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Abstract. We develop a process calculus – the nanoκ calculus – for
modeling, analyzing and validating the properties of molecular devices.
The nanoκ calculus is equipped with a simple stochastic models. We then
study the modelization and simulation of the behaviour of a molecular
shuttle, a basic nano device currently used for building more complex
systems.

1 Introduction

In 2006 the University of Bologna has funded an interdisciplinary project of its
Departments of Chemistry and Computer Science – the CompReNDe Project
(Compositional and executable Representations of Nano Devices). The project
combines the expertises of two groups, one specialized in the design and construc-
tion of devices and machines of molecular size [3, 2] and the other one qualified in
formal models, based on the theory of process calculi, for describing and analyz-
ing molecular systems [7, 14]. Such expertises are joined in order to accomplish
two main endeavours: (i) deliver a programming model for describing molecular
machines that is also amenable to automated simulations and verifications by
means of existing algorithms and (ii) apply the model for a formal analysis of
complex molecular machines and possibly discover unknown behaviours to the
chemical-designers.

The CompReNDe research activity started with the initial goal of formaliz-
ing a [2]rotaxane [20] into the κ calculus [7] and validating the experiments in
vitro through simulations in silico by means of some contemporary stochastic
evaluator [10, 19, 5].

[2]rotaxanes [20] (simply rotaxanes in the following) are systems composed of
a molecular axle surrounded by a ring-type (macrocyclic) molecule. Bulky chem-
ical moieties (“stoppers”) are placed at the extremities of the axle to prevent
the disassembly of the system. In rotaxanes containing two different recognition
sites on the axle (“stations”), it is possible to switch the position of the macro-
cyclic ring between the two stations by an external energy input as illustrated
in Figure 1. Several rotaxanes of this kind, known as molecular shuttles, have
been already developed (see [6] and the references therein) and used for building
more complex systems [13, 12, 2].



Fig. 1. Schematic representation of a two-station rotaxane and its operation as a con-
trollable molecular shuttle.

The κ calculus is a formal language idealizing protein-protein interactions,
as a particular restricted kind of graph-rewriting. Bindings are explicit: proteins
are nodes with fixed numbers of sites, complexes are connected graphs built
over such nodes where bonds are represented by names. Biological reactions are
modeled by two kinds of rewriting rules: complexations, which create bonds, and
decomplexations, which destroy bonds. Notably, the κ calculus has been compiled
into a process calculus [16], thus making possible the simulations of molecular
biology formal descriptions on uniprocessors [17] and distributed systems [21].
The compilation introduced a finer-grained concurrent model, the mκ calculus,
where reactions have to be at most binary. The significant property of mκ calculus
is that it may be implemented without changing the granularity of the dynamics:
reactions exactly corresponds to process interactions. This invariance is crucial
when quantitative analyses of systems must be undertaken, as it is the case for
biological and chemical simulations, which are stochastic (process interactions
are marked with the stochastic measure of the corresponding reactions).

We therefore undertook the formalization of a molecular shuttle in mκ calculus
and we soon realized that such calculus was inadequate as well. The mκ calculus
is too much verbose because it compels designers to reason in terms of bonds
and complexations and decomplexations. There are reactions that are neither
complexations nor decomplexations, such as the ion exchanges. These reactions,
used in our molecular shuttle to stimulate the movement of the macrocyclic ring,
might be implemented by sequences of complexations and decomplexations, thus
changing the granularity of the chemical semantics. The mκ calculus model is
too much abstract because it overlooks quantitative aspects. Such aspects, in
particular reaction rates and the derived stochastic semantics are a must for
providing meaningful simulations and validations of molecular machines.

We overcome to these inadequacies of the mκ calculus by defining a new
model, the nanoκ calculus, having three types of reactions – creations, destruc-
tions, and updates – and retaining a stochastic semantics. This stochastic seman-
tics is problematic for the nanoκ calculus because it uses names for representing
molecular bonds. In this respect, our model is close to Milner’s pi calculus [16].
However, instead of following the techniques of the stochastic pi calculus [18],



we have preferred for nanoκ calculus to extend Cardelli’s language of stochastic
interacting processes [4]. In facts, in this way, we get a simple model that is
amenable to automated simulations and verifications by means of existing well
known algorithms [9].

