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Abstract

In this paper we study implementation of κ calculus into nanoκ calculus – called self-
assembling of κ in nk. The former is a model for molecular biology that rewrites
graphs of molecules in one step; the latter is a calculus similar to κ that only
admits binary interactions. We give a solution of the self-assembling of κ in nanoκ
that is divergent and we show the nonexistence of deterministic solutions retaining
“reasonable” properties.

1 Introduction

The κ calculus has been introduced in [1] for modelling molecular biology in
a formal way. It is a graph rewriting system where nodes represent molecules
and edges represent bonds. Nodes retain a finite information, typically about
the shape of the molecule or about connected molecules. The semantics allows
monotone rewritings of finite graphs whose nodes are in specific states into
finite graphs in such a way that changes to a solution are always localized
to the rewriting part. Monotonicity constraints rewritings to either create or
destruct molecules and bonds.

The κ calculus, being as much simple and close to biology as possible, admits
rewriting rules where several molecules may interact at a time. The ques-
tion that was raised already in [1] is whether κ calculus may be implemented
in a calculus with binary reactants only or not. This problem, called self-
assembling, had a positive answer in a variant of κ calculus – the mκ calculus
– with binary rewriting rules and multiedges. The idea was to use these mul-
tiedges as logs of the reactions. The check that reactants are connected, as
prescribed in the left-hand side of the reaction, reduced to verify that the
connected molecules all share the same log.

Some years later, a new formalism – the nanoκ calculus – similar to κ and mκ,
was introduced for modelling nano-technologies [2]. This calculus has binary
interactions (as mκ) but no multiedge is admitted (as in κ). Some expressivity
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is recovered by admitting a new binary rule – the exchange – that allows an
end of a bond to be passed from one molecule to another. This rule, which is
illustrated in the following picture
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has been motivated by process calculi, where it is customary to receive a chan-
nel name and communicating on such a channel in the continuation. However,
it was not clear whether nanoκ calculus was expressive enough for implement-
ing the κ calculus.

In this paper we demonstrate that the self-assembling of κ into nanoκ is pos-
sible and we define the protocol. The solution is similar to the one from κ to
mκ, except that the check verifying the proper connection of reactants is per-
formed by percolating a bond among them. To illustrate the point, consider
the structure (a) below, and assume that A wants to verify that the B and C
to which it is connected are connected between them.
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Molecules A and B create a bond (the one to be exchanged), as illustrated
in picture (b). Then the connection between A and C makes this bond to be
exchanged as in figure (c). This is a successful state because B and C are
connected by two bonds (and the success is eventually reported to A). It is
worth to notice that this algorithm fails if B and C are not connected, as
illustrated below:
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(there is only one bond connecting B and C).
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The self-assembling protocols proposed in [1,3] and in this paper avoid dead-
locks by admitting divergent computations. A relevant question is whether a
deterministic, not-divergent self-assembling encoding κ into a calculus with
binary reactants, such as mκ or nanoκ, does exist or not. In this paper we
show that, under “reasonable” constraints, such a protocol does not exist.
This case is close to the comparison of the expressive power of synchronous
and asynchronous π calculi done by Palamidessi [6]. As in that case, we re-
quire the self-assembling protocol to be uniform – homomorphic with respect
to parallel composition and preserving the connectedness of molecules – and
semantically reasonable – preserving termination and the complexes.

However, it turns out that these constraints are inadequate to exclude conver-
gent self-assembling protocols of κ because these protocols must also redefine
the reaction rules. That is, since every κ reaction is encoded by a set of low-
level ones, we need to regulate this set in order to avoid misbehaviours. For
example, a malicious protocol (which is uniform and semantically reasonable)
might grab more material then necessary for the reaction (in the worst case,
all the material in the solution) and release it after the reaction has been
performed, thus being inconsistent with the locality principle of the κ family.

