsdl "
7 in import Google {
8 doGoogleSearch : q[string] → return[GoogleSearchResult]
9 } location="http://api.google.com/GoogleSearch.wsdl "

10 in new amazonReply { get : 〈return[ProductInfo]〉 }
11 in new stdout { print : 〈Any〉 } location="stdout"
12 in spawn {
13 Amazon#KeywordSearchRequest!
14 (KeywordSearchRequest[keyword["Nocturama"]], amazonReply.get)
15 }
16 amazonReply#get?(return[product : ProductInfo])
17 match product with {
18 Any, Details[Item[Any, Artists[artistList : Item[string]*],
19 Any], Any] ⇒
20 match artistList with {
21 () ⇒ stdout#print!("no artist found")
22 | Item[name : string], Any ⇒
23 Google#doGoogleSearch!(q[name], stdout#print)
24 }
25 | Any ⇒ stdout#print!("no product or artist found") }

Fig. 3. A PiDuce client interacting with both Amazon and Google Web services.

a long preamble of schema definitions and slightly more involved service invo-
cations; the full example can be found in the latest PiDuce distribution. The
client starts by defining the relevant schemas that are published in the WSDL’s
of the two Web services (lines 1 and 2). In fact, PiDuce provides an utility for
extracting such declarations automatically, given the URL of the service’s WSDL
file, so these definitions need not be written by hand. Lines 3 to 9 import the
two Web services. For each service we only import the subset relevant opera-
tions. In this case they are both request-response operations, as can be seen by
the arrow schema. The URLs after the keyword location refer to the WSDL files
provided by Amazon and Google. Line 10 defines a local channel to be used
as the continuation for the interaction with the Amazon Web service. While
PiDuce’s Web interface interoperates natively with request-response opera-
tions, the language only provides for asynchronous communication primitives
(see Section 6 for more details). Line 11 defines a special channel used to write
values on the terminal, so that the process can be monitored and the results
can be printed. Lines 12 to 15 invoke Amazon by searching for a particular
keyword, and the process starting on line 16 waits for the response. Once this
arrives, a query is done on the received document (lines 17 to 22) and one

11

piece of extracted information is used to start the Google search engine on
line 23. The result is directly printed on the terminal.

3 The PiDuce language

The syntax of PiDuce includes the categories labels, expressions, schemas,
patterns, and processes that are defined in Table 1. The following countably
infinite sets are used: the set of tags, ranged over by a, b, . . . ; the set of vari-
ables, ranged over by x, y, z, . . . ; the set of schema names, ranged over by
U, V, . . . ; the set of pattern names, ranged over by Y, J, Variables that have
channel schemas will be called channels and are ranged over by u, v,

A PiDuce program has the form:

U1 = S1;; · · · ;;Un = Sn ;; Y1 = F1;; · · · ;;Ym = Fm ;;P

that is a sequence of schema and pattern name definitions followed by a
process. The names U1, . . . , Un, Y1, . . . , Ym are pairwise different. Sequences of
schema name and pattern name definitions are represented by maps E and
F with finite domains that take a name and return the associated schema or
pattern, respectively.

The sets fv(·) of free variables and bv(·) of bound variables are defined for
expressions, patterns, and processes as follows:

fv(E) is the set of variables occurring in E; bv(E) is empty;
fv(F) is the set of variables occurring in F and, recursively, in the definition

of every pattern name occurring in F ; bv(F) is empty;
fv(P) is the set of variables occurring in P that are not bound. An occurrence

of x in P is bound in a branch u?(F) P of a select or in the replicated input
u?*(F) P if x ∈ fv(F); an occurrence of u in P is bound in new u : 〈S〉κ in P ;
bv(P) collects the bound variables in P .

The definitions of alpha-conversion and substitution for bound variables are
standard. In the following, the channel u in u!(E), u?(F), and in u?*(F) is
called subject.

Labels. Labels specify collections of tags. Let L be the set of all tags; the
semantics of labels is defined by the ·̂ function:

â = {a} ~̂ = L L̂+ L′ = L̂ ∪ L̂′ L̂ \ L′ = L̂ \ L̂′

12

Table 1
PiDuce syntax.

L ::= label
a (tag)
~ (wildcard)
L+ L (union)
L \ L (difference)

S ::= schema
() (void schema)
B (basic schema)
〈S〉κ (channel schema)
L[S] (labelled schema)
S,S (sequence schema)
S + S (union schema)
S∗ (star)
U (schema name)

E ::= expression
() (void)
n (integer constant)
s (string constant)
x (variable)
a[E] (labelled expression)
E,E (sequence)

κ ::= capability
I (input)
O (output)
IO (input/output)

B ::= basic schema
n (integer constant)
s (string constant)
int (any integer)
string (any string)

F ::= pattern
() (void pattern)
B (basic schema)
〈S〉κ (channel pattern)
S∗ (star pattern)
x : F (variable binder)
L[F] (labelled pattern)
F,F (sequence pattern)
F + F (union pattern)
Y (pattern name)

P ::= process
0 (nil)
u!(E) (output)
select {ui?(Fi) Pi i∈1..n}

(select)
new u : 〈S〉κ in P (new)
match E with {Fi ⇒ Pi

i∈1..n}
(match)

spawn {P} P (spawn)
u?*(F) P (replication)

We write a ∈ L for a ∈ L̂. Label intersection is a derived operator: L ∩ L′ def
=

~ \ ((~ \ L) + (~ \ L′)).

Expressions. Expressions are the void sequence (), integer and string con-
stants, variables, labelled expressions, or sequences of expressions. The PiDuce
prototype also includes primitive operations over expressions typed by basic
schemas. The formal treatment of such operations is omitted as it is standard
and not interesting. In the following, we abbreviate a[()] with a[].

Channels are references to services. They represent URL addresses of the cor-
responding WSDL interfaces, such as http://www.cs.unibo.it/PiDuce.wsdl.
Section 8 discusses how WSDL interfaces are related to PiDuce services.

Values are the subset of expressions that cannot be evaluated further (see

13

below). Values in PiDuce may also contains variables representing channels
that have been already instantiated by URIs. Let Z be such set of channels;
the set of atomic Z-values, ranged over by UZ , and the set of Z-values, ranged
over by VZ , are defined by the following grammar:

UZ ::= n | s | z | a[VZ]

VZ ::= UZ, . . . ,UZ

where z ∈ Z and UZ, . . . ,UZ denotes an arbitrary sequence of atomic Z-
values. If v1 and v2 are Z-values, then v1,v2 — the concatenation of v1 and
v2 — is also a Z-value. We write () for the empty Z-value. As in pi calculus,
PiDuce values may contain channels, which are variables. For example a[x]
is a value inasmuch as x is a channel and may be transmitted during com-
munications. In the following, the set Z is omitted when it is clear from the
context.

The evaluation function ⇓Z , where Z is a set of channels, turns expressions
into values and is defined by the following rules:

() ⇓Z () n ⇓Z n s ⇓Z s

u ∈ Z
u ⇓Z u

E ⇓Z V
a[E] ⇓Z a[V]

E ⇓Z V E ′ ⇓Z V ′

E,E ′ ⇓Z V ,V ′

The evaluation function ⇓Z is intentionally undefined over variables that are
not in Z. Indeed, such expressions cannot be transmitted as messages (see
the dynamic semantics in Section 5). The evaluation function merely flattens
sequences of expressions into values. In the PiDuce prototype, it is appropri-
ately extended to handle primitive operators and functions over integers and
strings.

Schemas. Schemas describe collections of structurally similar values. The
basic schemas n and s represent the sets {n} and {s}, respectively. The basic
schemas int and string represent the set of all integer and string values,
respectively. The schema () describes the void sequence. The schema 〈S〉κ
describes channels that carry messages of schema S and that may be used
with capability κ. The capabilities I, O, IO mean that the channel can be used
for performing inputs, outputs, and both inputs and outputs, respectively. For
example 〈int〉O describes the set of channels on which it is possible to send
integer values 2 . The schema L[S] describes labelled values whose tag is in L

2 Channels in PiDuce represents URIs. Therefore they do not convey any informa-
tion about the schema they belong. In this respect, PiDuce departs from XDuce,

14

and containing a value of schema S. In what follows L[()] is shortened into
L[]. The schema S,S ′ describes sequences having a prefix of schema S and the
remaining suffix of schema S ′. The schema S + S ′ describes the set of values
whose schema is either S or S ′. The schema S∗ describes the set of values
that are described by every finite (possibly void) sequence S, . . . ,S. Schemas
include schema names that are bound by finite maps E from schema names
to schemas such that, for every U ∈ dom(E), the schema names in E (U) belong
to dom(E). Maps E must be well formed, according to the definition below.
Let the set of top-level schema names, denoted by tls(S), be defined as:

tls(S) =


{U} ∪ tls(E (U)) if S = U

tls(T) if S = T ∗

tls(T) ∪ tls(T ′) if S = T + T ′ or S = T,T ′

∅ otherwise

Then E is well formed if, for every U ∈ dom(E), U 6∈ tls(E (U)). The well
formedness and the finiteness of the domain of E guarantee that PiDuce

schemas only define regular tree languages, which retain a decidable sublan-
guage relation [15] (the definition of tls(·) and the well-formedness condition
have been adapted from the corresponding notions in [24]).

The following definitions will be used in the rest of the paper:

Empty = ~[Empty] ;;

AnyChan = 〈Empty〉O + 〈Any〉I ;;

Any = (int + string + AnyChan + ~[Any])∗ ;;

The name Empty describes the empty set of values, not to be confused with the
void schema (), which describes the void sequence (); AnyChan describes any
channel; Any describes any value. Empty and Any are respectively the least
and the greatest schema according to the subschema relation of Section 4
(Proposition 2(9)).

Patterns. Patterns permit the declarative deconstruction of values. The
patterns (), B, 〈S〉κ, and S∗ match values of the corresponding schemas. The
pattern x : F matches the same values matched by F and additionally it
binds such values to the variable x. The pattern L[F] matches values of the
form a[V], when a ∈ L and F matches V . The pattern F,F ′ matches values
V = V ′,V ′′ such that V ′ and V ′′ are matched by F and F ′, respectively. The
pattern F + F ′ matches values V that are matched by either F or F ′.

Patterns include pattern names that are bound by finite maps F from pattern
names to patterns such that, for every Y ∈ dom(F), the pattern names in F (Y)

where every value is also a schema.

15

belong to dom(F). Pattern definitions must obey the same well-formedness
restrictions of schema definitions. In addition, PiDuce patterns are linear,
namely the following three conditions hold:

(1) every pattern x : F is such that x /∈ fv(F);
(2) every pattern F,F ′ is such that fv(F) ∩ fv(F ′) = ∅;
(3) every pattern F + F ′ is such that fv(F) = fv(F ′).

In the following we write schof(F) for the schema obtained by erasing all the
variables in the pattern F .

Processes. Processes are the computing entities of PiDuce. 0 is the idle
process; u!(E) evaluates E to a value and outputs it on the channel u. The
process select {ui?(Fi) Pi

i∈1..n} inputs a value on the channel ui, matches
the value with Fi yielding a substitution σ and behaves as Piσ. We always
abbreviate select {u?(F) P} to u?(F) P . The process new u : 〈S〉κ in P
defines a fresh channel u and binds it within the continuation P , where u may
be used as subject of input and output operations, whereas the capability κ is
exposed in the WSDL interface associated with the channel (see Section 8). The
process match E with {Fi ⇒ Pi

i∈1..n} tests whether the value to which E
evaluates is matched by one of the patterns Fi’s. The order of the branches is
relevant, so that the first matching pattern determines the continuation (first
match policy). If the match with Fk succeeds, the continuation Pkσ is run,
where σ is the substitution yielded by the pattern matching algorithm. The
process spawn {P} Q spawns the execution of P on a separate thread and
continues as Q. The replicated input u?*(F) P consumes a message on u, it
spawns the continuation Pσ, where σ is the substitution yielded by matching
the message with the pattern F , and then it becomes available for other mes-
sages on u. Processes will be extended in Section 6 with operations regarding
remote machines, such as the creation of channels at remote locations or the
select on remote channels.

4 Static semantics

Static semantics is concerned with providing a (decidable) set of rules for
checking that a PiDuce program does not fail because of a runtime error, such
as the sending of a value to a service that is not capable of handling values
of that schema. Because of the schema language adopted in PiDuce, which
largely overlaps with XML-Schema and extends it with channel references, the
same value can belong to more than one schema. For instance, the integer
value n has schema n, but also schema int, but also schema int + string.
This means that the value n can be safely used where a value of schema

16

int or int + string is expected, even though the schema of the value does
not match the target schema precisely. A more interesting example regards
channel schemas, whereby a channel u of schema 〈S〉I can be safely used
where a channel v of schema 〈T 〉I is expected, provided that every value
having schema S has also schema T . Indeed, a process performing an input
from v expects to receive a value of schema T . By replacing v with u the same
process will continue to work correctly, as any value of schema S has also
schema T . By a dual argument, we conclude that a channel of schema 〈S〉O
can be safely used where a channel of schema 〈T 〉O is expected, provided that
every value having schema T has also schema S.

From the discussion above it is clear that a fundamental check in the PiDuce

compiler and runtime is the language containment of schemas, called sub-
schema relation. In [23] this notion is defined in terms of set-containment. In

particular, let JSK def
= {V | V is of schema S}. Then S is a subschema of T if

JSK ⊆ JT K. This approach is inadequate in PiDuce because of the presence of
channels. Indeed, the values of 〈S〉O are sets of names that may be defined at
runtime. To circumvent this problem we follow an approach proposed in [3] and
already used in pi calculus [36]: we associate every schema with observables
– called handles below – that manifest the structure of the schema and the
component schemas. Then the subschema relation is defined (coinductively)
between two schemas that expose compatible observables.

4.1 The subschema relation

Let S ↓ R, read S has handle R, be the least relation such that:

() ↓ ()
B ↓ B,()
〈S〉κ ↓ 〈S〉κ,()
L[S] ↓ L[S],() if L 6= ∅ and, for some R, S ↓ R
S,S ′ ↓ R if S ↓ () and S ′ ↓ R
S,S ′ ↓ R,S ′ if S ↓ R and R 6= () and, for some R′, S ′ ↓ R′
S + S ′ ↓ R if S ↓ R or S ′ ↓ R
U ↓ R if E(U) ↓ R
S∗ ↓ ()
S∗ ↓ R,S∗ if S ↓ R and R 6= ()

The relation “↓” singles out the branches of the syntax tree of a schema. For
example (a[int],string + b[string],int) ↓ a[int],string. We observe that
Empty has no handle. The schema a[int],Empty has no handle as well; the
reason is that a sequence has a handle provided that every element of the
sequence has a handle. We also remark that a channel 〈S〉κ always retains a
handle. Let S be not-empty if and only if S has a handle; it is empty otherwise.

17

Definition 1 Let ≤ be the least partial order on capabilities such that IO ≤ I

and IO ≤ O. Let v be the least partial order on basic schemas such that n v int

and s v string. A subschema R is a relation on schemas such that S R T
implies:

(1) S ↓ () implies T ↓ ();
(2) S ↓ B,S ′ implies T ↓ B′i,T

′
i , for 1 ≤ i ≤ n, with B v B′i and S ′ R∑

1≤i≤n T
′
i ;

(3) S ↓ 〈S ′〉κ,S ′′ implies T ↓ 〈Ti〉κi,T ′i , for 1 ≤ i ≤ n, with κ ≤ κi, S
′′ R∑

1≤i≤n T
′
i , and, for every 1 ≤ i ≤ n, one of the following conditions

holds:
(a) κi = O and T ′i R S ′, or
(b) κi = I and S ′ R T ′i , or
(c) κi = IO and S ′ R T ′i and T ′i R S ′;

(4) S ↓ L[S ′],S ′′ implies that one of the following conditions holds:
(a) T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅, L̂ 6⊆ L̂′, (L \ L′)[S ′],S ′′ R T , and

(L ∩ L′)[S ′],S ′′ R T , or
(b) T ↓ Li[Ti],T ′i , for 1 ≤ i ≤ n, with L̂ ⊆ ⋂

i∈{1,...,n} L̂i and, for every
J ⊆ {1, . . . , n}, either S ′ R

∑
i∈J Ti or S ′′ R

∑
i∈{1,...,n}\J T

′
i .

Let <: be the largest subschema relation.