We then apply the nanoκ calculus to describe and analyze the “Rotaxane
RaH” [15, 1], an instance of rotaxane for which the dynamic behaviour has been
experimentally characterized in detail [8]. We have considered two groups of
simulations. The first ones are used to validate the model checking whether the
experiments reproduced in silico coincides with those already performed in vitro.
The second ones simulate in silico the expected behaviour of the Rotaxane RaH
under conditions not yet observed in vitro. Interestingly, we show that under
extreme conditions of very low concentration of Rotaxane RaH, some of the
assumptions, usually taken about the behaviour of the rotaxane in standard
conditions of concentration, are no longer valid.

Structure of the paper. The next section introduces the nanoκ calculus syntax
and stochastic semantics. In Section 3 we relate the nanoκ calculus semantics
with Interactive Markov Chains and Continuous Time Markov Chains. In Sec-
tion 4 we present our case study “[2]Rotaxanes RaH”, its modelling into nanoκ
calculus, and discuss some results of our simulations.

2 The nanoκ calculus calculus: syntax and semantics

Two disjoint countable sets of names will be used: a set S of species, ranged over
by A, B, C, · · · ; and a totally ordered set B of bonds, ranged over by x, y, z, · · · .
Species are sorted according to the number of fields and sites they possess. Let
sf (·) and ss(·) be two functions returning naturals; the integers 1, 2, · · · , sf (A)
and 1, 2, · · · ss(A) are respectively the fields and the sites of A. (sf (A) = 0
means there is no field; ss(A) = 0 means there is no site). In the following, fields
are ranged over by h, i, j, · · · ; sites are ranged over by a, b, c, · · · .

Sites may be either bound to other sites or unbound, i.e. not connected to
other sites. The state of sites are defined by injective maps, called interfaces and
ranged over by σ, ρ, · · · . Given a species A, its interfaces are partial functions
from {1, · · · , ss(A)} to the set B. A site a is bound with bond x in σ if σ(a) = x;
it is unbound if a /∈ dom(σ). For instance, if A is a species with three sites,
(2 7→ x, 3 7→ y) is an interface of its. In order to simplify the reading, we
write this map as 2x + 3y. In the following, when we write σ + σ′ we assume
that the domains of σ and σ′ are disjoint. Interfaces, being injective on bonds,
cannot express that the endpoints of a bond belong to the same species (cf. self
complexation in [7]).

Fields represent the internal state of a species. The values of fields are defined
by maps, called evaluations, and ranged over by u, v, · · · . For instance, if A is a
species with three fields, [1 7→ 5, 2 7→ 0, 3 7→ 4] is an evaluation of its. As before,
we write this map as 15 + 20 + 34. We assume there are finitely many internal
states, that is every field h is mapped into values in {0, · · · , nh}. In the following,



we use partial evaluations and, when we write the union of evaluations u + v,
we implicitly assume that the domains of u and v are disjoint.

Definition 1 (Molecules and Solutions). A molecule A[u](σ) is a term
where u is a total map on the fields of A. Solutions, ranged over by S, T , · · · ,
are defined by the following grammar

S ::= A[u](σ) | S,S

The operator “,” is assumed to be associative, so (S,S′),S′′ is equal to S,(S′,S′′)
(and we always omit parentheses).

Solutions retain the property that bond names always occurs exactly twice.
Let ∅ be the empty map. We use the following shorthand notations: A(σ) instead
of A[∅](σ), A[u] instead of A[u](∅), and simply A instead of A[∅](∅).

Example 1. As a running example we consider two typical reversible chemical
reactions:

– Na + Cl ←→ Na+ + Cl− (sodium chloride) and
– H + H ←→ 2H (hydrogen gas) .

In the first reaction, an ion is exchanged between two instances of species Na
and Cl. The molecules of the two species can be in two possible states: either
they have the extra ion Na+ and miss an ion Cl− or they are in the states with
all the ions Na and Cl. We model these two possible states using one field ion
with values 0 and 1 respectively denoting the absence or the presence of the ion.
Formally we can use Na[ion0 ] and Na[ion1 ] for Na and Na+, and Cl[ion0 ] and
Cl[ion1 ] for Cl− and Cl, respectively.

The second chemical reaction represents the creation/destruction of a bond
between two hydrogen atoms. This may be described by using a site b and bond
names. For instance, the solution with 2H is modelled by H(bx ),H(bx ). An
unbound instance of hydrogen is simply represented by H, as its evaluation and
interface are both empty.)