In order to localize the effects of protocols we also add a constraint called
twinning : some reactions between those implementing a κ reaction L→ R have
a twin one in the protocol that undoes the effects on bonds. In particular, if
L→ R is a creation then every destruction in its protocol has a corresponding
creation restoring the bonds in the reactants. This means that if the protocol
of a creation unbinds a molecule then the released molecule may be rebound,
thus yielding either a previous solution – and the computation may diverge
– or a previous complex (with a different state). In this latter case, if the
complex is too big with respect to the complexes in R then the protocol is not
semantically reasonable.

The paper is structured as follows. In Section 2 we define the calculi of the κ
family (κ, mκ, and nanoκ calculus). In Section 3 we discuss the self-assembling
problem for κ, recall the protocol in mκ and define the protocol in nanoκ
calculus. The Section 4 discusses the problem of not-divergent self-assembling
protocols.

2 The κ family: syntax and semantics

Two disjoint countable sets of names will be used: a set of species, ranged
over by A, B, C, · · ·; and a totally ordered set of bonds, ranged over by x,
y, z, · · ·. Species are sorted according to the number of fields and sites they
possess. Let sf (·) and ss(·) be two functions returning naturals; the numbers
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1, 2, · · ·, sf (A) and 1, 2, · · · ss(A) are respectively the fields and the sites of
A. (sf (A) = 0 means there is no field; ss(A) = 0 means there is no site). In
the following, fields are ranged over by h, i, j, · · ·; sites are ranged over by a,
b, c, · · ·.

Sites may be either bound to other sites or unbound, i.e. not connected to
other sites. The state of sites are defined by maps, called interfaces and ranged
over by σ, ρ, · · ·. Given a species A, its interfaces are partial functions from
{1, · · · , ss(A)} to the set of bonds or a special empty value ε. A site a is bound
with bond x in σ if σ(a) = x; it is unbound if σ(a) = ε. For instance, if A
is a species with three sites, (2 7→ x, 3 7→ ε) is one of its interfaces. In order
to ease the reading, we write this map as 2x + 3 (the empty value is always
omitted). This interface σ does not define the state of the site 1, which may
be bound or not. In the following, when we write σ + σ′ we assume that the
domains of σ and σ′ are disjoint.

Fields represent the internal state of a species. The values of fields are defined
by maps, called evaluations, and ranged over by u, v, · · ·. For instance, if A
is a species with three fields, [1 7→ 5, 2 7→ 0, 3 7→ 4] is a possible evaluation.
As before, we write this map as 15 + 20 + 34. We assume there are finitely
many internal states, that is every field h is mapped into a finite set of values.
As for interfaces, we use partial evaluations and, when we write the union
of evaluations u + v, we implicitly assume that the domains of u and v are
disjoint.

Definition 1 A molecule A[u](σ) is a term where u and σ are respectively a
total evaluation of A and a total interface of A. Solutions, ranged over by S,
T, · · ·, are defined by the following grammar

S ::= A[u](σ) | S,S

The operator “,” is assumed to be associative, so (S,S′),S′′ is equal to S,(S′,S′′)
(and we always omit parentheses).

Solutions retain the property that bonds always occur at most twice. A solution
is proper if bonds occur exactly twice. Let bonds(S) be the bonds of S.

The calculi in the κ family retain the same terms and differ for the shape of
reactions. We define the reactions and the transition system of the κ calculus
and, later on, we discuss the reactions of the other calculi in the family. Few
preliminary definitions are in order:

• we write σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) 6= ε then
σ(i) = σ′(i) (the two interfaces may differ on sites mapped to the empty
value ε by σ: σ′ may map such sites to bonds);
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• a pre-solution is a sequence of terms A[u](σ) where u and σ are partial
functions and bonds occur at most twice;
• a pre-solution is proper if it retains the property that bonds occur exactly

twice.

The κ calculus retains an intelligible graphical notation [5]. For example the
solution A[112 + 224 + 332](1x),B [11 + 227](1x + 2) is represented by the picture
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The formal translation from solutions to graphs is given below.