The definition of subschema is commented upon below. Item 1 constraints
greater schemas to manifest a void handle if the smaller one retains such
a handle. Item 2 deals with basic schemas B,S ′: a set of handles Bi,T

′
i of

the greater schema is selected such that B is smaller than every Bi and S ′ is
smaller than the union of the T ′i ’s. Item 3 is similar to item 2, except for the
heads of handles, which are channel schemas. In order to check the subschema
relation between 〈S〉κ and 〈T 〉κ′ , the capability κ must be smaller than κ′.
Additionally, in case κ′ = O the subschema is inverted on the arguments
(contravariance); in case κ′ = I the subschema is the same as for the arguments
(covariance), in case κ′ = IO the relation reduces to check the equivalence of
the arguments (invariance). For example 〈int + string〉O <: 〈int〉O because
every channel that may carry either integers or strings can carry integers only.
On the contrary, 〈int〉I <: 〈int + string〉I because every channel that may
serve invocations carrying either integers or strings can serve invocations with
integers only.

Item 4 is the most complex one. It deals with handles L[S ′],S ′′. We illustrate
the point by means of an example. The case (a) accounts for subschema rela-
tions between S = (a + b)[int],int and T = a[int],int + b[int],int. Since
T ↓ a[int],int, according to 4.a, the relation may be reduced to checking
whether ((a+b)\a)[int],int and ((a+b)∩a)[int],int are subschema of T . The
case (b) accounts for subschema relations between S = a[int + string],int
and T = a[int],int+ a[string],int. We explain this case by using an argu-

18

ment similar to that used in [24]. Let us admit a schema intersection opera-
tor ∩ such that S ∩T describes the values that belong to both S and T . Then
L[S],T may be rewritten as L[S],Any ∩ ~[Any],T using the fact that Any is
the greatest schema (see Proposition 2.6). Then:

L1[S1],T1 + L2[S2],T2

= (L1[S1],Any ∩ ~[Any],T1) + (L2[S2],Any ∩ ~[Any],T2)

= (L1[S1],Any + L2[S2],Any) ∩ (~[Any],T1 + ~[Any],T2)

∩ (L1[S1],Any + ~[Any],T2) ∩ (~[Any],T1 + L2[S2],Any)

where the last equality follows by distributivity of ∩ with respect to union.
Therefore, if one intends to derive that L[S],T is a subschema of L1[S1],T1 +
L2[S2],T2 when L̂ ⊆ L̂1 ∩ L̂2, it is possible to reduce to:

for every J ⊆ {1, 2} either S R
∑
j∈J Sj or T R

∑
j∈{1,2}\J Tj

This is exactly item 4.b when I = {1, 2}. A particular case is when I = {1}.
For example verifying that a[S],T is a subschema of (a+b)[S ′],T ′. In this case
the subsets of I are ∅ and {1} and one is reduced to prove (we let

∑
j∈∅ Sj =

Empty):

(S R Empty or T R T ′) and (S R S ′ or T R Empty)

That is, when S and T are not subschemas of Empty, we are reduced to S R S ′

and T R T ′.

The schemas AnyChan and Any own relevant properties. AnyChan collects all
the channel schemas, no matter what they can carry; Any collects all the
values, namely possibly void sequences of possibly labelled values, including
channels. We observe that 〈Empty〉O and 〈Any〉O are very different: 〈Empty〉O
collects every channel with either capability “O” or “IO”, 〈Any〉O refers only to
channels where arbitrary data can be sent. For instance 〈a[]〉O is a subschema
of 〈Empty〉O but not of 〈Any〉O. The channel schemas 〈Any〉I and 〈Empty〉I are
different as well: 〈Any〉I refers to references that may receive arbitrary data;
〈Empty〉I refers to a reference that cannot receive anything.

A few properties of <: are in order. The proofs can be found in Appendix A.

Proposition 2 (1) <: is reflexive and transitive;
(2) If S is empty, then S <: Empty;
(3) (Contravariance of 〈·〉O) S <: T if and only if 〈T 〉O <: 〈S〉O;
(4) (Covariance of 〈·〉I) S <: T if and only if 〈S〉I <: 〈T 〉I;
(5) (Invariance of 〈·〉IO) S <: T and T <: S if and only if 〈S〉IO <: 〈T 〉IO;
(6) If S <: T , then S,() <: T ; if (),S <: T , then S <: T ;
(7) If S <: T and S ′ <: T ′, then S,S ′ <: T,T ′;

19

(8) If (S + S ′),S ′′ <: T , then S,S ′′ <: T and S ′,S ′′ <: T ;
(9) For every S, Empty <: S <: Any and 〈S〉κ <: AnyChan and 〈Any〉IO <: 〈S〉O

and 〈Empty〉IO <: 〈S〉I.

Remark 3 The algorithm for computing the subschema relation in PiDuce

is similar to the one developed for XDuce [24] and is computationally expen-
sive: the cost of the algorithm for subschema is exponential in the size of the
schemas. Paying this cost at compile time may be acceptable. However, in
PiDuce the subschema relation is invoked at runtime by pattern matching (see
Section 5). Paying an exponential cost at runtime may be unacceptable. For
instance an attacker might block a service by invoking it with channels of com-
plex schemas, thus yielding a denial of service attack. A set of constraints on
schemas that reduce the cost of the subschema algorithm, originally presented
in [11], is sketched in Appendix C. The PiDuce compiler warns the user when
programs use schemas that do not meet such constraints.

4.2 The PiDuce type system

Few preliminary notations are introduced. Let Γ, ∆, called environments, be
finite maps from variables to schemas. We write dom(Γ) for the set of names in
the domain of Γ. Let Γ+∆ be (Γ\dom(∆))∪∆, where Γ\X removes from Γ all
the bindings of names in X. Let also (Γ;∆)+Γ′ be the pair Γ+Γ′;∆\dom(Γ′).
Finally, let Env(·) be the least function such that:

Env(S) = ∅
Env(u : F) = u : schof(F) + Env(F) (u 6∈ dom(Env(F)))
Env(L[F]) = Env(F)
Env(F,F ′) = Env(F) + Env(F ′) (dom(Env(F)) ∩ dom(Env(F ′)) = ∅)

Env(F + F ′) = Env(F) (Env(F) = Env(F ′))
Env(Y) = Env(F (Y))

The judgments Γ ` E : S – read E has schema S in the environment Γ – and
Γ;∆ ` P – read P is well typed in the environment Γ and local environment
∆ – are the least relations satisfying the rules in Table 2. The reason why
we need two distinct environments Γ and ∆ is that the capability associated
with a channel schema only constraints processes importing or receiving the
channel, not processes defining the channel (otherwise, no process would be
allowed to send messages on a channel with only input capability, and no
process would be allowed to receive messages on a channel with only input
capability). The environment Γ is used to type remote channels (channels that
have been received or imported), whereas ∆ is used to type local channels.

Rules for expressions, (nil) and (spawn) are standard. Rule (out) types
outputs. By definition of subschema, the premise T <: 〈S〉O entails that u may

20

Table 2
Typing rules.

Expressions :

Γ ` () : () Γ ` n : n Γ ` s : s
Γ(x) = S

Γ ` x : S
a ∈ L Γ ` E : S
Γ ` a[E] : L[S]

Γ ` E : S Γ ` E′ : S′

Γ ` E,E′ : S,S′

Processes :

(nil)

Γ;∆ ` 0

(select)(
Γ + ∆ ` ui : Si (Γ;∆) + Env(Fi) ` Pi Si <: 〈schof(Fi)〉I

)i∈1..n

Γ;∆ ` select {ui?(Fi)Pi i∈1..n}
(out)

Γ ` E : S Γ + ∆ ` u : T T <: 〈S〉O

Γ;∆ ` u!(E)

(new)

Γ + u : 〈S〉κ;∆ + u : 〈S〉IO ` P
Γ;∆ ` new u : 〈S〉κ in P

(match)

Γ + ∆ ` E : S
(
(Γ;∆) + Env(Fi) ` Pi

)i∈1..n
S <:

∑
i∈1..n schof(Fi)

Γ;∆ ` match E with {Fi ⇒ Pi
i∈1..n}

(spawn)

Γ;∆ ` P Γ;∆ ` P ′

Γ;∆ ` spawn {P} P ′

(repin)

∆ ` u : S (Γ;∆) + Env(F) ` P S <: 〈schof(F)〉I

Γ;∆ ` u?*(F)P

carry messages of schema S. We note that u can be typed as a union of channel
schemas, for example u : 〈a[int] + ()〉O + 〈b[string] + ()〉O. When this is the
case, E must be a subschema of every schema carried by u. In this example,
the only possible schema for E is (). Rule (select) types input-guarded
choices. The first hypothesis types subjects. The second hypothesis types the
continuation of every summand in the environment Γ;∆ plus that defined by
the pattern. The third hypothesis checks the exhaustiveness of every pattern.
As for outputs the hypothesis Si <: 〈schof(Fi)〉I does not strictly require ui
to be a channel schema. Rule (new) types new u : 〈S〉κ in P in Γ;∆ provided
that P is typable with in Γ + u : 〈S〉κ;∆ + u : 〈S〉IO. The first component
of the pair of environments is extended with the exported schema 〈S〉κ of the
channel; this definition is used for typing expressions to be sent as messages
(see rule (out)). The second component is extended with the internal schema
of the channel 〈S〉IO; this definition is used for typing subjects of inputs and
outputs (see rules (out), (select), and (repin)). Rule (match) derives the
typing of match E with {Fi ⇒ Pi

i∈1..n} provided E and Pi are well typed
in the environments Γ + ∆ and (Γ;∆) + Env(Fi), respectively. The third
hypothesis checks the exhaustiveness of patterns with respect to the schema
of E. Rule (repin) is similar to (select) but the subject is checked to be
local.

Remark 4 The PiDuce compiler verifies whether patterns in match operators

21

are redundant. In particular in rule (match) the compiler verifies that, for
every 1 ≤ i ≤ n − 1, schof(Fi) <: S and, for every 2 ≤ j ≤ n, schof(Fj) 6<:∑
k<j schof(Fj). In case, the user is warned with suitable messages.

5 Pattern matching and local operational semantics

This section defines the semantics of patterns and processes. In order to cope
with values that may carry channels, both the pattern matching and the tran-
sition relation take an associated environment into account. As regards pro-
cesses, this section details the semantics of operations that are performed by
a single PiDuce runtime environment. The operations retaining a distributed
semantics are discussed in Section 6.

5.1 Pattern matching

Let σ and σ′ be two substitutions with disjoint domains. We write σ + σ′

to denote the substitution that is the union of σ and σ′. Every union in the
following rules is always well defined because of the linearity constraint on
patterns. Let a marker be an object of the form x/V ; let Φ be a possibly
empty sequence of patterns or markers separated by :: and let [] be the empty
sequence. In the following, tailing []’s are always omitted.

The pattern matching of a dom(∆)-value V with respect to a sequence Φ in an
environment ∆, written ∆ ` V ∈ Φ ; σ is defined by the rules in Table 3. The
substitution σ maps variables in Φ to dom(∆)-values. We write ∆ ` V ∈ Φ
if there exists σ such that ∆ ` V ∈ Φ ; σ; we write ∆ ` V 6∈ Φ if not
∆ ` V ∈ Φ. Let Sn be S, . . . ,S with n repetitions of S; let S0 be ().

Rule (pm1) matches () with the empty sequence. This rule must be read
in conjunction with (pm2), which removes void patterns in head position of
sequences. Rule (pm3) defines markings. A marking x/V ′ is inserted in Φ
by patterns x : F – see rule (pm7); it records the value V ′ that must be
matched by Φ when a variable binder is found (our markings are a variant
of those introduced in [39]). The rule binds x to the prefix of V ′ that has
been matched by F . Rule (pm4) matches constants with basic schemas, which
are ranged over by b. Rule (pm5) matches channels with patterns that do
not contain variables and, assuming that ∆(u) is a channel schema, that are
greater than a channel schema. Rule (pm6) deals with labelled values. Rule
(pm7) defines the pattern matching of a sequence (x : F) :: Φ. In this case,
the value V must match with F :: Φ and the prefix of V matching with
F must be bound to x. This is the purpose of the marking that is inserted

22

Table 3
Pattern matching rules.

(pm1)

∆ ` () ∈ [] ; ∅

(pm2)

∆ ` V ∈ Φ ; σ

∆ ` V ∈ () :: Φ ; σ

(pm3)

∆ ` V ∈ Φ ; σ V ′ = V ′′,V

∆ ` V ∈ x/V ′ :: Φ ; σ + [x 7→ V ′′]

(pm4)

b <: B ∆ ` V ∈ Φ ; σ

∆ ` b,V ∈ B :: Φ ; σ

(pm5)

∆(u) <: S ∆ ` V ∈ Φ ; σ

∆ ` u,V ∈ S :: Φ ; σ

(pm6)

a ∈ L ∆ ` V ∈ F ; σ ∆ ` V ′ ∈ Φ ; σ′

∆ ` a[V],V ′ ∈ L[F] :: Φ ; σ + σ′

(pm7)

∆ ` V ∈ F :: x/V :: Φ ; σ

∆ ` V ∈ (x : F) :: Φ ; σ

(pm8)

∆ ` V ∈ F :: Φ ; σ

∆ ` V ∈ (F + F ′) :: Φ ; σ

(pm9)

∆ ` V ∈ F ′ :: Φ ; σ ∆ ` V 6∈ F :: Φ
∆ ` V ∈ (F + F ′) :: Φ ; σ

(pm10)

∆ ` V ∈ F :: F ′ :: Φ ; σ

∆ ` V ∈ (F,F ′) :: Φ ; σ

(pm11)

∆ ` V ∈ F (Y) :: Φ ; σ

∆ ` V ∈ Y :: Φ ; σ

(pm12)

∆ ` V ∈ Sn ; ∅ ∆ ` V ′ ∈ Φ ; σ

(V ′ = W,V ′′ and W 6= ()) implies (∆ ` V ,W 6∈ S∗ or ∆ ` V ′′ 6∈ Φ)
∆ ` V ,V ′ ∈ S∗ :: Φ ; σ

between F and Φ. Rules (pm8) and (pm9) define the pattern matching for
union patterns. They implement the first match policy : in a pattern F + F ′

the match with F is attempted and, if this fails, the match with F ′ is tried.
Rule (pm10) turns sequence patterns into sequences Φ. Rule (pm11) defines
pattern matching of pattern names in the obvious way. Finally, rule (pm12)
defines the pattern matching for S∗ :: Φ sequences. The pattern S∗ is equal
to the choice () + S + (S,S) + (S,S,S) + · · · but it is managed by a policy
different than the one of rules (pm8) and (pm9). In this case the standard
policy is the longest match one: a partition V ,V ′ of the value is looked for
such that V is the longest prefix matching with S∗ and V ′ is a suffix matching
with Φ.

Because of pattern well-formedness, repeated application of rules (pm2), (pm3)
and (pm7)–(pm12) eventually exposes an “atomic” pattern (a pattern con-
cerning a basic, schema or labelled type). At that point one of the other rules
will apply, thus reducing the value being matched by removing its leftmost
“atomic” element.

23

Rules (pm8), (pm9), and (pm12) make the parsing for patterns F + F ′ and
S∗ deterministic. The pattern matching of Table 3 is therefore unambiguous.

Proposition 5 If ∆ ` V ∈ Φ then there exists a unique σ such that ∆ ` V ∈
Φ ; σ.

Notwithstanding this uniqueness property, the implementation of the pattern
matching algorithm is not straightforward. The critical rule is (pm12), because
it is not obvious where the value to be matched should be split. It is well known
that expanding S∗ into S,S∗ + (), thus relying on the first match policy
for the choice schema to yield the longest matching prefix, does not always
produce the desired results, as noted in [39]. Indeed, consider the schema
(a[]+a[],b[])∗,(b[]+()). This would be expanded into ((a[]+a[],b[]),(a[]+
a[],b[])∗+()),(b[]+()) and the value a[],b[] would be split into a[] matching
with (a[] + a[],b[])∗ and b[] matching with (b[] + ()). However, a[],b[]
is the longest prefix matching with (a[] + a[],b[])∗ with () matching with
(b[] + ()). In order to implement the matching of a value V against a pattern
list S∗ :: Φ, a naive implementation may attempt splitting the value beginning
from its right end, trying first to match () with Φ and V with S∗. If this fails,
the smallest non-void suffix of V is matched against Φ, and the remaining
prefix against S∗, and so forth. Currently the PiDuce prototype implements
the expansion described above, and the adoption of efficient solutions for the
correct implementation of the longest-match policy, such as those discussed
in [19], is in progress.

5.2 The (local) transition relation

Let l, l′, . . . range over a countably infinite set of locations. We assume a
relation @ mapping channels to locations and we write u@l for u located at l.
With an abuse of notation, we extend -@l to variables. The relation x@l is
always true (since variables may be instantiated by channels located at l). The
following transition relation is defined when subjects of selects and replications
are local to the PiDuce runtime environment. The general case is discussed in
Section 6.

Let µ range over input labels u?(F), bound output labels (Γ)u!(V) with
dom(Γ) ⊆ fv(V), and τ . Let also fv(u?(F)) = {u}, fv((Γ)u!(V)) = {u} ∪
(fv(V) \ dom(Γ)), bv(u?(F)) = fv(F), bv((Γ)u!(V)) = dom(Γ), and fv(τ) =

bv(τ) = ∅. The (local) transition relation of PiDuce, Γ `l P
µ−→ Q, is the

least relation satisfying the rules in Table 4 plus the symmetric of the com-
munication rule (tr8).