Definition 2 (Reactions). Reactions of nanoκ calculus are either creations
C, or destructions D, or exchanges E. The format of the first two types is
((A, a, u, u′, σ), (B, b, v, v′, φ), λ); while the format of exchanges is ((A, u, u′, σ),
(B, v, v′, φ), λ), such that:

1. dom(u′) = dom(u) and u and u′ are partial evaluations of A, dom(v′) =
dom(v) and v and v′ are partial evaluations of B,

2. ran(σ) = ran(φ) and σ and φ are interfaces of A and B, respectively;
3. and λ ∈ R+ ∪ {∞}.

For readability’s sake, we write creations as A[u](a+σ),B[v](b+φ)
λ
_ A[u′](ax+

σ),B[v′](bx+φ), destructions as A[u](ax+σ),B[v](bx+φ)
λ
_ A[u′](a+σ),B[v′](b+

φ), and updates as A[u](σ),B[v](φ)
λ
_ A[u′](σ),B[v′](φ).



The difference between the three kinds of rules is concerned with the modification
of the interfaces: creations produce a new bond between the two unbound sites a
and b, destructions remove the bond between the sites a and b, while exchanges
leave the interfaces unchanged.1

Example 2. The nanoκ calculus reactions that corresponds to the two reactions
of the sodium chloride are

Na(h0 ),Cl(h1 )
100
_ Na(h1 ),Cl(h0 )

Na(h1 ),Cl(h0 )
10
_ Na(h0 ),Cl(h1 )

where we have considered a rate 100 for the left to right direction and 10 for the
right to left direction.

The nanoκ calculus reactions that corresponds to the two reactions of the
hydrogen gas are

H,H
5
_ H[bx ],H[bx ]

H[bx ],H[bx ]
0.05
_ H,H

where the right direction has been given rate 5 and the left direction has been
giver rate 0.05.

The formal definition of reactants and the corresponding products of reactions
follows. We use µ to range over ρL, ı, x and ρR, ı, x and ρL, ı and ρR, ı and ρ. Let
µ be the following operation:

µ
def
=


ρR, ı, x if µ = ρL, ı, x
ρL, ı, x if µ = ρR, ı, x
ρR, ı if µ = ρL, ı
ρL, ı if µ = ρR, ı
ρ if µ = ρ

We notice that µ = µ.

Definition 3 (The basic transition relation). The basic transition relation
of solutions, written

µ−→` ∪
µ−→`,`′ , is the least relation that satisfies the follow-

ing rules (ı are always injective renamings on bonds):

– if ρ = A[u](a + σ),B[v](b + φ)
λ
_ A[u′](ax + σ),B[v′](bx + φ) and z /∈

ran(σ ◦ ı + ν) then both A[u + w](σ ◦ ı + ν)
ρL,ı,z−→ 1 A[u′ + w](az + σ ◦ ı + ν)

and B[v + w](φ ◦ ı + ν)
ρR,ı,z−→ 1 B[v′ + w](bz + φ ◦ ı + ν);

– if ρ = A[u](ax + σ),B[v](bx + φ)
λ
_ A[u′](a + σ),B[v′](b + φ) then both

A[u+w](ax+σ◦ı+ν)
ρL,ı,x−→ 1 A[u′+w](σ◦ı+ν) and B[v+w](bx+φ◦ı+ν)

ρR,ı,x−→ 1

B[v′ + w](φ ◦ ı + ν);
1 In [K,BioK] the terms complexation and decomplexation are used instead of the terms

creation and destruction that are used in nanoκ calculus because they have a more
neutral chemical meaning.



– if ρ = A[u](σ),B[v](φ)
λ
_ A[u′](σ),B[v′](φ) then both A[u+w](σ◦ı+ν)

ρL,ı−→1

A[u′ + w](σ ◦ ı + ν) and B[v + w](φ ◦ ı + ν)
ρR,ı−→1 B[v′ + w](φ ◦ ı + ν);

– if S
µ−→` S′ and (name(S′)\name(S))∩name(T) = ∅ then both S,T

µ−→` S′,T

and T,S
µ−→`+`′ T,S′, where T has `′ molecules;

– if S
µ−→` S′ and T

µ−→`′ T′ then S,T
ρ−→`,`+`′ S′,T′, where ρ is the rule of

µ. If ρ is a creation, then the bond used by the reaction is the least one that
is greater than those in S,T.

The comments about the transition relation are in order:

1. whenever S
ρ,ı,x−→` T and ρ is a creation, the above definition also admits

S
ρ,ı,y−→` T{y/x}, where y is fresh. However this nondeterminsm is removed

when the reaction occurs because the bond has to be the least name not
occurring in S;

2. there is no rule lifting a transition
µ−→`,`′ to a context “,”: we use the

associativity of , to partition a solution S into S′,S′′ such that the reactants
are in S′ and S′′.

Example 3. We are in place for describing the (basic) dynamics of a solution.
We write kM for M, · · · ,M︸ ︷︷ ︸

k times

. Let ρ and ρ′ be the two sodium chloride reactions

and % and %′ be the two hydrogen gas reactions. Then both

2Na[ion0 ],Cl[ion1 ],3H
ρ−→1,3 Na[ion1 ],Na[ion0 ],Cl[ion1 ],3H

and

2Na[ion0 ],Cl[ion1 ],3H
ρ−→2,3 Na[ion0 ],Na[ion1 ],Cl[ion1 ],3H

are possible. As regards the hydrogen gas, we have transitions
%−→4,5,

%−→4,6,
and

%−→5,6. The reader is encouraged to write the complete transition system.

The basic transition relation is too much intensional. Consider a solution
containing hundreds of molecules of the species A and B that could react with
ρ. The relation

µ−→`,`′ distinguishes the two pairs of reactants, and this is not
possible in practice. A more sensible transition relation should represent col-
lectively all the possible combinations of one molecule of species A with one
molecule of species B. For instance, the solution A,A,B transits with

ρ−→1,3

and
ρ−→2,3, with rates are rate(ρ). Abstracting out the order of the molecules,

we obtain a unique transition whose rate is 2 ∗ rate(ρ). However quotienting
the solutions with commutativity axioms of “,” does not yield an adequate ex-
tensionality. In facts, when ρ is a destruction, between A and B, the solution
A(ax),A(ay),B(ax),B(ay) transits with

ρ−→1,3 and
ρ−→2,4 into two solutions

that cannot be equated by permutations of the molecules in the solution. In
these cases one has to use injective renamings of bonds.



Definition 4 (Structural equivalence). The structural equivalence between
solutions, noted ≡, is the least equivalence satisfying the following two rules (we
remind that solutions are already quotiented by associativity of “,”):

1. S,T ≡ T,S;
2. S,T if there exists an injective renaming ı on bonds such that S = ı(T).

Example 4. Commutativity of the structural equivalence, permits to prove the
following equivalence

Na[h0 ],Cl[h1 ] ≡ Cl[h1 ],Na[h0 ]

while injective renaming permits to prove that

H(bx ),H(bx ) ≡ H(by),H(by)

Combining both commutativity and injective renaming we can prove that

H(bx ),H(bx ),H(bz ),H(bz ) ≡ H(by),H(bk ),H(bk ),H(by)

Proposition 1. Let S ≡ S′.

1. If S
µ−→` T then there is T′ and a renaming ı such that S′

ı(µ)−→`′ T′ and
T′ ≡ S′;

2. if S
ρ−→`,`′ T then there is T′ such that S′

ρ−→`′′,`′′′ T′ and T′ ≡ S′.

The following notations are relevant for the definition of the collective tran-
sition relation:

– rate(ρ) returns the rate of the reaction ρ;
– next(S) = {(ρ`,`′ ,T) | S

ρ−→`,`′ T}; next∞(S) = {(ρ`,`′ ,T) | S
ρ−→`,`′

T and rate(ρ) =∞};
– S has finite rates if, for every (ρ`,`′ ,T) ∈ S, rate(ρ) is not ∞;
– let S be a set of pairs (X, T′) (the second element is a solution; the first

one is not specified), [S]T is the subset of S of those pairs (X, T′) such that
T′ ≡ T;

– can(S) is defined over sets of pairs (X, T) such that the solutions occurring
as second element of the pairs are all structurally equivalent. It returns a
solution S such that there is X with (X,S) ∈ S.

Definition 5 (The collective transition relation). The nanoκ calculus col-
lecive transition relation λ7−→, where λ ∈ R+∪{∞}, is the least relation satisfying
the following rules:

– if S
ρ−→`,`′ T and rate(ρ) =∞ then S

∞7−→ can([next∞(S)]T);
– if S

ρ−→`,`′ T and next(S) has finite rates then S
λ7−→ can([next(S)]T), where

λ =
∑

(ρ`,`′ ,T
′)∈[next(S)]T

rate(ρ)



We notice that, by definition, the nanoκ calculus collective transition system is
such that there is no state with outgoing ∞7−→ and λ7−→ (λ finite) transitions. In
the following, the states with ∞7−→ outgoing transitions are called transient states,
the other ones are called markovian states.