The transition relation is also closed under alpha-conversion. For example, if

24

Table 4
Local transition relation.

(tr1)

E ⇓dom(Γ) V

Γ `l u!(E)
u!(V)−→ 0

(tr2)

(ui@l)i∈I

Γ `l select {ui?(Fi)Pii∈I}
ui?(Fi)−→ Pi

(tr3)

Γ + u :〈S〉κ `l P
µ−→ Q u 6∈ fv(µ) ∪ bv(µ)

Γ `l new u : 〈S〉κ in P µ−→ new u : 〈S〉κ in Q
(tr4)

Γ + v :〈S〉κ `l P
(Γ′)u!(V)−→ Q v 6= u v ∈ fv(V) \ dom(Γ′)

Γ `l new v : 〈S〉κ in P (Γ′+v:〈S〉κ)u!(V)−→ Q

(tr5)

E ⇓dom(Γ) V (Γ ` V 6∈ Fi)i∈1..j−1 Γ ` V ∈ Fj ; σ

Γ `l match E with {Fi ⇒ Pi
i∈1..n} τ−→ Pjσ

(tr6)

Γ `l P
µ−→ P ′ bv(µ) ∩ fv(Q) = ∅

Γ `l spawn {P} Q
µ−→ spawn {P ′} Q

(tr7)

Γ `l P
µ−→ P ′ bv(µ) ∩ fv(Q) = ∅

Γ `l spawn {Q} P
µ−→ spawn {Q} P ′

(tr8)

Γ `l P
(Γ′)u!(V)−→ P ′ Γ `l Q

u?(F)−→ Q′ dom(Γ′) ∩ fv(Q) = ∅ Γ + Γ′ ` V ∈ F ; σ

Γ `l spawn {P} Q
τ−→ new Γ′ in spawn {P ′} Q′σ

(tr9)

u@l

Γ `l u?*(F)P
u?(F)−→ spawn {P} u?*(F)P

Γ `l P
(Γ′)u!(V)−→ Q then Γ `l P

(Γ′α)u!(V α)−→ Qα for every alpha-conversion α.

The transition relation of Table 4 is similar to that of the pi calculus [34],
except for the environment Γ, which is partially supplied by enclosing new

operators and partially by the global environment.

We discuss rules (tr1), (tr3), (tr4), (tr5), and (tr8); the arguments about
the other rules are omitted. Rule (tr1) defines the semantics of u!(E). Ac-
cording to this semantics, E is evaluated into a dom(Γ)-value V and V is
delivered. Rules (tr3) and (tr4) define the semantics of outputs when they
are underneath local definitions of channels. There are two cases: (i) the local
channel does not occur in the message, (ii) the local channel does occur. The
case (i) is managed by (tr3): in this case the output operation is simply lifted
outside the new and the label of the transition does not change. The case (ii)
is managed by (tr4). The label gathers the local channels (and their schema)
that are transmitted. The third hypothesis of (tr4) verifies that the channel v
occurs in the message; in this case the environment of the label in the conclu-
sion is extended with v and its schema. This extension of the label, which is

25

different from pi calculus for the presence of schemas, is meant to capture the
property that when a Web service URL is shipped, the WSDL document is also
sent. (This WSDL contains, for instance, the protocol that must be used to in-
voke the service and the schemas of arguments and of the result.) Rule (tr5)
defines the semantics of match E with {Fi ⇒ Pi

i∈1..n}. According to this
rule, E is evaluated, then the first pattern Fj matching the value is chosen
and the continuation Pj is run with the substitution returned by the pattern
matching algorithm. Rule (tr8) makes two parallel processes emitting and re-
ceiving a message on the same channel communicate. To this aim the message
is matched against the pattern and the resulting substitution is applied to the
receiver process. Note that our semantics admits communications on variables
that are channels. This case intends to model those communications involving
channels that have not been published (the WSDL has not been created) as
their declaration has been lifted to the label of the transition relation, but
they do not occur in the domain of the environment. The publication happens
as soon as the channel is extruded to a remote machine (see rule (dtr1) in
Section 6). 3

6 Distributed operational semantics

The underlying model of PiDuce is distributed; it consists of a number of
runtime environments – that may be PiDuce runtimes or not –, which execute
at different locations and interact by exchanging messages over channels. In
this section we describe the distributed semantics of the PiDuce language.

A PiDuce machine is a collection of runtime environments:

Γ1 `l1 P1 ‖ · · · ‖ Γn `ln Pn

such that

(1) l1, . . . , ln are pairwise different;
(2) Γ1, . . . ,Γn are localized with respect to l1, . . . , ln, namely u ∈ dom(Γi)

and u@lj implies u ∈ dom(Γj).

PiDuce machines are ranged over by M,N, We also let dom(Γ1 `l1 P1 ‖ · · · ‖ Γn `ln
Pn) =

⋃
i∈1..n dom(Γi).

We extend processes as defined in Table 1 with operations dealing with remote
locations (Table 5): first of all, the subjects ui in a process select {ui?(Fi)Pi

i∈I}

3 The PiDuce implementation eagerly publishes any newly created service so that
it is immediately visible from the outside. However, the WSDL interface is created on
demand, when the service is imported from another PiDuce machine.

26

Table 5
Syntax of distributed PiDuce processes.

P ::= process
· · · as in Table 1
new u : 〈S〉IO at l in P remote service creation
import u :S → T = v in P service import
u(v linear forwarder

may now be non-local. Second, the process new u : 〈S〉IO at l in P delegates
the runtime environment located at l, which may be remote, to create the
runtime support for u. The syntax requires the capability of the schema to
be IO because in order for the operation to be useful the continuation P
needs to be able to perform both input and output operations on u. Third,
the process import u :S → T = v in P downloads the WSDL of the channel
v, verifies that it is a subschema of 〈S,〈T 〉O〉O and replaces u with v in the
continuation P . The channel v represents a synchronous – request-response in
WSDL jargon – operation in a remote service. A special case of this process is
import u : 〈S〉O = v in P that verifies the WSDL of v to be a subschema of 〈S〉O.
In this section the notation S → T may be considered as syntactic sugar for
the schema 〈S,〈T 〉O〉O; the differences between S → T and 〈S,〈T 〉O〉O have to
do with interoperability and will be discussed in Section 7.1.

Among the distributed operators, import is the most interesting one because
it permits PiDuce processes to access existing services. For example, the code

import fact : Int → Int = "www.mathfunctions.edu/fact"

in new u : 〈int〉O
in spawn { fact!(5,u) } u?(v:Int) printInt!(v)

imports the operation fact which is provided by a Web service located at
www.mathfunctions.edu/fact, invokes fact with 5, and prints the result.

Finally, the runtime environment also uses a further operation dealing with
remote locations: u(v forwards a message on a channel u to v. This operator
implements input operations on remotely located channels; its theory has been
developed in [20] and will be recalled below.

The type system of Table 2 is extended with the rules in Table 6 for new binders
at remote locations, imports and linear forwarders. Rule (newat) types the
creation of channels at remote locations; the typing rule is similar to (new).
Rules (import) and (import-a) type import of channels by checking P to
be well typed in (Γ;∆) + u : R (u is removed from ∆ because it is not a
local channel), where R is either 〈S,〈T 〉O〉O or 〈S〉O, according to whether v
is a request-response operation. The rules also verify that the schema of the
imported channel, which is stored in the global environment, is compatible

27

Table 6
Typing rules for distributed PiDuce.

(newat)

(Γ;∆) + u :〈S〉IO ` P
Γ;∆ ` new u : 〈S〉IO at l in P

(import)

(Γ;∆) + u :〈S,〈T 〉O〉O ` P Γ(v) <: 〈S,〈T 〉O〉O

Γ;∆ ` import u :S → T = v in P

(import-a)

(Γ;∆) + u :〈S〉O ` P Γ(v) <: 〈S〉O

Γ;∆ ` import u : 〈S〉O = v in P

(lforwd)

Γ ` v : 〈S〉O Γ(u) <: 〈S〉I

Γ;∆ ` u(v

with R. Rule (lforwd) types linear forwarders. The hypotheses, which require
that u and v can be used for respectively receiving and sending values, are in
correspondence with those for typing the process select {u?(x : R) v!(x)}
– where R is the schema of the messages accepted by u – with the following
additional constraints:

(1) the schema of u is taken from the global environment because u is not
local;

(2) the schema of v is taken from the global environment as well, because
the linear forwarder process is executed on a remote machine;

(3) no subschema of Γ(v) is considered because processes u(v are generated
by the PiDuce runtime and, by definition, v always has a schema of
shape 〈S〉O.

Typing is extended to machines as follows. Let [Γ]IOl be the environment

[Γ]IOl (u) =

 〈S〉
IO if u@l and Γ(u) = 〈S〉κ

undefined otherwise

The operation [Γ]IOl is meant to define the environment for local channels: it
extracts the channels located at l out of Γ and replaces the capability with IO

because IO is the capability of local channels (cf. rule (new) in Table 2). We
recall that, according to our notation, if x is a variable in dom(Γ) and Γ(x) is
a channel schema, then x ∈ dom([Γ]IOl) too, because x@l is always true.

Let ` M, read M is well typed, if the following properties hold:

(i) for every Γ `l P in M: Γ; [Γ]IOl ` P and
(ii) (machine consistency) if Γ `l P and Γ′ `l′ P ′ in M and u ∈ dom(Γ′)

and u@l, then u ∈ dom(Γ) and Γ(u) <: Γ′(u). (This constraint only
regards variables with channel schemas.)

Therefore, a machine is well typed if every runtime environment in it is well
typed and the runtime environments access to remote channels with schemas

28

that are superschemas of the actual ones. This is also the case for global
accesses that are located at the same runtime environment (take l = l′ in
case (ii)). For instance, when v is located at the same runtime environment
executing import u : 〈S〉O = v in P . We notice that if ` M ‖N then ` M
and ` N.

Next we extend the (local) transition relation with the semantics of the oper-
ations dealing with remote locations. To this aim we drop the assumption in
Section 5 that subjects of selects are local to the PiDuce runtime environment,
as well as that new channels are always created locally to the runtime envi-
ronment. In order to account for the new operations we extend the notation
so that µ also ranges over the labels u : S, (u@l : S), and (Γ)u(v with
dom(Γ) ⊆ {v}, too. Let fv(u@l : S) = {u}, fv((u : S)) = ∅, fv((Γ)u(v) =
{u, v} \ dom(Γ) and let bv(u : S) = ∅, bv((u@l : S)) = {u}, bv((Γ)u(v) =
dom(Γ). We write spawni∈1..n {Pi} Q for spawn {P1} · · · spawn {Pn} Q.
As usual] denotes disjoint union. The transition relations use the following
operations on environments:

Γ@l restricts Γ to variables located at l:

(Γ@l)(u) =

Γ(u) if u ∈ dom(Γ) and u@l

undefined otherwise

Γ \ l removes from Γ the variables located at l:

(Γ \ l)(u) =

Γ(u) if u ∈ dom(Γ) and not (u@l)

undefined otherwise

We write Γ \ l, l′ for (Γ \ l) \ l′.
Γ meet Γ′ defines an environment that includes the domains of Γ and Γ′ and

that associates every channel u with a subschema of both Γ(u) and Γ′(u):

(Γ meet Γ′)(u) =



Γ(u) if u ∈ dom(Γ) \ dom(Γ′)
Γ′(u) if u ∈ dom(Γ′) \ dom(Γ)
S if u ∈ dom(Γ) ∩ dom(Γ′)

and S <: Γ(u) and S <: Γ′(u)
undefined otherwise

The meet operation is used in the transition relation to guess the schema of
channels in messages that are located at neither the source nor the destination
runtime environment.

The transition relation Γ `l P
µ−→ Q and the distributed transition relation

M
∆−→ N of PiDuce are the least relations satisfying the rules in Section 5 plus

29

those in Table 7 (for the sake of brevity we omit ∆ when it is the empty con-
text). The distributed transition relation is closed under commutativity and
associativity of ‖. The label ∆ on the distributed transition relation represents
a set of assumptions regarding the type of free channels that two machines
have exchanged between each other, where none of the machines hosts the
exchanged channels.

Rule (tr10) defines selects with remote subjects. It translates the select pro-
cess on-the-fly into another one using a local select. (This translation has been
proposed for encoding distributed choice in [20].) To explain the transition we
discuss the case of a select with three branches, one with a local subject u and
the others with remote subjects v and w:

select {u?(F)P v?(F ′)Q w?(F ′′)R}

This select may be turned into a local one by creating two (local) siblings for v
and w, let them be v′ and w′, respectively, and communicating to the channel
managers of v and w the presence of these siblings. So the above process may
be translated into

new v′, w′ :S ′, T ′ in spawn {v(v′} spawn {w(w′}
select {u?(F)P v′?(F ′)Q w′?(F ′′)R}

However this translation is too rough because of the following problem. The
purpose of the linear forwarder v(v′ is to migrate to the remote location
of v and forward one message to the location of v′. Similarly for w(w′. By
rule (tr2), the branch u?(F)P may be chosen because of the presence of
a message on u. This choice destroys the branches v′?(F ′)Q and w′?(F ′′)R.
Therefore, when messages for v′ and w′ will be delivered by the remote ma-
chines, such messages will never be consumed. To avoid these misbehaviors,
one has to compensate the previous emission of linear forwarders by undoing
them with v′?(x : S ′) v!(x) and w′?(x : T ′) w!(x). In case the picked branch
is v′?(F ′)Q, by a similar argument, we have to compensate only one linear
forwarder – the w(w′. Therefore the correct translation for the distributed
select is:

new v′, w′ :S ′, T ′ in spawn {v(v′} spawn {w(w′}
select { u?(F)(spawn {v′?(x : S ′) v!(x)}

spawn {w′?(x : T ′) w!(x)} P)
v′?(F ′)(spawn {w′?(x : T ′) w!(x)} Q)
w′?(F ′′)(spawn {v′?(x : S ′) v!(x)} R) }

that is the term yielded by the (tr10) in this case. Rule (tr11) creates
a channel remotely located at l′. To this aim a channel located at l′ is
taken and the local name is replaced by this channel in the continuation.
When l = l′, the process new u : 〈S〉IO in P is simply an abbreviation for
new u : 〈S〉IO at l′ in P . In this case its semantics is defined by rules (tr3)

30

Table 7
Distributed transition relation.
rules for Γ `l P

µ−→ Q

(tr10)

(ui@l)i∈I (uj 6@l Γ ` uj : 〈Sj〉κ)j∈J J 6= ∅
Γ `l select {ui?(Fi)Pii∈I]J}

τ−→
new (vj : 〈Sj〉O)j∈J in
spawnj∈J {uj (vj}
select { ui?(Fi)(spawnk∈J {vk?(x : Sk) uk!(x)} Pi)i∈I

vj?(Fj)(spawnk∈J\{j} {vk?(x : Sk) uk!(x)} Pj)j∈J }
(tr11)

l 6= l′

Γ `l new u : 〈S〉IO at l′ in P
(u@l′:〈S〉IO)−→ P

(tr12)

Γ `l import u :S = v in P
τ−→ P{v/u}

(tr13)

Γ `l u(v
u(v−→ 0

(tr14)

Γ + v :〈S〉κ `l P
u(v−→ Q

Γ `l new v : 〈S〉κ in P (v:〈S〉κ)u(v−→ Q

(tr15)

u 6@l Γ `l u :〈S〉κ

Γ `l u?*(F)P
(v:〈S〉O)u(v−→ select { v?(F)spawn {P} u?*(F)P }

rules for M
∆−→ N

(dtr1)

Γ `l P
(vi:Si

i∈I)u!(V)−→ Q u@l′ (vi@l vi /∈ dom(Γ) ∪ dom(Γ′))i∈I

∆ = vi : Sii∈I + ((Γ|fv(V)) \ l′) meet ((Γ′|fv(V)) \ l)

Γ `l P ‖ Γ′ `l′ R
∆\l,l′−→ Γ + vi : Sii∈I `l Q ‖ Γ′ + ∆ `l′ spawn {u!(V)} R

(dtr2)

Γ `l P
(u@l′:〈S〉IO)−→ Q u /∈ dom(Γ′) ∪ dom(Γ)

Γ `l P ‖ Γ′ `l′ R −→ Γ + u : 〈S〉IO `l Q ‖ Γ′ + u : 〈S〉IO `l′ R
(dtr3)

Γ `l P
(Γ′′)u(v−→ Q u@l′ Γ′ ` u : 〈S〉κ dom(Γ′′) ∩ dom(Γ′) = ∅ Γ′′′ = Γ|{v} + Γ′′

Γ `l P ‖ Γ′ `l′ R −→ Γ + Γ′′ `l Q ‖ Γ′ + Γ′′′ `l′ spawn {u?(x : S) v!(x)} R
(dtr4)

Γ `l P
τ−→ Q

Γ `l P −→ Γ `l Q

(dtr5)

M
∆−→ N (dom(N) \ dom(M)) ∩ dom(Γ) = ∅ ∆@l ⊆ Γ

M ‖ Γ `l P
∆\l−→ N ‖ Γ `l P

and (tr4). Rule (dtr2) guarantees that such a channel is fresh at the re-
mote location. Rule (tr12) imports a channel (the compiler type-checks the
continuation under the assumption u : S – see (import)). Rule (tr13) lifts
the linear forwarder to the label. This rule and rule (dtr3) define a linear
forwarder u(v as a small atom migrating to the remote location of u and
becoming the process u?(x : S)v!(x). Rule (tr14) accounts for linear for-

31

warders u(v where v is local to the sender. In this case the environment of
the receiver must be extended adequately. Rule (tr15) defines replication over
remote services. According to this rule, a replica is created on a local fresh
service v and the remote location is warned with a linear forwarder u(v;
then the continuation is triggered once a message is forwarded from u.