The interrelation between basic and collective transition relations is as fol-
lows: the collective one partitions the products of a solution (according to the
basic transition relation) into equivalence classes, takes a canonical representa-
tive of the class, and defines a transition whose label is the sum of the rates of
the reactions in the basic one that yield solutions in the equivalence class.

Example 5. As an example of collective transitions we consider the basic tran-
sitions of sodium chloride discussed in the Example 3. Since the products are
structural equivalent, we obtain a unique IMC transition:

2Na[ion0 ],Cl[ion1 ],3H
2007−→ Na[ion1 ],Na[ion0 ],Cl[ion1 ],3H

We also observe that there is a unique IMC transition 157−→ outgoing the initial
solution and corresponding to

%−→4,5,
%−→4,6, and

%−→5,6.

3 Stochastic semantics of nanoκ calculus

The collective transition relation of nanoκ calculus corresponds to an Interac-
tive Markov Chain (IMC) transition system with only silent interactive transi-
tions [11]. In particular, the ∞7−→-transitions are silent interactive transitions that
are executed in the IMC model instantaneously and under the maximal progress
assumption. That is, the so-called sojourn time in a transient state is 0, which
amounts to favour silent transitions to those labelled with finite rates (called
markovian transitions). On the contrary, in a markovian state with n outgo-
ing markovian transitions labelled λ1, · · · , λn, the probability that the sojourn
time is less than t is exponentially distributed with rate λ = λ1 + · · · + λn, i.e.
Prob{delay < t} = 1 − e−t

P
i λi , and the probability that the j-th transition is

taken is λj/(
∑

i λi).
However the models underlying traditional simulation algorithms such as [9]

are Continuos Time Markov transition systems (CTMC) that do not comprise
interactive transitions. Having a CTMC is therefore primary to run automatic
analysis tools for experimenting in silico the dynamics of nano-machines speci-
fications in nanoκ calculus.

The mismatch between IMC with only silent actions and CTMC systems
is due to two main reasons: (i) the nondeterminism and (ii) the persistency of
the silent transitions. As regards (i), consider two silent actions that apply to
the same reactants and give two different products. If these products have only
markovian transitions it is not possible to collect them in a unique solution. As
regards (ii), if an infinite sequence of silent transitions exists then the simulation
time of the CTMC system will not advance anymore. Therefore collapsing all



these transitions, by identifying the initial and final solutions of the sequence, is
again not possible.

However, there are cases where the downgrading of an IMC system to a
CTMC one is possible without modifying the semantics. This is when all silent
actions may be partitioned into confluent finite directed acyclic graphs. In fact,
when the silent transitions are partitioned into confluent directed acyclic graphs,
there are no loops (there is no infinite sequence of silent transitions), and all
sequences of silent transitions starting from the same state share the same final
state, to which the initial state may be safely collapsed. The meaning of this
collapse is that we are removing a finite amount of work which is performed in
zero time.

The formal definition of downgrading of IMC to CTMC systems follows. We
first introduce the auxiliary function next markovian state defined on solutions
and yielding sets:

– nextm(S) = {((λ, T′),T) | S λ7−→ T′
∞7−→

∗
T and λ ∈ R+ and T 6 ∞7−→}

We notice that nextm(S) is undefined when S is transient.

Definition 6 (Downgrading of an IMC system). An IMC system (S,
λ7−→)

is strictly-markovian if

1. states are either transient or markovian and
2. every subsystem consisting of silent transitions is a confluent and finite direct

acyclic graph.

Let (S,
λ7−→) be strictly-markovian; the transition relation νZ=⇒, where ν ∈ R+, is

the least one such that:

– if S is markovian then S
νZ=⇒ can([nextm(S)]T) with

ν =
∑

((λ,T′),T′′)∈[nextm(S)]T

λ

It is easy to verify that the relation νZ=⇒ defines a CTMC system. Moreover,
the properties below are direct consequences of the construction:

– the probability distribution of the sojourn time in a markovian state is the
same in the IMC and in the downgraded CTMC and

– the probability that one of the paths S
λ7−→ ∞7−→

∗
T′ with T′ ≡ T is taken

in the IMC corresponds to the probability the unique transition S
λ′

Z=⇒ T′′,
with T′′ ≡ T, is taken in the downgraded CTMC.

Actually the correspondence between strictly-markovian IMC and the associated
CTMC is much stronger: the IMC semantics, the markovian bisimulation [11],
is still a markovian bisimulation on the CTMC when restricted to its states. We
will detail the correspondence in the full paper.



Fig. 2. Schematic representation of the shuttling processes of the molecular ring.

4 nanoκ calculus at work: the rotaxane case study

The investigated Rotaxane RaH (Figure 2) is made of a dumbbell component
containing an ammonium (A) and an electron acceptor bipyridinium (B) units
that can establish hydrogen-bonding and charge-transfer interactions, respec-
tively, with the ring component, which is a crown ether with electron donor
properties. An anthracene moiety is used as a stopper because its absorption,
luminescence, and redox properties are useful to monitor the state of the sys-
tem. Since the hydrogen bonding interactions between the macrocyclic ring and
the ammonium center are much stronger than the charge-transfer interactions
of the ring with the bipyridinium unit, the rotaxane exists as only one of the
two possible translational isomers, denoted as RaH in Figure (Figure 2). Ad-
dition of a base (e.g., tributylamine) converts the ammonium center into an
amine function, giving the transient state Ra that is transformed into the stable
state Rb as a consequence of the displacement of the macrocycle onto the B
unit. The process can be reversed by addition of acid (e.g., trifluoroacetic acid)
and the initial state is restored, passing through the transient state denoted as
RbH. Nuclear magnetic resonance, absorption and luminescence spectroscopic
experiments, together with electrochemical measurements, indicate [1] that the
acid-base controlled switching, which is fully reversible and relatively fast, ex-
hibits a clear-cut on-off behaviour.

The Rotaxane RaH is particularly appropriate to test the modeling approach
described in the present paper because it is one of the very few cases wherein
not only the thermodynamic properties, but also the dynamic behavior of the
system has been experimentally characterized in detail. Specifically, the macrocy-
cle’s shuttling process between the ammonium/amine and bipyridinium stations
in this rotaxane, driven by the successive addition of base and acid, have been



investigated in solution [8]. The rate constants for the “forward” (Ra→Rb) and
“backward” (RbH→RaH) shuttling motions (horizontal processes in Figure 2)
of the molecular ring which occur, respectively, upon deprotonation and repro-
tonation of the ammonium/amine recognition site on the axle (vertical processes
in Figure 2), were found to be 0.72s−1 and 40s−1 at 293K, respectively.

4.1 Modeling the Rotaxane RaH in nanoκ calculus

Fig. 3. Initial state of the Rotaxane RaH in nanoκ calculus.

The nanoκ calculus molecules. Figure 3 reports the nanoκ calculus modeling
of the Rotaxane RaH. We use four nanoκ calculus species:

– Nh models the amonium/amine station of the rotaxane: it has one field h
and three sites ring, axle and linkRing ;

– Axle models the axle between the two stations: it has one field h and two
sites nh and bipy ;

– Bipy models the bipyridinium station: it has one field h and three sites ring,
axle and linkRing ;

– Ring models the crown ether ring: it has no field and four sites nh, bipy,
linkNh and linkBipy.

Bonds of much different chemical nature appears in RaH: covalent bonds,
hydrogen bonds and charge-transfer interactions. Yet we can simply model all
of them as nanoκ calculus bonds because here it is sufficient to know the speed
of the interactions while their nature is not important.

The pairs of sites axle of Nh and nh of Axle, and axle of Bipy and bipy of Axle
are always linked in our modeling. They model the covalent bonds maintaining
the structure of the rotaxane. The pairs of sites nh of Ring and ring of Nh, and
bipy of Ring and ring of Bipy, are also permanently linked. They model the fact
that the ring molecule cannot “escape” from the rotaxane. This implicitly models
the stoppers. Having two links, one to Nh and one to Bipy, permits reactions to
test the belonging of two molecules Nh (or Bipy) and Ring to the same rotaxane
(see reactions 7 and 8 below).



The pairs of sites linkRing of Nh and linkNh of Ring, and linkRing of
Bipy and linkBipy of Ring can also be linked. They model the position of
the ring: when the interaction between the ammonium station and the ring is
the strongest, the former bond exists and not the latter, and vice versa if the
strongest interaction is the one with the bipyridinium station.