Rule (dtr1) models the delivery of a message to a remote runtime environ-
ment l′. When this occurs all the bound channels are created in the sender
location l and the message is put in parallel with every process running at l′.
The rule extends the environments of l and l′ with the new channels vi

i∈I . Ad-
ditionally, the environment Γ′ of l′ is extended with channels in fv(V)\{vii∈I}
that are either undefined in Γ′ or whose associated schema is too large. This
is a subtle problem to deal with. Consider a channel v ∈ fv(V) \ {vii∈I} that
is located at l. The machine at l′ may already be aware of such channel ei-
ther because it has been imported or because it has been received during a
previous communication. The point is that Γ(v) and Γ′(v) are not equal in
general. In particular, by the definition of ` M, Γ(v) <: Γ′(v). Therefore the
rule (dtr1) updates the environment of l′ with (Γ|fv(V))|l. A similar problem
is manifested by channels v ∈ fv(V) \ {vii∈I} that are not located at l nor
at l′. In this case Γ(v) and Γ′(v) may be incomparable, as in general they
are superschemas of the actual schema of v, which is defined on a machine l′′

other than l and l′. Therefore we guess the right schema – the operation meet
– and publish our guess in the label of the transition. It is the rule (dtr5)
that checks the correctness of our guess when the right context environment
is found. The rule removes the checked bindings from the environment, that is
a successful distributed transition of a PiDuce machine has always labels with
empty environments. 4 The other rules have been already described, except
(dtr4) that lifts transitions in components to composite machines.

We conclude this section by asserting the soundness of the static semantics.
Proofs are reported in the Appendix B. The first property, subject reduction,
states that well-typed processes always transit to well-typed processes.

Theorem 6 (Subject Reduction) Let Γ; [Γ]IOl ` P . Then

(1) if Γ `l P
(Γ′)u!(V)−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q, (b) Γ + [Γ]IOl ` u :S,

Γ + Γ′ ` V :T and S <: 〈T 〉O;
(2) if Γ `l P

u?(F)−→ Q, then (a) (Γ; [Γ]IOl)+Env(F) ` Q and (b) Γ+[Γ]IOl ` u :S
with S <: 〈schof(F)〉I;

(3) if Γ `l P
(Γ′)u(v−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q and (b) Γ ` u : S,

Γ + Γ′ ` v :〈T 〉O and S <: 〈T 〉I;

4 In the implementation this problem does not arise and there is no need for the
meet operation as there is only one global environment that is shared among all the
runtime environments.

32

(4) if Γ `l P
(u@l′:〈S〉IO)−→ Q, then (Γ; [Γ]IOl) + u :〈S〉IO ` Q;

(5) if Γ `l P
τ−→ Q, then Γ; [Γ]IOl ` Q.

Let ` M. Then

(6) if M
∆−→ N, then ` N.

The first item of the subject reduction entails that the reduct Q of a (Γ′)u!(V)-
transition is typable provided the initial process P is typable. To this aim, the
environment Γ; [Γ]IOl must be suitably extended with the bindings in Γ′. This
extension is similar to the one used in the rule (new) of the type system. In
facts, bindings in Γ′ are collected by surrounding new binders – see rule (tr4).
The second item deals with inputs and entails the typability of the reduct in an
environment extended with that of patterns. The subject reduction guarantees
the exhaustivity of inputs. The third item is about linear forwarders. Such
operations are introduced by PiDuce runtimes as described by rule (tr10).
Therefore v must have schema 〈T 〉O, for some T ; the theorem guarantees that
u has a schema S “compatible” with 〈T 〉O, namely S <: 〈T 〉I. The fourth item
deals with creation of remote channels. The other items are not commented
because obvious.

The second soundness property concerns progress, that is, an output on a
channel will be consumed if an input on the same channel is available and
a message or a linear forwarder is delivered to the remote runtime when it
is present (we are assuming the absence of failures). In order to guarantee
progress, it is necessary to restrict (well-formed) environments. To illustrate
the problem, consider the following judgment:

u : 〈int + string〉κ, v : int + string `l
spawn {u!(v)} u?(x : int + string)

match x with {int⇒ P string⇒ Q}

The reader may verify that this judgment can be derived in our type system.
However, after the communication, the pattern matching fails because the
schema of v is neither a subschema of int nor of string (see rule (pm5)).
Another example is the following. Let Γ be u : a[b[]], V = u, and F =
a[v : b[]]. Then Γ ` V : S and S <: schof(F) but there is no σ such that
Γ ` V ∈ F ; σ. In fact these circumstances never occur in practice: if a
value is sent, it may contain either labels or constants or channels. Under this
constraint, progress is always guaranteed.

We say that Γ is channeled if, for every u ∈ dom(Γ), Γ(u) is a channel schema.

Theorem 7 (Progress) Let Γ be channeled.

(1) If Γ ` V :S and S <: schof(F), then there is σ such that Γ ` V ∈ F ; σ;

33

(2) If Γ; [Γ]IOl ` P , Γ `l P
(Γ′)u!(V)−→ Q′, and Γ `l P

u?(F)−→ Q′′, then there is Q
such that Γ `l P

τ−→ Q;

(3) If ` (Γ `l P ‖ M), Γ `l P
(Γ′)u!(V)−→ Q, and u is located at a location of M,

then Γ `l P ‖ M
∆−→ Γ `l Q ‖ N, for some N. Similarly when the label

is (Γ′)u(v.

7 PiDuce and Web services

The language presented in the previous sections deals with all the fundamental
aspects of Web service definitions and interactions. However, there is still a
gap between PiDuce and the current technologies related to Web services.
Such gap is finally closed in this section by extending PiDuce with additional
constructs, though the primitive operations of the calculus are unchanged in
their essence.

7.1 Defining request-response services

The basic communication mechanism in PiDuce is the asynchronous message
passing. Other mechanisms that are primitive in Web services, such as rendez-
vous, must be programmed by means of explicit continuations. In Section 6
we have already discussed the semantics of a construct that permits to im-
port request-response operations. In that case, a request-response operation
is typed with a schema 〈S, 〈T 〉O〉O and has the following intended behavior.
When invoked, a fresh channel is sent with the actual data of type S. At the
same time, the invoker spawns an input process catching the response on the
fresh channel. This behavior is actually a well-known encoding of rendez-vous,
which is incongruous with respect to reality where request-response operations
return results using the same connection. This is the reason why an explicit
schema constructor S → T has been used rather than 〈S,〈T 〉O〉O. The PiDuce

runtime (in particular, the Web interface, see Section 8.1) implements the in-
vocations of a channel with schema S → T by extracting the actual data and
continuation channel from the sent message, establishing a connection and
sending the actual data over the connection, receiving the response from the
same connection, and forwarding it on the continuation channel.

We can adopt a similar mechanism for defining a service implementing a
request-response operation. PiDuce processes are extended with

new u :S → T in P

which differs from the new of Table 1 because the associated WSDL has its

34

interaction pattern set to request-response, where S is set as the schema of
the request messages and T is set as the schema of the response messages.
The behavior of u is the same as for the corresponding import.

7.2 Channels versus services

So far a one-to-one correspondence between PiDuce channels and Web services
(hence between PiDuce channels and WSDL resources) has been assumed. This
assumption falls short in faithfully modeling real Web services where a WSDL

resource corresponds to a set of operations. To overcome this limitation we
need to extend schemas and processes in Table 1. The extension, illustrated in
Table 8, is folklore in the community except for the definition of the subschema
relation.

Table 8
PiDuce syntax with service extensions (I is finite).

S ::= schema
· · · as in Table 1
{mi : Sii∈I} (record schema)

E ::= expression
· · · as in Table 1
r#m (service operation)

P ::= process
· · · as in Table 1
new r : {mi : Sii∈I} in P

(new service)
import r : {mi : Sii∈I} = v in P

(import service)

The extended syntax uses the countably infinite sets of operation names,
ranged over by m, n, Among variables we distinguish services ranged
over by r, s, In the new syntax, u and v range over channels and expres-
sions r#m.

The schema {mi : Si
i∈I}, with I finite, describes services that offer a set of

operations mi whose schema is Si. Operation names in records are pairwise
different; the schemas Si are always channel schemas of shape 〈S〉κ or S →
T . The definition of handle and the subschema relation of Definition 1 are
extended with a further entry dealing with record schemas. Let {mi : Si

i∈I} ↓
{mi : Si

i∈I},(). A subschema R is a relation such that S R T implies the
items listed in Definition 1 and, in addition:

(5) S ↓ {mi : Si
i∈I},S ′ implies T ↓ {mj : Tj

j∈Jk},T ′k, for 1 ≤ k ≤ n, with
Jk ⊆ I and, for every j ∈ Jk, Sj R Tj and S ′ R

∑
k∈1..n T

′
k.

For example {m : 〈int〉O ; n : 〈int + string〉O} <: {n : 〈int〉O} and {m :
〈int〉O ; n : 〈string〉O},(int + string) <: {m : 〈int〉O},int + {n :
〈string〉O},string.

35

Table 9
Typing rules with service extensions.

Expressions :
Γ ` r : {mi : Sii∈I} k ∈ I

Γ ` r#mk : Sk

Processes :
(new-s)

Γ + r : {mi : Sii∈I};∆ + r : {mi : [Si]IOi∈I} ` P
Γ;∆ ` new r : {mi : Sii∈I} in P

(import-s)

(Γ;∆) + r : {mi : Sii∈I} ` P Γ(v) <: {mi : Sii∈I}
Γ;∆ ` import r : {mi : Sii∈I} = v in P

The process new r : {mi : Si
i∈I} in P creates a service r exposing the opera-

tions mi, i ∈ I. The continuation P addresses such operations with r#mi.
In particular, since now u and v also range over expressions of the form
r#m, outputs, selects, and replications may also have the shape r#m!(E),
select {rj#mj?(Fj) Pj

j∈J}, and r#m?*(F) P , respectively. The relevant
upshot for the implementation of PiDuce is that only one WSDL resource is
published and associated with the service r.

The process import r : {mi : Si
i∈I} = v in P imports the service whose WSDL

interface is located at v. This operation is successful provided that the schema
of v contains at least the operations mi, and that the schema constraints are
satisfied as described in Section 6.

The type system of Table 2 is also extended in order to cope with records.
The extension is detailed in Table 9. The operation [S]IO is defined as follows:

[S]IO =

 〈T 〉
IO if S = 〈T 〉κ

〈T,〈R〉O〉IO if S = T → R

The new rules (new-s) and (import-s) generalize (new) and (import) to
references that are services. Theorem 6 and Theorem 7 still hold for this
extension.

8 PiDuce architecture and interoperability

PiDuce runtime environments consist of three components: the virtual ma-
chine, the channel manager, and the Web interface – see Figure 4.

36

!

?

<?xml version="1.0"?>

 ...

<PiDuce>

 <schemadecl>

 </schemadecl>

 <process>

 ...

 </process>

</PiDuce>

Ready/Block

Lforward

R
u
n

p
o

o
l
o

f
a

s
y
n

c
h

ro
n

o
u

s
 t

h
re

a
d

s
h

a
n

d
lin

g
 n

e
tw

o
rk

 I
/O

marshalling

unmarshalling

Select

c
h

a
n

n
e

l
w

it
h

 p
e

n
d

in
g

 m
e

s
s
a

g
e

s

c
h

a
n

n
e

l
w

it
h

 p
e

n
d

in
g

 i
n

p
u

t
re

q
u

e
s
ts

VIRTUAL MACHINE CHANNEL MANAGER WEB INTERFACE

TYPE−SAFE RUNTIME ENVIRONMENT

environment

PC

code

ready queue

environment

PC

code

blocked queue

program pool

c
o
n

fo
rm

a
n
c
e

 c
h

e
c
k

Fork thread

Ready/Kill thread

Send message

New channel

Accept message

Accept Lforward

Accept new channel

L
o
a
d

p
r
o
g
r
a
m

New channel

Replication

Send message

Send Lforward

Export service

Import service

Send message

New remote channel

Fig. 4. PiDuce: the runtime environment.

The PiDuce compiler reads PiDuce programs and translates them into PiDuce

object code, which consists of an XML representation of PiDuce abstract syn-
tax trees. The abstract syntax tree is decorated with information statically
inferred by the compiler, such as the size of process environments or the index
of variables in the such environments. The virtual machine executes threads
by interpreting PiDuce object code. The virtual machine stores its data in
three structures: the program pool, containing the object code of the processes
that have been loaded; the ready queue, containing threads that are ready
to execute; the blocked queue, containing threads awaiting for some message.
Threads are executed by means of a round-robin scheduler.

The channel manager handles the pool of channels that are local to the run-
time environment. It is thus responsible for any operation involving local chan-
nels, in particular creation, send, and receive operations. Within the channel
manager, each channel consists of a schema, describing the values that are
carried, a message queue containing all the messages that have been sent but
not consumed, and a request queue containing the threads waiting for a mes-
sage on that channel. Whenever a new message arrives, the first thread in the
request queue, if any, is awakened ; otherwise the message is moved into the
message queue.

The PiDuce runtime environment interacts with the external environment
through a Web interface, which is responsible for bridging PiDuce processes

37

and standard Web service technologies. In the outgoing direction, the Web in-
terface is responsible for publishing appropriate WSDL resources for the PiDuce
services created and published by the local virtual machine, for exporting
PiDuce schemas into corresponding XML-Schemas, and for marshalling PiDuce

values into XML messages. In the incoming direction, the Web interface is re-
sponsible for importing WSDL resources as PiDuce services, for decoding XML-
Schemas into PiDuce schemas, and for unmarshalling incoming XML messages
into PiDuce values. Additionally, incoming XML messages are checked to be
conformant to the schema of the channels they are targeted to, so as to pre-
vent runtime errors within the virtual machine. The Web interface is also
responsible for handling request-response channels and services as described
in Section 7, so that, within the virtual machine, communication is purely
asynchronous, whereas externally request-response services are handled in the
standard way.

The modular design of this architecture has four main consequences: (1) the
channel manager and the Web interface may be used stand-alone for provid-
ing PiDuce-compatible communication primitives in (native) programs that
are written in a language other than PiDuce; (2) the virtual machine and
the channel manager are decoupled from the actual transport protocols and
technologies used in distributed communication. In this way a large part of
PiDuce may be adapted to different contexts with minimum effort; (3) commu-
nications occurring within the same runtime environment are short-circuited
and do not entail any additional overhead because they solely rely on internal
data structures, rather than passing through the Web interface; (4) the vir-
tual machine and the channel manager realize a type-safe environment: every
operation performed therein can never manifest a type error.

8.1 Mechanisms interfacing PiDuce channels and Web services

Web services are published by interfaces that are written in a standard for-
mat: the WSDL – Web Service Description Language [31]. Every WSDL interface
contains two parts: the abstract part defines the set of operations supported by
the service; the concrete part binds every operation to a concrete network pro-
tocol and to a concrete location. Every operation is described by a name and
by the schema of the messages that the operation accepts and/or produces.
Albeit WSDL does not mandate a particular schema language to be used, XML-
Schema is the schema language universally adopted in practice. Operations
have an associated interaction pattern that conforms to one out of four mod-
els: one-way interaction (the client invokes a service by sending a message);
notification (the service sends the message); request-response (the client sends
a message and waits for the response); solicit-response (the service makes a
request and waits for the response).