Ammonium and amine functions have different chemical nature but can be
seen as protonated and deprotonated version of the same species. Thus we model
both by the same nanoκ calculus species Nh. Its field h is used to record the
presence or absence of a proton on Nh: its value is 1 if it is protonated, and 0
otherwise.

As the Ring’s movements are triggered by protonations and deprotonations
due to acid-base reactions, we also need to have acid and base molecules in our
modeling. We consider the species Acid and Base both with one field h having
value 1 in case the acid/base molecule holds the proton to be exchanged, 0
otherwise (for instance Acid[h1 ] and Base[h0 ] are respectively an acid molecule
ready to give a proton and a base molecule ready to receive a proton).

The initial state for Rotaxane RaH is thus modeled by the term:

Nh[h1](ringr1 + axles1 + linkRingx) ,
Axle[h1](nhs1 + bipys2) ,
Bipy[h1](ringr2 + axles2 + linkRing) ,
Ring(nhr1 + bipyr2 + linkNhx + linkBipy)

graphically depicted in Figure 3.
Note that the Nh is initially protonated (and this information is present also

in the Axle and the Bipy), the Axle is bound to the Nh and the Bipy, and the
Ring is bound to the Nh.

The nanoκ calculus reactions. We can now present the reactions used in
our modeling. Reactions 1, 2, 7 and 8 are presented with a double arrow; such
reactions are called reversible. Formally they correspond to two nanoκ calculus
reactions, one achieved reading the reaction from left to right considering the rate
over the arrow, and another one achieved reading it from right to left considering
the rate below. In this section we do not consider numerical values of rates, this
is detailed in part 4.2.

A base can get the proton of a protonated Nh, and a Nh can get a proton
from an acid. These acid-base reactions are reversible. Reactions 1 and 2 models
this phenomena. The systems corresponding to the left-hand side and right-
hand side coexist, even if one can be much predominant according to the ratio
nh base/base nh (and acid nh/nh acid).

Nh[h1 ], Base[h0 ]
nh base

_̂
base nh

Nh[h0 ], Base[h1 ] (1)

Nh[h0 ], Acid[h1 ]
acid nh

_̂
nh acid

Nh[h1 ], Acid[h0 ] (2)



The protonation state of the molecule Nh needs to be known by Bipy because
it affects its interaction with Ring. Reactions 3 and 4 achieve this by passing
information from Nh to Bipy through Axle. It is crucial that these reactions
are immediate, since in chemistry that are no such reactions, the information is
instantaneously known by the whole rotaxane.

if (α 6= β)

Nh[hα](axlex), Axle[hβ ](nhx)
∞
_ Nh[hα](axlex), Axle[hα](nhx) (3)

and:

Axle[hα](bipyx), Bipy[hβ ](axlex)
∞
_

Axle[hα](bipyx), Bipy[hα](axlex) (4)

We achieve the modeling of Ring movements in two steps. Firstly the bond
between Ring and the station to which he is currently linked is destroyed (re-
actions 5 and 6), and secondly the Ring move to the other station (reaction 7
and 8). This two-steps mechanism permits to model not only the movement of
the ring but also the transient state. Reactions 5 and 6 have infinite rates since
they represent immediate consequences of protonation or deprotonation of Nh.
Reactions 7 and 8 are reversible, because due to the Brownian motion the Ring
is susceptible to return to the previous station.

Nh[h0](linkRingx), Ring(linkNhx )
∞
_

Nh[h0](linkRing), Ring(linkNh) (5)

BiAx[h1](linkRingx), Ring(linkBiax x )
∞
_

BiAx[h1](linkRing), Ring(linkBiax ) (6)

Ring(bipyx + linkNh + linkBiax ), Bipy[h0](ringx + linkRing)
link bipy

_̂
unlink bipy

Ring(bipyx + linkNh + linkBiax z ), Bipy[h0](ringx + linkRingz) (7)

Ring(nhx + linkNh + linkBiax ), Nh[h1](ringx + linkRing)
link nh

_̂
unlink nh

Ring(nhx + linkNhz + linkBiax ), Nh[h1](ringx + linkRingz) (8)

4.2 Simulation results

It is not difficult to see that the modeling of Rotaxane RaH in nanoκ calculus
reported above satisfies the properties described in the Definition 6 (all sequences
of ∞ labelled transitions rooted at the same state are finite and convergent);
thus we can achieve, using the construction reported in the definition, a CTMC
semantics that we use to simulate in silico the behaviour of the Rotaxane RaH.