38

We discuss the possible WSDL interfaces by analyzing a number of examples.
Consider the process new u : 〈S〉κ in P . This process creates a channel u and
publishes it in a WSDL interface whose abstract part is:

<schema>
<complexType name="InSchema">bbS cc</complexType>

</schema>
<message name="Input">
<part name="par" type="InSchema"/>

</message>
<portType name="service">
<operation name="operation" piduce:operationCapability="κ">
<input message="Input"/>

</operation>
</portType>

where bbS cc is the XML-Schema encoding of the PiDuce schema S (see Sec-
tion 8.2.) This operation, being one-way, defines the "Input" message only and
its schema "InSchema". The use of the nonstandard attribute piduce:operationCapability
informs PiDuce clients that the service may support remote inputs if κ ≤ I,
as such information cannot be inferred from the WSDL interface. Since the
attribute is in the piduce namespace, it will be ignored by standard Web ser-
vices. The concrete part of the WSDL interface for u is specified by two elements,
binding and service:

1 <binding name="serviceSoap" type="service">
2 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
3 <operation name="operation">
4 <soap:operation style="document"
5 soapAction="http://www.cs.unibo.it:1811/x" />
6 <input><soap:body use="literal"/></input>
7 </operation>
8 </binding>

The element binding defines the concrete message formats and the protocols
to be used for accessing the operation. Currently, PiDuce supports the SOAP-
over-HTTP binding – see line 2 of the above document. When using the SOAP-
over-HTTP binding, the Web interface communicates SOAP messages (XML
documents with the shape Envelope[Header[headers], Body[parameters]]

where the Header is optional) using the HTTP protocol. The soap:operation
element on line 4 has two attributes: style specifies that the operation style is
document (the current prototype supports also the RPC style); soapAction
specifies the SOAPAction header used in the HTTP request. The informa-
tion in these two attributes, together with the attribute use of the soap ele-
ment, specifies the format of the XML message to be sent. When the attribute
use is literal then the transported XML message appears directly under the

39

SOAP Body element without any additional encoding information. When the
attribute use is encoded then the XML message is annotated with additional
schema information. Therefore a possible SOAP message for invoking a service
having schema 〈a[int] + b[string]〉O is

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>

<a>1
</env:Body>

</env:Envelope>

The element service connects a binding to a specific URL. This URL is given
by the location of the PiDuce runtime environment followed by a unique path,
which is typically formed by appending the ?wsdl suffix to the name of the
channel. For instance, the following service element asserts that the service
is located at http://www.cs.unibo.it:1811/u:

1 <service name="service">
2 <port name="service" binding="serviceSoap">
3 <soap:address location="http://www.cs.unibo.it:1811/u" />
4 </port>
5 </service>

In addition to defining new channels, PiDuce also permits to import exter-
nally defined services. The process import u :S = URL in P imports a one-
way interaction service located at URL and gives it the name u. When the
bytecode corresponding to the import process is loaded into the virtual ma-
chine, the XML-Schema of the service u is extracted from the WSDL located
at URL, it is decoded into a PiDuce schema T , and the decoded schema is
verified to be compatible with S following rule (import-a). If the attribute
piduce:operationCapability="κ" is found in the WSDL (implying that u has
been published by a PiDuce runtime), compatibility means S <: 〈T 〉κ. Other-
wise compatibility means S <: 〈T 〉O. The Web interface also verifies whether
the binding is SOAP over HTTP. In case of success the value of the attribute
location in the service element is used as target for future invocations. In
case of failure of any of the above checks, the continuation P is not executed.

When the externally defined service is request-response, it may be imported
by import u :S → T = URL in P . The schema of u is retrieved as before but,
in this case, the WSDL interface has a portType element whose shape is:

<portType name="op-request-response">
<operation name="request-response">
<input message="Input"/>
<output message="Output"/>

</operation>

40

</portType>

The Web interface decodes Input and Output into the schemas SI and SO,
respectively. Then it verifies that 〈S, 〈T 〉O〉O <: 〈SI, 〈SO〉O〉O. The remaining
behavior is similar to the previous case.

8.2 From PiDuce schemas to XML-Schemas, and back

The correspondence between PiDuce schemas and XML-Schema is established
by suitable encoding and decoding procedures implemented by the Web in-
terface. By encoding we mean the translation of PiDuce schemas into XML-
Schema, and by decoding we mean the inverse transformation.

Although PiDuce schemas and XML-Schema have a significant common inter-
section, there are features of XML-Schema not supported by PiDuce schemas
and, conversely, features of PiDuce schemas that cannot be represented in
XML-Schema. Regarding XML-Schema and the decoding function, features such
as keys, references, and facets have been ignored because they are not typi-
cally used in the description of existing Web services, including the Google and
Amazon Web services we used in Section 2, and their treatment in a subtyping
relation is statically intractable. For this subset of XML-Schema the decoding
into PiDuce schemas is mostly straightforward. 5 The only problematic case is
for the all particle of XML-Schema that is used for defining sequences where
elements can appear in any order. In this case the naive decoding into a PiDuce

schema would result in a schema having an exponential size with respect to the
number of elements occurring in the all particle. To alleviate this problem
all is decoded as a single PiDuce sequence where elements are canonically
ordered. When a value is received and validated by the Web interface against
a PiDuce sequence originated by an all particle, the elements of the value are
rearranged with the canonical order.

As regards the encoding function, PiDuce schemas that have a natural rep-
resentation in XML-Schema are encoded by using standard elements in the
XML-Schema namespace. The remaining PiDuce schemas are encoded using
extension elements in a dedicated PiDuce namespace. In particular, extension
elements are currently used for

• channel schemas, because XML-Schema alone does not support their direct
representation and description. WSDL 2.0 introduces two extension attributes
for declaring that URLs in XML-Schema components are references to other

5 For the sake of simplicity, PiDuce schemas as presented in this paper lack XML
attributes, but the PiDuce prototype does support XML attributes as record types,
in a style similar to that of CDuce [5].

41

Web services. The adoption of these attributes will be implemented in a
future PiDuce release adhering to the WSDL 2.0 recommendation;
• schema names, when these names are not the sole content of labelled values,

because XML-Schema permits schema names only as the sole content of an
element or an attribute. While in many cases a simple expansion of PiDuce
schema names would suffice to obtain a valid and equivalent XML-Schema,
we have chosen not to do so to keep the encoding function as simple as
possible;
• unions and differences of labels, because these operations have been intro-

duced in PiDuce mostly for pattern matching rather than for typing. In
this case the lack of corresponding constructs in XML-Schema must not be
interpreted as a weakness in XML-Schema itself. In fact, standard query and
pattern languages such as XPath [14] and XQuery [7] provide for label wild-
cards.

It is understood that any WSDL interface containing schemas with extension
elements will not be compatible with standard Web services.

9 Related work

The PiDuce prototype falls within the domain of distributed abstract ma-
chines for process calculi. These prototypes differ for the communication mech-
anisms and the locality models they use. At one extreme there are ambient
calculi [10,35] that use a hierarchical model of localities with powerful mech-
anisms of control and admit process migrations within a same locality (mi-
gration is a feature that allows a process to move from one run-time support
to another and therefore to use different resources during its life-cycle). The
mobility primitives of these calculi – the in and out – require a 3-party syn-
chronization that makes them costly to implement in a distributed setting [18].
On the other extreme there are prototypes like Facile [22] that lack an explicit
notion of locality and do not constrain process migration (on processes that
have been properly defined). In between these two extremes there are pro-
totypes as the Nomadic Pict [37], Jocaml [16], and PiDuce. These machines
implement variants of asynchronous pi calculus and use explicit localities. The
differences between our model and the other ones are as follows. Nomadic Pict
has explicit localities and process migration. A costly distributed infrastruc-
ture is needed for guaranteeing that messages are delivered despite of any
agent migrations. Jocaml solves this problem by combining input processes
with channel-managers. This model is the closest one to PiDuce. However,
Jocaml uses a quite different form of interaction, which does not relate that
closely to pi calculus communication, and does not allow any input capability.
PiDuce uses the same communication mechanism of asynchronous pi calculus
and admits input capability. We remark that PiDuce does not offer any pro-

42

cess migration primitive. It is easy to send object code through the Web since
these codes are XML files. A more difficult task is the migration of executing
processes. This feature has not yet been considered because it is not used in
Web services languages.

As regards PiDuce’s type system, it has been strongly influenced by the one
in XDuce. In XDuce, values do not carry channels and schemas lack channel
schemas. In this language the subschema relation is defined inductively in
a set-theoretic way. Our system extends XDuce’s one with channel schemas
following standard approaches in process calculi [36]. Due to the presence
of channels in values, which are URIs, it is not possible to verify whether
a value belongs to a schema or not (URIs do not carry any structure). As
in [36], we overcome this problem by defining the subschema relation in a
coinductive way using the structures of the schemas. This contribution, to
our knowledge, is original in the context of XML schema. Another difference
with XDuce is the patter matching algorithm. In XDuce this algorithm never
invokes the subschema relation, which is computational expensive. In PiDuce

the subschema is invoked when a channel is matched against a schema (rule
(pm5) of Table 3). In order to alleviate the cost of pattern matching in these
cases, we have defined a subclass of schemas and demonstrated the existence
of a polynomial subschema algorithm for them (Appendix C and [11]).

Several integrations of processes and semi-structured data have been studied
in recent years. Two similar contributions, that are contemporary and inde-
pendent to this one, are Cπ [13] and XPi [2]. The schema language in [13]
is the one of [5] enriched with the channel constructors for input, output,
and input-output capability. No apparent restriction to reduce the computa-
tional complexity of pattern matching is proposed and no prototyping effort
is undertaken. The schema language of [2] is simpler than that of PiDuce. In
particular recursion is omitted and labeled schemas have singleton labels.

Other contributions integrating semi-structured data and processes are dis-
cussed in order. TulaFale [6], a process language with XML data, is especially
designed to address Web services security issues such as vulnerability to XML

rewriting attacks. The language has no static semantics. The integration of
PiDuce with the security features of TulaFale seems a promising direction
of research. Xdπ [21] is a language that supports dynamic Web page pro-
gramming. This language is basically pi calculus with locations enriched with
explicit primitives for process migration, for updating data, and for running a
script. The emphasis of Xdπ is towards behavioral equivalences and analysis
techniques for behavioral properties. A contribution similar to [21] is Active
XML [1] that uses an underlying model consisting of a set of peer locations with
data and services.

43

10 Concluding remarks and future works

In this contribution we have presented the PiDuce project, a distributed im-
plementation of the asynchronous pi calculus with tree-structured datatypes
and pattern matching. The resulting language incorporates constructs that
are suitable for modeling Web services, and this motivates our choice of XML
idioms, such as XML-Schema and WSDL for types and interfaces, respectively.
In this respect, PiDuce fills the gap between theory and practice by formally
defining a programming language and showing its implementation using in-
dustrial standards.

Regarding the description of Web services interfaces, WSDL 1.1 [31] does not
consider service references as first class values, that is natural in a distributed
setting, in pi calculus, and, thereafter, in PiDuce. This lack of expressiveness
has been at least partly amended in WSDL 2.0 [32,33], where explicit exten-
sion attributes can be used for referring to the WSDL of Web service references
in XML-Schemas. Nonetheless this approach is purely syntactic. In this work
we have studied a semantic subtyping relation that can be used for compar-
ing Web services interfaces. The subtyping relation is fundamental for stati-
cally assessing the lack of communication errors between well-typed processes
and for dynamically comparing interfaces of communicated services with local
schemas.

Few remarks about XML-Schema are in order. First of all there is a large over-
lapping between XML-Schema and PiDuce schemas, which has been discussed
in Section 8. Apart from channel schemas, the other major departure from XML

schema is the support for nondeterministic labelled schemas. These schemas
make the computational complexity of the subschema relation exponential,
but they are essential for the static semantics of a basic operator in PiDuce,
the pattern-matching (see the third premise of rule (match) in Table 2). No-
ticeably, the constraint of label-determinedness on channel schemas guarantees
a polynomial cost for the subschema relation (and for the pattern matching)
at runtime (see Appendix C).

Future work in the PiDuce project is planned in two directions: the first di-
rection is rather pragmatic, and is aimed to improving interoperability and
support to existing protocols. The goal is to interface PiDuce with more real-
world Web services and to carry on more advance experimentation. The other
direction regards conceptual features that are desirable and that cannot be
expressed conveniently in the current model. In particular error handling and
transactional mechanisms. These mechanisms, which are basic in BPEL [4], per-
mit the coordination of processes located on different machines by means of
time constraints. This is a well-known problematic issue in concurrency theory.
An initial investigation about transactions in the setting of the asynchronous

44

pi calculus has been undertaken in [25]. A core BPEL language without such
advanced coordination mechanisms should be compilable in PiDuce without
much effort, thus equipping BPEL with a powerful static semantics. We expect
to define a translation in the near future.

Another direction of research is about dynamic XML data, namely those data
containing active parts that may be executed on clients’ machines. This is
obtained by transmitting processes during communications, a feature called
process migration. The PiDuce prototype disallows program deployments on
the network. However, the step towards migration is quite short due to the
fact that object code is in XML format. Therefore it suffices to introduce two
new schemas: the object code schema and the environment schema, and admit
channels carrying messages of such schemas.

References

[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
Peer-to-peer data and Web services integration. In Proceedings of the Twenty-
Eighth International Conference on Very Large Data Bases (VLDP 2002), Hong
Kong SAR, China, pages 1087–1090. Morgan Kaufmann Publishers, 2002.

[2] L. Acciai and M. Boreale. XPi: a typed process calculus for XML messaging.
In 7th Formal Methods for Object-Based Distributed Systems (FMOODS’05),
volume 3535 of Lecture Notes in Computer Science, pages 47 – 66. Springer-
Verlag, 2005.

[3] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 15(4):575–631, September 1993.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business process execution language for web services, 2003. Available at http:
//www-128.ibm.com/developerworks/library/specification/ws-bpel/.

[5] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. In Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP-03), pages 51–63, New York,
2003. ACM Press.

[6] K. Bhargavan, C. Fournet, A. Gordon, and R. Pucella. TulaFale: A Security
Tool for Web Services. In Proceedings of the 2nd International Symposium
on Formal Methods for Components and Objects (FMCS’03), volume 3188 of
LNCS, pages 197–222. Springer-Verlag, 2004.

[7] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon
(eds). XQuery 1.0: An XML query language, W3C Candidate Recommendation,
June 2006. http://www.w3.org/TR/xquery/.

45

[8] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type
equality and subtyping. In R. Hindley, editor, 3rd International Conference on
Typed Lambda Calculi and Application (TLCA), Nancy, France, volume 1210
of Lecture Notes in Computer Science, pages 63 – 81. Springer-Verlag, April
1997. Full version in Fundamenta Informaticae, Vol. 33, pp. 309-338, 1998.

[9] A. Brown, C. Laneve, and L. Meredith. PiDuce: A process calculus with native
XML datatypes. In Proceedings of 2nd International Workshop on Web Services
and Formal Methods, LNCS. Springer-Verlag, 2005.

[10] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[11] S. Carpineti and C. Laneve. A basic contract language for Web services. In
Proceedings of the European Symposium on Programming (ESOP 2006), volume
3924 of LNCS, pages 197–213. Springer-Verlag, 2006.

[12] S. Carpineti, C. Laneve, and P. Milazzo. BoPi – a distributed machine for
experimenting web services technologies. In ACSD ’05: Proceedings of the Fifth
International Conference on Application of Concurrency to System Design,
pages 202–211. IEEE Computer Society, 2005.

[13] G. Castagna, R. D. Nicola, and D. Varacca. Semantic subtyping for the π-
calculus. In 20th IEEE Symposium on Logic in Computer Science (LICS’05).
IEEE Computer Society, 2005.

[14] J. Clark and S. DeRose (eds). XML Path Language (XPath) Version 1.0, W3C
Recommendation. Available at http://www.w3c.org/TR/xpath/, Nov. 1999.

[15] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available at http:
//www.grappa.univ-lille3.fr/tata, 1997. released October, 1st 2002.

[16] S. Conchon and F. L. Fessant. Jocaml: Mobile agents for objective-caml.
In First International Symposium on Agent Systems and Applications Third
International Symposium on Mobile Agents, pages 22–29. IEEE Computer
Society Press, October, 1999.

[17] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous
calculi. In Proceedings of 25th Colloquium on Automata, Languages and
Programming (ICALP), volume 1443 of LNCS, pages 844–855. Springer-Verlag,
1998.

[18] C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed
implementation of mobile ambients. In TCS ’00: Proceedings of the
International Conference IFIP on Theoretical Computer Science, Lecture Notes
in Computer Science, pages 348–364. Springer-Verlag, 2000.

[19] A. Frisch and L. Cardelli. Greedy regular expression matching. In ICALP:
Annual International Colloquium on Automata, Languages and Programming,
2004.

46

[20] P. Gardner, C. Laneve, and L. Wischik. Linear forwarders. Inf. Comput.,
205(10):1526–1550, 2007.

[21] P. Gardner and S. Maffeis. Modelling dynamic web data. Theoretical Computer
Science, 342:104–131, 2005.

[22] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of
concurrent and functional programming. International Journal of Parallel
Programming, 18(2):121–160, 1989.

[23] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

[24] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML.
ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[25] C. Laneve and G. Zavattaro. Foundations of Web Transactions. In
Proceedings of Foundations of Software Science and Computation Structures
(FOSSACS’05), volume 3441 of LNCS, pages 282–298. Springer-Verlag, 2005.

[26] Microsoft Corporation. Biztalk server. http://www.microsoft.com/
biztalk/.

[27] W3C XML Schema Working Group. XML Schema Part 0: Primer Second Edition.
Available at http://www.w3.org/TR/2004/REC-xmlschema-0 -20041028/.
W3C Recommendation - October, 28th 2004.

[28] W3C XML Schema Working Group. XML Schema Part 2: Datatypes Second
Edition. Available at http://www.w3.org/TR/2004/REC-xmlschema-2
-20041028/datatypes.html. W3C Recommendation - October, 28th 2004.

[29] W3C XML Schema Working Group. XML Schema Part 1: Structures
Second Edition. Available at http://www.w3.org/TR/2004/REC-xmlschema-1
-20041028/structures.html. W3C Recommendation - October, 28th 2004.

[30] Web Services Addressing Working Group. Web services
addressing (ws-addressing). Available at http://www.w3.org/Submission/
2004/SUBM-ws-addressing-20040810/, 2004. August, 10th 2004.

[31] Web Services Description Working Group. Web Services Description Language
(WSDL) 1.1). Available at http://www.w3.org/TR/2001/NOTE-wsdl
-20010315. W3C Note 15 March 2001.

[32] Web Services Description Working Group. Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer. Available at http://www.w3.org/TR/
2005/WD-wsdl20-primer-20050803/. W3C Working Draft 3 August 2005.

[33] Web Services Description Working Group. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. Available at http://www.w3.org/
TR/2005/WD-wsdl20-20050803/. W3C Working Draft 3 August 2005.

[34] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, Sept. 1992.

47

[35] A. Phillips, N. Yoshida, and S. Eisenbach. A distributed abstract machine
for boxed ambient calculi. In Proceedings of the European Symposium on
Programming (ESOP 2004), LNCS, pages 155–170. Springer-Verlag, Apr. 2004.

[36] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In
Logic in Computer Science, 1993. Full version in Mathematical Structures in
Computer Science , Vol. 6, No. 5, 1996.

[37] P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for mobile
agents. In H. E. Bal, B. Belkhouche, and L. Cardelli, editors, ICCL 1998, volume
1686 of Lecture Notes in Computer Science, pages 1–31. Springer-Verlag, 1999.

[38] S. Thatte. XLANG: Web services for business process design. Available
at www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm. Microsoft
Corporation, 2001.

[39] S. Vansummeren. Type inference for unique pattern matching. ACM Trans.
Program. Lang. Syst., 28(3):389–428, 2006.

A Properties of the subschema relation

This appendix contains the proofs of Proposition 2. The statement is recalled
for readability sake.

Proposition 2 (1) <: is reflexive and transitive;
(2) If S is empty, then S <: Empty;
(3) (Contravariance of 〈·〉O) S <: T if and only if 〈T 〉O <: 〈S〉O;
(4) (Covariance of 〈·〉I) S <: T if and only if 〈S〉I <: 〈T 〉I;
(5) (Invariance of 〈·〉IO) S <: T and T <: S if and only if 〈S〉IO <: 〈T 〉IO;
(6) If S <: T , then S,() <: T ; if (),S <: T , then S <: T ;
(7) If S <: T and S ′ <: T ′, then S,S ′ <: T,T ′;
(8) If (S + S ′),S ′′ <: T , then S,S ′′ <: T and S ′,S ′′ <: T ;
(9) For every S, Empty <: S <: Any and 〈S〉κ <: AnyChan and 〈Any〉IO <: 〈S〉O
and 〈Empty〉IO <: 〈S〉I.

Proof : We prove items 1 (transitivity), 2, 7, and 9; the other ones follow
directly by the definitions.

As regards transitivity of item 1, let R be a subschema relation and let R+ be
the least relation that contains R and is closed under the following operations

(1) if S R+ T then S R+ T +R;
(2) if S R+ T and S ′ R+ T then S + S ′ R+ T ;
(3) if S R+ T and S ↓ L[S ′],S ′′ then L′[S ′],S ′′ R+ T with L̂′ ⊆ L̂;

48

It is easy to verify that R+ is a subschema relation. Let R and S be two
subschema relations such that SR T and T S R. We prove that

T = {(S,R) | SR+ T and TS +R}

is a subschema relation. Let S T R. The critical case is when S ↓ L[S ′],S ′′.
According to the definition of T , there exists T such that SR+ T and TS +R.
By Definition 1, T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅. There are two cases:

(a) T ↓ L′[T ′],T ′′ with L̂ 6⊆ L̂′ and L̂ ∩ L̂′ 6= ∅. We are reduced to (L ∩
L′)[S ′],S ′′ T R and (L \ L′)[S ′],S ′′ T R, which are immediate by defi-
nition of T .

(b) T ↓ Li[T ′i],T ′′i with i ∈ I and L̂ ⊆ ⋂i∈I L̂i and, for every K ⊆ I:

either S ′R
∑
k∈K

T ′k or S ′′R
∑

k∈I\K
T ′′k . (A.1)

There are two subcases:
(b1) R ↓ M [R′],R′′ with L̂ ∩ M̂ 6= ∅ and L̂ 6⊆ M̂ . In this case we must

prove (L ∩ M)[S ′],S ′′ T R and (L \ M)[S ′],S ′′ T R, which are
immediate by definition of T .

(b2) R ↓ Mj[R
′
j],R

′′
j with j ∈ J and L̂ ⊆ ⋂

j∈J M̂j. There are again two

subcases: (b2.1) there are i, k such that L̂i 6⊆ M̂k; (b2.2) the contrary
of (b2.1). In case (b2.1) we apply the simulation case 4.(a): it must
be (Li ∩ Mk)[T

′
i],T

′′
i S R and (Li \ Mk)[T

′
i],T

′′
i S R. As far as

(Li ∩ Mk)[T
′
i],T

′′
i S R is concerned, L̂ ⊆ L̂i ∩ M̂k. If Li ∩ Mk is

not contained in every Mj we reiterate the argument (b2.1) on the
schema (Li∩Mk)[T

′
i],T

′′
i . We end up with a set of schemas L′i[T

′
i],T

′′
i

with i ∈ I such that L′i[T
′
i],T

′′
i S R and the case (b2.2) holds. From

now on the arguments of the two cases are the same. We let L′i = Li.
From Li[T

′
i],T

′′
i S R we have: for every K ′ ⊆ J :

either T ′i S
∑
k∈K′

R′k or T ′′i S
∑

k∈J\K′
R′′k (A.2)

Let K ⊆ J . Since L̂ ⊆ ⋂j∈J M̂j, we must prove:

either S ′ T
∑
k∈K

R′k or S ′′ T
∑

k∈J\K
R′′k (A.3)

For every i ∈ I, the constraint (A.2) implies

either T ′i S +
∑
k∈J

R′k or T ′′i S +
∑

k∈J\K
R′′j (A.4)

where the relation is S +. Let HK = {h ∈ I | T ′h S + ∑
k∈K R

′
k}. By

definition HK ⊆ I and T ′′h′ S + ∑
k∈J\K R

′′
k for every h′ ∈ I \ HK .

49

The constraint (A.1) implies

either S ′ R+
∑
h∈HK

T ′h or S ′′ R+
∑

h∈I\HK

T ′′h (A.5)

The constraint (A.3) follows from (A.5) and (A.4).
The case (b2.2) is similar to (b2.1) but we apply the simulation

case 4.(b)

As regards the item 2, by definition S has no handle. Therefore {(S, Empty)}
is a subschema relation and S <: Empty because <: is the largest one.

As regards the item 7, let R be a subschema relation such that S R T and
S ′ R T ′. Let R̂ be the least relation that contains R and that is closed under
reflexivity and under the following operation:

• if S R̂ T , then S,R R̂ T,R and R,S R̂ R,T .

The relation R̂ is a subschema relation. We demonstrate the case S,R R̂ T,R
and omit the other one because trivial. Let S,R ↓ R′. If S ↓ () and R ↓ R′
then, by S R̂ T , we have T ↓ () and T,R ↓ R′. We can conclude by reflexivity
of R̂. If S ↓ B,S ′, then R′ = B,S ′,R. From S R̂ T we have that T ↓ B′i,T ′i for

1 ≤ i ≤ n, with B v B′i and S ′ R̂
∑

1≤i≤n T
′
i . Hence T,R ↓ B′i,T ′i,R for 1 ≤

i ≤ n and now S ′,R R̂
∑

1≤i≤n T
′
i,R by definition of R̂. The remaining cases

are similar. We conclude by remarking that (S,S ′, T,T ′) is in the transitive

closure of R̂.

As regards the item 9, let R be the least relation containing the identity and
the pairs:

(Empty, S), (S, Any), (〈S〉κ, AnyChan), (〈Any〉IO, 〈S〉O), (〈Empty〉IO, 〈S〉I)

(S, (int + string + AnyChan + ~[Any])∗), (n, int), (s, string)

The proof that R is a subschema relation is straightforward, except for the
pairs (S, Any) and (S, (int + string + AnyChan + ~[Any])∗). We analyze the
first pair, the other being similar. We show that every R such that S ↓ R is
simulated by Any. The interesting case is when R = L[S ′],S ′′. In this case
Any ↓ ~[Any],(int + string + AnyChan + ~[Any])∗ and we are in case 4.b of
Definition 1. Since S ↓ R then S is not-empty, similarly for Any. Therefore we
are reduced to (S ′, Any), (S ′′, (int+string+AnyChan+~[Any])∗) ∈ R, which
hold by definition. 2

50

B Soundness of the static semantics

The basic statements below are standard preliminary results for the subject
reduction theorem.

Lemma 8 (Weakening) (1) If Γ ` E :S and x 6∈ fv(E), then Γ + x :T `
E :S;

(2) If Γ;∆ ` P and x 6∈ fv(P), then both (a) Γ + x : S;∆ ` P and (b)
Γ + x :〈S〉κ;∆ + x :〈S〉IO ` P .

Actually, the premises of the second statement of Lemma 8 also entail Γ + x :
S;∆ + x : S ` P , but this property is never used in the following. When a
local channel is created, the property that is used is (b). A somewhat converse
statement of weakening is the following.

Lemma 9 (Strengthening) If Γ ` E :S and x 6∈ fv(E), then Γ \ x ` E :S.
Similarly, if Γ;∆ ` P and x 6∈ fv(P), then Γ \ x;∆ \ x ` P .

The following proposition collects properties about judgments of values. We
recall that Γ is channeled when it binds variables to channel schemas.

Proposition 10 Let Γ ` V :S.

(1) If S = L[S ′],S ′′, then L is a singleton;
(2) If S <: 〈T 〉κ, then V is a variable;
(3) If Γ is channeled and S <: T1 + T2, then either S <: T1 or S <: T2;
(4) If S <: T1,T2, then there exist V1 and V2 such that V = V1,V2 and

Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <: T1 and S2 <: T2;
(5) If and S <: T ∗, then either V = () or V = V1,V2 with V1 6= () and

Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <: T and S2 <: T
∗.

Proof : Item (1) follows from the definition of judgment for expressions.

Item (2) follows from the definitions of values (a void expression or a sequence
of non-void values) and of judgment for expressions.

Regarding item (3), we proceed by induction on the derivation of Γ ` V :S.
The base case are:

• S = (). By definition of <: we have either T1 ↓ () or T2 ↓ (), then we
conclude;
• S = B. Since S ↓ B,() we have three cases. If S <: T1 or S <: T2 we

immediatly conclude. Otherwise, by definition of <:, we obtain:

51

T1 ↓ Bi,Qi B v Bi 1 ≤ i ≤ n (B.1)

T2 ↓ Bj,Qj B v B′j n+ 1 ≤ j ≤ m (B.2)

() <:
∑

1≤i≤m
Qi (B.3)

Since B.3 implies Qk ↓ () for some k ∈ {1, . . . ,m}, we conclude S <: Bk,Qk

by either B.1 or B.2.
• S = 〈S ′〉κ. Similar to the previous case.

The inductive cases are:

• S = B,S1. If S <: T1 or S <: T2 we immediately conclude. Otherwise,
by definition of <:, we have T1 ↓ Bi,Qi with B v Bi for 1 ≤ i ≤ n, and
T2 ↓ Bj,Qj with B v B′j for n + 1 ≤ j ≤ m and S1 <:

∑
1≤i≤mQi. We

conclude by the inductive hypothesis.
• S = 〈S1〉κ,S2. Similar to the previous case.
• S = a[S1],S2. If S <: T1 or S <: T2 we immediately conclude. Otherwise, by

definition of <:, we have T1 ↓ Li[Qi],Q
′
i for 1 ≤ i ≤ n, and T2 ↓ Lj[Qj],Q

′
j

for n + 1 ≤ j ≤ m. Since a is a singleton (4).b of <: applies. We assume
by contradiction that a[S1],S2 6<: Li[Qi],Q

′
i for any i ∈ {1, . . . ,m} (i.e.

S1 6<: Qi ∨ S2 6<: Q′i for any i ∈ {1, . . . ,m}). Then we choose Ji as follows:
(1) J1 = ∅ implies S2 <:

∑
i∈{1,...,m}Q

′
i and, by the inductive hypothesis,

there exists k1 such that S2 <: Q
′
k1

;
(2) Jk1 = {k1}, since S1 6<: Qk1 , we have S2 <:

∑
i∈{1,...,m}\{k1}Q

′
i and, by

the inductive hypothesis, there exists k2 6= k1 such that S2 <: Q
′
k2

;
(3) Jk1,k2 = {k1, k2}, since S1 6<: Qk1 and S1 6<: Qk2 , by the inductive hy-

pothesis we have S1 6<: Qk1+Qk2 . Then we must have S2 <:
∑
i∈{1,...,m}\{k1,k2}Q

′
i

that implies, by the inductive hypothesis, k3 with k3 6= k1 and k3 6= k2

such that S2 <: Q
′
k3

;
(. . .)
(m+ 1) J{k1,k2,...,km} = {1, . . . ,m} then we have to prove S1 <:

∑
i∈{1,...,m}Qi

that, by inductive hypothesis, implies S1 <: Qk for some k ∈ {1, . . . ,m}.
But this is not possible because of the previous m judgements (S1 6<: Qk1

for (1), S1 6<: Qk2 for (2), ..., S1 6<: Qkm).
Therefore we obtain a[S1],S2 6<: T1 + T2 which contradicts the hypothesis.
• If S = a[S1], since S ↓ a[S1],() we reduce to the previous case.

Regarding item (4), we proceed by induction on V . For the base case assume
that T1 ↓ () and S <: T2 (notice that this case includes the one where V = ()).
We conclude by taking V1 = () and V2 = V . For the inductive case assume
that either T1 ↓ R implies R 6= () or that T1 ↓ () and S 6<: T2. We reason by
cases on the structure of V , we only show the case when V = b,V ′, the others
are similar. We have S = b,S ′ where Γ ` V ′ : S ′. We must have T1 ↓ B,T ′1
with b <: B and S ′ <: T ′1,T2. By induction hypothesis there exist V ′1 and V2

such that V ′ = V ′1,V2 and Γ ` V ′1 : S ′1 and Γ ` V2 : S2 and S ′1 <: T ′1 and

52

S2 <: T2. We conclude by taking V1 = b,V ′1 .

Regarding item (5), if V = () we conclude immediately. Assume V 6= ().
Then we must have T ↓ R, with R 6= () and S <: R,T ∗. By item (4) we
obtain V = V1,V2 and Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <: R and S2 <: T

∗.
Since R is a handle and R 6= () we must have V1 6= (). Furthermore, since R
is a handle of T , we have R <: T hence we conclude S1 <: T . 2

Lemma 11 (Substitution) Let V be a dom(Γ)-value and Γ ` V :S.

(1) If Γ ` E :T , Γ ` x :R and S <: R, then Γ ` E{V /x} :T ′ with T ′ <: T .
(2) If Γ;∆ ` P , Γ + ∆ ` x :R and S <: R, then Γ;∆ ` P{V /x}.

Proof : The proof is by induction on the structure of the derivations of Γ ` E :T
and Γ;∆ ` P .

For (1) we only discuss the case when E is a sequence E1,E2. By definition
of `, Γ ` E1 :T1 and Γ ` E2 :T2, and by inductive hypothesis we have

Γ ` E1{V /x} :T ′1 and T ′1 <: T1 (B.4)

Γ ` E2{V /x} :T ′2 and T ′2 <: T2 (B.5)

From (B.4), and (B.5) we obtain Γ ` (E1,E2){V /x} : T ′1,T
′
2. By Proposi-

tion 2(6), T ′1,T
′
2 <: T1,T2 and we conclude.