As previously discussed the rates for the ring movements are respectively
link bipy = 0.72 and link nh = 40. The rates for the reverse reactions are quanti-
fied two orders of magnitude smaller, i.e. unlink bipy = 0.0072 and unlink nh =
0.4.

(A) (B)

Fig. 4. Comparing the in vitro –black line– and the in silico –red line– experiments:
number of Rings linked to Bipys during the “forward” Ra→Rb (part A) and the “back-
ward” RbH→RaH (part B) shuttlings.

The aim of the first two simulations depicted in Figure 4 is to check whether
the experimentation in silico corresponds to the experimentation in in vitro [8].
The techniques used for the in vitro experimentation did not permit to observe
and quantify the deprotonation/reprotonation rates (this is not surprising as
these are very fast acid-base reactions). Thus, in the simulation we have con-
sidered instantaneous deprotonation/reprotonation, i.e. nh base = acid nh =∞
and base nh = nh acid = 0. In both simulations, we have considered 1000 rotax-
anes: in the first one we have simulated deprotonation and “forward” (Ra→Rb)
shuttling, in the second one reprotonation and “backward” (RbH→RaH) shut-
tling. In the first simulation the shuttling phase is completed in around 6 seconds,
while in the second one in 0.1 seconds; this is a consequence of the different rates
of the two directions of shuttling. Very remarkably, simulated data are in strike
agreement with the experimental results.

After these initial encouraging results, we have decided to use the in silico
simulation techniques to provide a comprehensive view of the overall reactions
depicted in Figure 2, simulating also the deprotonation/reprotonation phases not
observed in the in silico experimentation. More precisely, the aim of this second
group of simulations was to either validate or invalidate the assumption accord-
ing to which deprotonation/reprotonation can be considered “instantaneous”
with respect to the shuttling time. To this aim, we have simulated deproto-
nation/reprotonation under two different concentrations of acid/base molecules
and rotaxanes. In fact, this is a bimolecular reaction with rate is influenced by



the concentration of the reactants. For instance, at the concentration considered
in [8], i.e. 10−5M , a plausible rate for deprotonation/reprotonation is 2×105s−1

(with reverse reaction with rate 2× 10−2s−1) while at the concentration 10−8M
it is 2× 102s−1 (with reverse reaction with rate 2× 10−5s−1).

(A) (B)

Fig. 5. Comparing the number of deprotonated rotaxanes –black line– with the number
of Rings linked to Bipys –red line– during Ra→Rb shuttling at concentration 10−8M .

(A) (B)

Fig. 6. Comparing the number of deprotonated rotaxanes –black line– with the num-
ber of Rings linked to Bipys –red line– during RbH→RaH shuttling at concentration
10−8M .

We have repeated the two simulations: deprotonation with subsequent “for-
ward” shuttling and reprotonation with subsequent “backward” shuttling consid-
ering the two different concentrations. We had to reduce the number of rotaxanes
and acid/base molecules to 100 because the simulation required too much time



with 1000 molecules. The increment of the simulation time is due to the presence
of reverse deprotonation/reprotonation reactions that were considered absent in
the simulation reported Figure 4, i.e. these reactions had rate equal to 0.

The results at concentration 10−5M are not reported in the paper as they es-
sentially confirm the validity of the “instantaneous” deprotonation/reprotonation
assumption. We report only the results at concentration 10−8M . In Figure 5 part
(A) the curves of deprotonation and consequent “forward” shuttling are reported
for the whole duration of the simulation (8 seconds) while in part (B) we focus
on the the deprotonation phase that took only around 10−3 seconds. Figure 6,
reporting the simulation results for the reprotonation and consequent “forward”
shuttling, is definitely more interesting; it shows that the rings start moving be-
fore the reprotonation phase completes. This proves that in the Rotaxane RaH
the stimulus and the subsequent shuttling could interplay. This opens interesting
scenarios that requires further investigation; for instance, it could be the case
that using weak acid/base molecules (for which the ratio between the deproto-
nation/reprotonation rate and the reverse rate is smaller) the interplay between
the stimulus and the shuttling could give rise to currently unknown emerging
behaviours.
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