For (2) we only discuss the case when the last rule is (out). Then P = u!(E)
and the premises of the rule are the judgments Γ ` E : T and Γ;∆ ` u : R,
and the predicate

R <: 〈T 〉O (B.6)

We must prove Γ;∆ ` u!(E){V /x}. By Γ ` E :T , the hypothesis Γ ` V : S,
S <: R, and the substitution lemma for expressions, we obtain

Γ ` E{V /x} :T ′ (B.7)

T ′ <: T (B.8)

As regards the subject of the output, there are two subcases: (a) x 6= u
and (b) x = u. Case (a) follows by (B.6), (B.8), contravariance of 〈·〉O and
transitivity of <:. Case (b) implies S = R. Therefore, by Proposition 10, V is
a variable. The lemma follows by (B.7), the hypotheses Γ ` x : S, the (B.6),
the contravariance of 〈·〉O, and the transitivity of <:. 2

The weakening, strengthening, and substitution lemmas entail a subsumption
property that is useful for the correctness of the rule (dtr1) in the subject

53

reduction.

Proposition 12 If Γ + x : T;∆ ` P and x /∈ dom(∆) and S <: T then
Γ + x :S;∆ ` P .

In the rest of this appendix, we generalize all the functions defined over pat-
terns to markers and to sequences of patterns and markers Φ = F1 :: F2 ::
· · · :: Fn where a marker is treated like the void sequence () and a sequence
F1 :: F2 :: · · · :: Fn is treated like the pattern F1,F2, . . . ,Fn which reduces
to () when n = 0. In particular, we generalize the functions schof(·), fv(·),
Env(·). The next two statements regard the soundness of the evaluation of
expressions and of pattern matching. Straightforward proofs are omitted.

Lemma 13 (Evaluation) Let Γ ` E :S. If E ⇓dom(Γ) V , then Γ ` V :T and
T <: S.

Lemma 14 (Pattern Matching) Let Γ ` V :S and Γ ` V ∈ Φ ; σ.

(1) S <: schof(Φ);
(2) If u /∈ fv(V), then Γ + u : S ` V ∈ Φ ; σ;
(3) for every u ∈ fv(Φ), Γ ` σ(u) :T and T <: Env(Φ)(u).

Proof : items (1) and (2) are trivial. Regarding item (3), we proceed by induc-
tion on the proof tree of Γ ` V ∈ Φ ; σ. The only interesting case is when
the last rule in the proof of Γ ` V ∈ Φ ; σ is (pm7):

(pm7)

Γ ` V ∈ F :: x/V :: Φ′ ; σ

Γ ` V ∈ (x : F) :: Φ′ ; σ

and take u = x. Eventually, in the proof tree of ∆ ` V ∈ F :: x/V :: Φ′ ; σ,
there will be an application of rule (pm5):

(pm3)

Γ ` V ′ ∈ Φ′ ; σ′ V = V ′′,V ′

Γ ` V ′ ∈ x/V :: Φ′ ; σ′ + [x 7→ V ′′]

By letting Φ′ = [] and V ′ = () and σ′ = ∅ we obtain a proof tree of Γ `
V ′′ ∈ (x : F) ; σ′′. From item (1) we derive that Γ ` V ′′ : S implies
S <: schof(F). We conclude by observing that Env(Φ)(x) = schof(F) and
that σ(x) = V ′′. 2

Every preliminary is set for the subject reduction. For readability sake we
recall the statement.

Theorem 6 (Subject Reduction) Let Γ; [Γ]IOl ` P . Then

54

(1) if Γ `l P
(Γ′)u!(V)−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q, (b) Γ + [Γ]IOl ` u :S,

Γ + Γ′ ` V :T and S <: 〈T 〉O;
(2) if Γ `l P

u?(F)−→ Q, then (a) (Γ; [Γ]IOl)+Env(F) ` Q and (b) Γ+[Γ]IOl ` u :S
with S <: 〈schof(F)〉I;

(3) if Γ `l P
(Γ′)u(v−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q and (b) Γ \ dom([Γ +

Γ′]IOl) ` u : S, Γ + Γ′ ` v :〈T 〉O and S <: 〈T 〉I;
(4) if Γ `l P

(u@l′:〈S〉IO)−→ Q, then (Γ; [Γ]IOl) + u :〈S〉IO ` Q;
(5) if Γ `l P

τ−→ Q, then Γ; [Γ]IOl ` Q.

Let ` M. Then

(6) if M
∆−→ N, then ` N.

Proof : The proof proceeds by induction on the structure of the derivation of
Γ `l P

µ−→ Q and by cases on the last rule that has been applied for the
first five items. Item (6) is similar, but the induction is on the structure of the
derivation of ` M. We omit the cases that are straightforward.

When the last rule is an instance of (tr4) we have:

Γ + v :〈S〉κ `l P
(Γ′)u!(V)−→ Q v 6= u v ∈ fv(V) \ dom(Γ′)

Γ `l new v : 〈S〉κ in P (Γ′+v:〈S〉κ)u!(V)−→ Q

By inductive hypotheses applied to Γ + v : 〈S〉κ `l P
(Γ′)u!(V)−→ Q we obtain

Γ + v :〈S〉κ + Γ′; [Γ + v :〈S〉κ + Γ′]IOl ` Q (B.9)

Γ + v :〈S〉κ + [Γ + v :〈S〉κ]IOl ` u :S ′ (B.10)

Γ + v :〈S〉κ + Γ′ ` V :T (B.11)

S ′ <: 〈T 〉O (B.12)

The conclusion (a) follows from (B.9); the conclusion (b) follows by (B.10),
(B.11), and (B.12) because u 6= v.

When the last rule is an instance of (tr5) we have:

(tr5)

E ⇓ V (Γ ` V 6∈ Fi)i∈1..j−1 Γ ` V ∈ Fj ; σ

Γ `l match E with {Fi ⇒ Pi
i∈1..n} τ−→ Pjσ

By the hypothesis Γ; [Γ]IOl ` P , Lemma 13, and rule (match) we have:

Γ; [Γ]IOl ` V : S S <:
∑
i∈1..n

schof(Fi) (B.13)

55

By Lemma 14 applied to Γ ` V ∈ Fi ; σ and (B.13) we obtain that, for every
v ∈ fv(F), Γ + Γ′ ` σ(v) :T ′ and T ′ <: Env(F)(v). By Lemma 11 applied to
this last judgment, we derive Γ; [Γ]IOl ` Pjσ.

When the last rule is an instance of (tr8) we have:

Γ `l P
(Γ′)u!(V)−→ P ′ Γ `l Q

u?(F)−→ Q′ dom(Γ′) ∩ fv(Q) = ∅ Γ + Γ′ ` V ∈ F ; σ

Γ `l spawn {P} Q
τ−→ new Γ′ in spawn {P ′} Q′σ

By inductive hypotheses on Γ ` P (Γ′)u!(V)−→ P ′ and Γ ` Q u?(F)−→ Q′ we have:

Γ + Γ′; [Γ + Γ′]IOl ` P ′ (B.14)

Γ + Γ′ ` V :T (B.15)

Γ + [Γ]IOl ` u :S S <: 〈schof(F)〉I S <: 〈T 〉O (B.16)

(Γ; [Γ]IOl) + Env(F) ` Q′ (B.17)

By Lemma 14 applied to Γ + Γ′ ` V ∈ F ; σ, (B.15), and (B.16) we
obtain that, for every v ∈ fv(F), Γ + Γ′ ` σ(v) : T ′ and T ′ <: Env(F)(v).
By Lemma 11 applied to this last judgment, (B.16), and (B.17) we derive
(Γ; [Γ]IOl) + Γ′ ` Q′σ. We conclude with (B.14), (spawn), and (new).

The case (tr10) is omitted because the resulting process is complex and the
demonstration requires a long uninteresting analysis of the proof tree.

When the last rule is an instance of (dtr1) we have:

(dtr1)

Γ `l P
(vi:Si

i∈I)u!(V)−→ Q u@l′ (vi@l vi /∈ dom(Γ) ∪ dom(Γ′))i∈I

∆ = vi : Si
i∈I + ((Γ|fv(V)) \ l′) meet ((Γ′|fv(V)) \ l)

Γ `l P ‖ Γ′ `l′ R
∆\l,l′−→ Γ + vi : Si

i∈I `l Q ‖ Γ′ + ∆ `l′ spawn {u!(V)} R

In order to prove ` (Γ + vi : Si
i∈I `l Q ‖ Γ′ + ∆ `l′ spawn {u!(V)} R) we

may reduce to demonstrate

Γ + vi :Si
i∈I; [Γ + vi :Si

i∈I]IOl ` Q (B.18)

Γ′ + ∆; [Γ′]IOl′ ` spawn {u!(V)} R (B.19)

because the machine consistency follows by definition of meet and the fact
that vi are fresh. (We notice that, by definition of ∆, [Γ′+ ∆]IOl′ = [Γ′]IOl′ .) The
judgment (B.18) and

Γ + [Γ]IOl ` u :S (B.20)

Γ + vi :Si
i∈I ` V :T S <: 〈T 〉O (B.21)

56

are a consequence of the inductive hypothesis on Γ `l P
(vi:Si

i∈I)u!(V)−→ Q. As
regards (B.19), by ` M we derive Γ′; [Γ′]IOl′ ` R and by Lemma 8 and Propo-
sition 12 we obtain Γ′ + ∆; [Γ′]IOl′ ` R. To demonstrate Γ′ + ∆; [Γ′]IOl′ ` u!(V)
we reason as follows ((B.19) is entailed by (spawn) applied to these last judg-
ments). By (B.20), u@l′, and the well-typedness of M, we derive

Γ′ + [Γ′]IOl′ ` u :S ′ S ′ <: S (B.22)

By (B.21), Lemmas 8 and 9 and Proposition 12 we derive

Γ′ + ∆ ` V :T ′ T ′ <: T (B.23)

The judgment (B.19) follows from (B.22) and (B.23) with the rule (out).

When the last rule is an instance of (dtr2) we have:

(dtr2)

Γ `l P
(u@l′:〈S〉IO)−→ Q u /∈ dom(Γ′) ∪ dom(Γ)

Γ `l P ‖ Γ′ `l′ R −→ Γ + u : 〈S〉IO `l Q ‖ Γ′ + u : 〈S〉IO `l′ R

We verify the well-typedness of the two runtime environments; machine con-

sistency is immediate. By the inductive hypothesis on Γ `l P
(u@l′:〈S〉IO)−→ Q

we obtain Γ; [Γl]IO + u : 〈S〉IO ` Q. This is sufficient for the correctness of
location l because Γ; [Γl]IO + u :〈S〉IO = (Γ + u :〈S〉IO); [Γl + u :〈S〉IO]IO. The
judgment (Γ′ + u : 〈S〉IO); [Γ′ + u : 〈S〉IO]IOl′ ` R follows by Lemma 8 applied
to Γ′; [Γ′]IOl′ ` R.

When the last rule is an instance of (dtr3) we have

(dtr3)

Γ `l P
(Γ′′)u(v−→ Q u@l′ Γ′ ` u : 〈S〉κ dom(Γ′′) ∩ dom(Γ′) = ∅ Γ′′′ = Γ|{v} + Γ′′

Γ `l P ‖ Γ′ `l′ R −→ Γ + Γ′′ `l Q ‖ Γ′ + Γ′′′ `l′ spawn {u?(x : S) v!(x)} R

We focus on the well-typedness of the two runtime environments. By inductive

hypothesis on Γ `l P
(Γ′′)u(v−→ Q we obtain

Γ + Γ′′; [Γ + Γ′′]IOl ` Q (B.24)

Γ + Γ′′ ` u :T (B.25)

Γ + Γ′′ ` v :〈T ′〉O (B.26)

T <: 〈T ′〉I (B.27)

By (B.24) we immediately derive that the left runtime environment is well-
typed. Therefore we focus on the right runtime environment. To demonstrate

57

the correctness of its process we will eventually use (spawn). Therefore we
reduce to prove: (1) Γ′ + Γ′′′; [Γ′ + Γ′′′]IOl′ ` R and (2) Γ′ + Γ′′′; [Γ′ + Γ′′′]IOl′ `
u?(x : S)v!(x). The judgment (1) follows by the hypothesis Γ′; [Γ′]IOl′ ` R,
dom(Γ′′)∩ dom(Γ′) = ∅, by Lemma 8 and (in case v ∈ dom(Γ′)) Proposition 12.
As regards (2), the well-typedness of M entails 〈S〉κ <: T . By transitivity of

<:, 〈S〉κ <: 〈T ′〉I. Therefore κ is either I or IO and S <: T ′. Without loss of
generality, let x be fresh. Since Γ + Γ′′ = Γ + Γ′′′, (B.26) and Lemma 8 give
Γ′+Γ′′′+x :S ` v :〈T ′〉O . Then, by rule (out), we obtain Γ′+Γ′′′+x :S; [Γ′+
Γ′′′+x :S]IOl ` v!(x). Finally, it is easy to derive Γ′+Γ′′′+[Γ′+Γ′′′]IOl ` u : 〈S〉κ
from the hypothesis Γ′ ` u :〈S〉κ. We conclude with (select).

When the last rule is an instance of (dtr5) we have:

(dtr5)

M
∆−→ N (dom(N) \ dom(M)) ∩ dom(Γ) = ∅ ∆@l ⊆ Γ

M ‖ Γ `l P
∆\l−→ N ‖ Γ `l P

Since ` (M ‖ Γ `l P) then both (1) ` M and (2) ` (Γ `l P). By inductive

hypotheses applied to (1) and M
∆−→ N we derive ` N. The machine consis-

tency of the composite machine follows from that of ` (M ‖ Γ `l P) and the
constraint ∆@l ⊆ Γ. 2

The proof of the Progress Theorem follows.

Theorem 7 (Progress) Let Γ be channeled.

(1) If Γ ` V :S and S <: schof(F), then there is σ such that Γ ` V ∈ F ; σ;

(2) If Γ; [Γ]IOl ` P and Γ `l P
(Γ′)u!(V)−→ Q′ and Γ `l P

u?(F)−→ Q′′, then there is
Q such that Γ `l P

τ−→ Q;

(3) If ` (Γ `l P ‖ M), Γ `l P
(Γ′)u!(V)−→ Q, and u is located at a location of M,

then Γ `l P ‖ M
∆−→ Γ `l Q ‖ N, for some N. Similarly when the label

is (Γ′)u(v.

Proof : As regards item (1), let the size of a pattern F , written h(F), be defined
as follows:

h(()) = h(B) = h(〈S〉κ) = h(L[F]) = 1
h(S∗) = 1 + h(S)

h(x : F) = 2 + h(F)
h(F1,F2) = h(F1 + F2) = 1 + h(F1) + h(F2)

h(Y) = 1 + h(F (Y))

Notice that h(F) is well-defined when F is a well-formed pattern because a
pattern name Y cannot occur unguarded in F (Y) and L[F] has size 1 regard-
less of F ’s size. We generalize the h function to markers and to sequences of

58

patterns and markers, where the size of a marker is 1 and the size of a sequence
Φ = F1 :: F2 :: · · · :: Fn is defined as the sum of the sizes of all of its elements.

The proof is by induction on the pair (V, h(Φ)), the idea being that at each
induction step either we reduce to pattern matching a value that is structurally
smaller than V or the size of the pattern sequence decreases. Recall that, since
S is the schema of a value, it does not contain +’s, starred schemas, and schema
names, except possibly within channel constructors.

We only show the most relevant cases. In the base case we have h(Φ) = 0 and
V = (). We conclude immediately by (pm1). Assume h(Φ) > 0, meaning that
Φ = F :: Φ′ for some F and Φ′. We reason by cases on the structure of F .

Assume F = (). We notice that schof(Φ) <: schof(Φ′) and that h(Φ′) <
h(Φ). By induction hypothesis we obtain Γ ` V ∈ Φ′ ; σ from which we
conclude by (pm2).

Assume F = L[F ′]. Then V = a[V ′],V ′′ where a ∈ L, Γ ` V ′ : S ′, Γ ` V ′′ : S ′′,
S ′ <: schof(F ′), and S ′′ <: schof(Φ′). By induction hypothesis we obtain
Γ ` V ′ ∈ F ′ ; σ and Γ ` V ′′ ∈ Φ′ ; σ′ and we conclude by (pm6).

Assume F = F1 + F2. Notice that schof(Φ) <: schof(F1 :: Φ′) + schof(F2 ::
Φ′). By Proposition 10(3) we have that either S <: schof(F1 :: Φ′) or S <:

schof(F2 :: Φ′). If S <: schof(F1 :: Φ′) then by induction hypothesis Γ `
V ∈ F1 :: Φ′ ; σ and we conclude by (pm8). If S 6<: schof(F1 :: Φ′) then by
Lemma 14(1) we have Γ ` V 6∈ F1 :: Φ′. From S <: schof(F2 :: Φ′) and the
induction hypothesis we obtain Γ ` V ∈ F2 :: Φ′ ; σ from which we conclude
by (pm9).

Assume F = T ∗. Let V = V1,V2 so that Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <:

T ∗ and S2 <: schof(Φ′). We take V1 to be the longest prefix of V with these
properties. The existence of V1 and V2 is guaranteed by Proposition 10(4). By
induction hypothesis we obtain that Γ ` V2 ∈ Φ′ ; σ.

Now we reason on the structure of V1 to show that there exists n ≥ 0 such that
Γ ` V1 ∈ T n ; ∅. Assume V1 = (). Then it is sufficient to take n = 0. Assume
V1 6= (). By Proposition 10(5) there exist V ′1 and V ′′1 such that V ′1 6= () and
Γ ` V ′1 : S ′1 and Γ ` V ′′1 : S ′′1 and S ′1 <: T and S ′′1 <: T ∗. By induction
hypothesis we obtain that Γ ` V ′1 ∈ T ; ∅ and furthermore there exists
m ≥ 0 such that Γ ` V ′′1 ∈ Tm ; ∅. Now it is sufficient to take n = m + 1
and we conclude by noticing that if Γ ` V ′1 ∈ T ; ∅ and Γ ` V ′′1 ∈ Tm ; ∅,
then Γ ` V ′1,V ′′1 ∈ T,Tm ; ∅.

Because V1 was chosen as the longest prefix of V such that S1 <: T
∗ and S2 <:

schof(Φ′), by soundness of pattern matching (Lemma 14(1)) we conclude that
any extension of V1 with a non-void suffix W such that V2 = W,V ′2 will lead

59

us to conclude either Γ ` V1,W 6∈ T ∗ or Γ ` V ′2 6∈ Φ′. Hence we conclude
by (pm12).

As regards item (2), by Theorem 6(1) applied to Γ; [Γ]IOl ` P and Γ; [Γ]IOl `l
P

(Γ′)u!(V)−→ Q′, we derive Γ + [Γ]IOl ` u : S, Γ + Γ′ ` V : T and S <: 〈T 〉O. By

Theorem 6(2) applied to Γ; [Γ]IOl ` P and Γ; [Γ]IOl `l P
u?(F)−→ Q′′, we also derive

Γ + [Γ]IOl ` u : S and S <: 〈schof(F)〉I. Since Γ is channeled, S = 〈S ′〉κ, for
some S ′, κ, and by Proposition 2, T <: schof(F). Therefore, by item 1, there
is σ such that Γ+Γ′ ` V ∈ F ; σ. The proof now requires a close inspection of

the proof trees of Γ `l P
(Γ′)u!(V)−→ Q′ and Γ `l P

u?(F)−→ Q′′. By definition of the
transition relation, these trees must have common subtrees beginning at the
root and terminating in correspondence of a subterm spawn {P ′} P ′′ of P . At

this point, the two subtrees continue with premises Γ + Γ′′′ `l P ′
(Γ′′)u!(V)−→ Q′1

and Γ + Γ′′′ `l P ′′
u?(F)−→ Q′′2 (or conversely). Progress holds because rule (tr8)

may be applied (the constraint dom(Γ′′) ∩ fv(P ′′) = ∅ may be easily enforced
by alpha-conversion) to spawn {P ′} P ′′ and the resulting τ -transition may be
lifted to P by means of rules (tr3), (tr6), (tr7).

Item (3) is straightforward. 2

C The subschema relation and the type system

The definition of <: in Section 4 is given coinductively and it is hard to im-
plement directly. In this section we illustrate the algorithm used in PiDuce

for <: and we demonstrate its soundness and completeness. The algorithm
follows the style of Hosoya, Pierce and Vouillon [24] and has an exponential
computational cost (in the sizes of the argument schemas). In order to allevi-
ate this cost we define a subclass of schemas and demonstrate the existence
of a polynomial algorithm for them.

Let handles(S) = {R | S ↓ R} and let ℘(1..n) be the set of subsets of numbers
in 1..n. Table C.1 contains the inference rules that define a relation S �A T ⇒
A′, which we are going to relate with <:. The set A, called assumptions, is a set
of pairs (S, T) representing relations that have been proved or that are being
proved. The set A′, following Brand and Henglein [8], is used for recording
already computed or being computed relations. The rules parse the structure
of handles of the left schema. Rule (empty) accounts for left schemas with no
handle (empty schemas). Rules (void), (base), (chan), (split), and (lseq)
deal with schemas that are handles (void, sequences with an initial schema that
is either basic or channel or labelled). They closely correspond to the items 1,
2, 3, 4.a and 4.b of <:, respectively. The remaining rules are used for reducing
the computation to such rules. Rule (union) applies to schemas S + S ′,R

60

Table C.1
The algorithmic subschema (arguments of shape B are always replaced by B,().
Similarly for 〈S〉κ, L[S], S+S′, U, and S∗. Arguments (),S are always replaced by
S).

(empty)

handles(S) = ∅
S �A T ⇒ A

(void)

T ↓ ()
() �A T ⇒ A

(base)

(T ↓ Bi, Ti B v Bi)i∈1..n S �A

∑
i∈{1,...,n} Ti ⇒ A′

B, S �A T ⇒ A′

(chan)

(T ↓ 〈Ti〉κi,T ′i)i∈1..n κ ≤ κi κi = O implies Ti �Ai−1 S ⇒ Ai
κi = I implies S �Ai−1 Ti ⇒ Ai

κi = IO implies S �Ai−1 Ti ⇒ A′i and Ti �A′i
S ⇒ Ai


i∈1..n

S′ �An

∑
i∈1..n T

′
i ⇒ An+1

〈S〉κ,S′ �A0 T ⇒ An+1

(split)

T ↓ L′[T ′],T ′′ L̂ 6⊆ L̂′ L̂ ∩ L̂′ 6= ∅
(L \ L′)[S],S′ �A T ⇒ A′ (L ∩ L′)[S],S′ �A′ T ⇒ A′′

L[S],S′ �A T ⇒ A′′

(lseq)

(T ↓ Li[Ti],T ′i)i∈1..n L̂ ⊆
⋂
i∈1..n L̂i J1, · · · , J2n = ℘(1..n)(

S �Ak−1

∑
i∈Jk Ti ⇒ Ak or S′ �Ak−1

∑
i∈1..n\Jk T

′
i ⇒ Ak

)k∈1..2n

L[S],S′ �A0 T ⇒ A2n

(union)

S,S′′ �A T ⇒ A′ S′,S′′ �A′ T ⇒ A′′

(S + S′),S′′ �A T ⇒ A′′

(name)

A′ = A ∪ {(U,S, T)}
E (U),S �A′ T ⇒ A′′

U,S �A T ⇒ A′′

(star)

A′ = A ∪ {(S∗,S′, T)}
(() + S,S∗),S′ �A′ T ⇒ A′′

S∗,S′ �A T ⇒ A′′

(asmp)

(S, T) ∈ A

S �A T ⇒ A

and verifies that both S,R and S ′,R are subschemas of T . Rule (name)
accounts for left schemas of shape U,S. In this case the name U is replaced by
its definition E (U), the set of assumptions is extended with the pair (U,S, T)
and the relation � is computed on these new arguments. Rule (star) is similar
to (name) but for starred schemas. Rule (asmp) terminates proofs when the
arguments are already in the set of assumptions.

The relation � is sound with respect to <:.

Lemma 15 (Soundness) If S �∅ T ⇒ A, then S <: T .

Proof : Let R be the relation containing

61

(1) pairs (S ′, T ′) such that a subtree S ′ �A′ T
′ ⇒ A′′ exists in the tree S �∅

T ⇒ A;
(2) if (B, T ′) ∈ R, then (B,(), T ′) ∈ R, too. Similarly for pairs (〈S ′〉κ, T ′),

(〈S ′〉κ, T ′), (L[S ′], T ′), (S ′ + S ′′, T ′), (U, T ′), and (S∗, T ′).

To check that R is a subschema relation, let (S ′, T ′) ∈ R and S ′ ↓ R. By
induction on the structure of the proof S ′ ↓ R it is easy to show that (R, T) ∈
R, too. 2

We note that the rules in Table C.1 define a program, which we call the �-
program, that takes a triple (S, T, A) and attempts to build the proof tree by
recursively analyzing the structure of S and the set A. The program returns
a set A′ if the attempt succeeds, returns a failure otherwise. The �-program
terminates. To demonstrate this property we introduce some notation:

• t(S), called the set of subterms of S, is the smallest set satisfying the equa-
tions:

t(()) = {()}
t(B) = {B} ∪ {B,()}
t(U) = {U} ∪ {U,()} ∪ {t(E (U))}

t(〈S〉κ) = {〈S〉κ} ∪ {〈S〉κ,()} ∪ t(S)
t(L[S]) = {L[S]} ∪ {L[S],()} ∪ t(S)
t(S,S ′) = {T,S ′ | T ∈ t(S)} ∪ {t(S ′)}

t(S∗) = t(S) ∪ {S∗} ∪ {S,S∗} ∪ {()}
t(S + T) = {S + T} ∪ t(S) ∪ t(T)

It is easy to demonstrate that t(S) is always finite.
• anames(S) is the set {U,T : U,T ∈ t(S)} ∪ {T ∗,T ′ : T ∗,T ′ ∈ t(S)}
• lsubt(S, T) is the smallest set containing t(S), t(T) and closed under the

following properties:
– if L[Q],Q′ ∈ lsubt(S, T) and L′[Q′′],Q′′′ ∈ lsubt(S, T) and L̂ 6⊆ L̂′ then

(L \ L′)[Q],Q′ ∈ lsubt(S, T) and (L ∩ L′)[Q],Q′ ∈ lsubt(S, T)
– if S,S ′ ∈ t(S) and T,T ′ ∈ t(S) then S ′ + T ′ ∈ t(S);
Since t(S) and t(T) are finite then lsubt(S, T) is finite as well.
• ‖S‖X , called the size of S with names in X , is the function inductively

defined as:

‖S‖X =



0 if S = U ∈X
1 if S = ()

‖E (U)‖X ∪{U} if S = U 6∈X
1 + ‖T‖X if S = 〈T 〉κ or S = L[T] or S = T ∗

1 + ‖T‖X + ‖T ′‖X if S = T,T ′ or S = T + T ′

The number ‖S‖∅ is shortened into ‖S‖.

We note that ‖S‖ and |t(S)| are finite (because E is a finite map). They are

62

also different values in general. For instance ‖S + S‖ = 2 × ‖S‖ + 1 whilst
|t(S + S)| = |t(S)|+ 1.

Lemma 16 (1) The set handles(S) is always finite.
(2) The �-program always terminates.

Proof : As regards (1), let h(S) be the function defined as

h(S) =



0 if S is empty
1 if S = () or S = 〈T 〉κ
1 if S = L[T] and S is not-empty
h(T) + h(T ′) if (S = T + T ′ or S = T,T ′) and S is not-empty
1 + h(T) if S = T ∗

1 + h(E (U)) if S is not-empty and S = U

Since E is well-formed, h(S) is finite for every schema. The proof proceeds by
induction on h(S). The base case is obvious. The inductive case is by cases
on the structure of S. We discuss the subcase S = U. We observe that, by
definition, handles(U) = handles(E (U)). By inductive hypothesis handles(E (U))
is finite; therefore handles(U) is finite as well.

As regards (2), let nS,T,A = |(anames(S) ∪ anames(T))× lsubt(S, T) \ A| (the
subtrees of T are considered because of the contravariance of 〈·〉O). We note
that A is contained into (anames(S) ∪ anames(T))× lsubt(S, T). We demon-
strate that every invocation of S �A T ⇒ A′ in the premises of the rules of
Table C.1 decreases the value (nS,T,A, ‖S‖ + ‖T‖) (the order is lexicographic)
of the conclusion. There is one problematic case: when the �-program tries to
apply (split). In this case, the value (nS,T,A, ‖S‖+ ‖T‖) for the two premises
is equal to that of the conclusion. However, after a finite number of applica-
tion of (split) – corresponding (in the worst case) to the number of labelled
handles of T , which are finite by (1) – (split) reduces to (lseq). In (lseq)
the value (nS,T,A, ‖S‖+ ‖T‖) decreases, thus guaranteeing termination. 2

Completeness of � with respect to <: is demonstrated below.

Definition 17 A triple (S, T, A) is correct if and only if: (1) S <: T and (2)
(S ′, T ′) ∈ A implies S ′ <: T ′.

Proposition 18 If (S, T, A) is correct, then one of the rules in Table C.1 is
applied by the �-program and every judgment used in the premise of the rule
is correct as well.

Proof : Together with the statement of the Proposition, we also demonstrate
that if the �-program returns a set A′, then A′ is correct: (S ′, T ′) ∈ A′ implies
S ′ <: T ′. We focus on not empty schemas S and the argument is by induction
on the structure of S. The case of empty schemas is immediate. The case

63

S = () is immediate as well. As inductive cases, we omit those where S is a
sequence of length 1 because they may be reduced to the following ones by
Proposition 2(6). If S = B,S ′, then, by S <: T , there exist (T ↓ Bi,Ti)i∈1..n

such that, for every i, B ⊆ Bi and S ′ <:
∑
i∈1..n Ti. Therefore, the �-program

may apply (base) reducing to the triple (S ′,
∑
i∈1..n Ti, A). The correctness

of this triple follows by the hypotheses. The output set of the program is
correct by inductive hypothesis. The case when S = 〈S ′〉κ,S ′′ is similar to
the previous one. When S = L[S ′],S ′′ the �-program may apply (split) or
(lseq) according to condition 4.a or 4.b of Definition 1 is used in <:. Again,
the correctness of every triple used in the premises follows by the hypotheses;
the output set of every invocation of the program is correct by inductive
hypothesis. If S = S ′ + S ′′,R then, by Proposition 2(8), both S ′,R <: T
and S ′′,R <: T . Then the �-program may apply (union), thus reducing
to two triples that are still correct. Similarly, the set that are returned by
every invocation of the program are correct by inductive hypothesis. If either
S = U,S ′ or S = S ′∗,S ′′ then the �-program may apply either (name) or
(star) or (asmp). In the first two cases, the correctness of the new triple
follows by the correctness of the current triple. In the third case no new triple
is generated. 2

Completeness is an immediate consequence of Proposition 18 and Lemma 16.

Lemma 19 (Completeness) If S <: T then there exists A such that S �∅
T ⇒ A.

Rule (lseq) in Table C.1 retains a number of subtrees which is exponential
in the size of the right schema. This causes an exponential cost for the �-
program. Such a cost is an issue in Web-services, where data coming from
untrusted parties, such as WSDL documents (containing the schema of a ser-
vice), might be validated at run-time before processing. Since Web-services
documents carry references, validation has to verify that the schema of the
reference conforms with some expected schema, thus reducing itself to the sub-
schema relation. Note that in XDuce run-time subschema checks are avoided
because programs are strictly coupled and typechecking guarantees that in-
valid values cannot be produced. In CDuce there is the possibility of using
pattern matching on function values, thus invoking the subschema relation at
run-time. However, while this feature is implemented (the pattern matching
algorithm is hyper-exponential), it is never used in actual programs.

In [11] a schema language restriction has been studied so that the corre-
sponding subschema relation has a polynomial cost. Specifically, following
XML-Schema, schemas are constrained in order to retain a deterministic model
as regards tag-labelled transitions. The model is still nondeterministic with
respect to channel-labelled transitions.

64

Definition 20 The set ldet of label-determined schemas is the greatest set of
schemas such that:

() ∈ ldet
B ∈ ldet
〈S〉κ ∈ ldet if S ∈ ldet
L[S] ∈ ldet if S ∈ ldet
S,T ∈ ldet if S ∈ ldet and T ∈ ldet
S∗ ∈ ldet if S ∈ ldet

S + T ∈ ldet if S ↓ L[S ′],S ′′ and T ↓ L′[T ′],T ′′implies L̂ ∩ L̂′ = ∅
and S ∈ ldet, T ∈ ldet

U ∈ ldet if E (U) ∈ ldet

By the definition a[S] + (~\ a)[T] and ~[S] + 〈S〉κ + 〈T 〉κ′ are label-determined
schemas whilst a[]+(a+b)[] and 〈a[]+~[]〉κ are not label-determined. Every
empty schema – the schema that does not retain any handle – is in ldet and
that schemas like a[] + a[Empty] are also label-determined.

We observe that, if S and T are label-determined then the proof of S �∅ T ⇒ A

never requires the rule (lseq), which was problematic for its computational
cost. Actually, in [11], the �-program has been proved to have a polynomial
cost when invoked on label-determined schemas.

65