Definition 2 Let graph(·) be a function from solutions to graphs where nodes
have sites and an internal state:

(1) graph(A[u](σ)) is the graph with a single node labeled A, sites in {1, · · · , ss(A)},
and a tuple of values. The site i is labeled with σ(i) (i.e. the bond, if any);
the j-th element of the tuple has value u(j) (i.e. the j-th field value);

(2) graph(S, S′) is the union graph of graph(S) and graph(S′) where sites la-
beled with the same name are connected by an edge, and their common
name is erased.

graph(S) is called the underlying graph of S.

Two molecules in a solution S are connected if there is a path of bonds in
graph(S) that connects the corresponding nodes.

The definitions of underlying graph and connectedness easily extend to pre-
solutions by taking the fields and the sites that are specified. Connectedness
allows us to define complexes: a complex is a bunch of connected molecules
where bonds occur exactly twice. We will extensively use the graphical no-
tation in the rest of the paper – indeed, it has been already used in the
Introduction – sometimes replacing fields with colors. In particular, we will
use graphs for describing reactions – see below.

Definition 3 Reactions of κ calculus are either creations C, or destructions
D. The format of creations is

A1 [u1](σ1), · · · ,An [un](σn)→ A1 [u′1](σ
′
1), · · · ,An [u′n](σ′n),

B1 [v1](φ1), · · · ,Bk [vk](φk)

where, for every i, dom(ui) = dom(u′i) and σi ≤ σ′i, reactants and products
are proper pre-solutions, the products are connected, and vi and φi are total.
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The format of destructions is

A1 [u1](σ1), · · · ,An [un](σn)→ Ai1 [u′i1 ](σ
′
i1

), · · · ,Aik [u′ik ](σ′ik)

where, i1, · · · , ik is an ordered sequence in [1..n], for every ij, dom(uij ) =
dom(u′ij ) and σij ≥ σ′ij , reactants and products are proper pre-solutions, the
reactants are connected, and, for every j 6∈ {i1, · · · , ik}, uj, σj are total.

Creations produce new bonds between two unbound sites and/or synthesize
new molecules (that must be connected to the molecules in the left-hand side).
Destructions behave in the other way around 1 . We assume that reactants and
products always have at least one term.

Example 3.1 We illustrate few κ calculus reactions that corresponds to bio-
chemical reactions. We only discuss creations.

(1) The hydrogen gas is the combination of two hydrogen atoms:

H [1],H [1] → H [1x],H [1x]

(2) The homeotrimerization is a combination of three monomers of the same
species:

A[1 + 2],A[1 + 2],A[1 + 2] → A[1x + 2y],A[1y + 2z],A[1z + 2x]

(3) As an example of synthesis, we consider Escherichia Coli that has to
synthesize galactosidase (Gal) and permease (Per) when the repressor is
absent (field rep of RNAp equal to 0):

RNAp[rep0](sGal + sPer)→ RNAp[rep1](sy
Gal + sz

Per),

Gal [loaded0](lac + sy),Per(lac + sz)

(With an abuse of notation, here and below, identifiers are used instead
of numbers for addressing fields and sites.)

The operational semantics of κ calculus is a reduction semantics, which re-
quires a couple of standard definitions.

• The structural equivalence between solutions, noted ≡, is the least equiva-
lence satisfying the following two rules (we remind that solutions are already
quotiented by associativity of “,”):

1. S,T ≡ T,S;

1 The terms creation and destruction have been preferred to complexation and
decomplexation used in [1,4] because they have a more neutral chemical meaning.
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2. S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T).

• Let S = A1 [u1](σ1), · · · ,An [un](σn) be a pre-solution. We say that T =
A1 [u1+u′1](σ1◦ı+σ′1), · · · ,An [un+u′n](σn◦ı+σ′n) is an (ı, u′1, σ

′
1, · · · , u′n, σ′n)-

instance of S if ı is an injective renaming on bonds and the maps ui + u′i
and σi ◦ ı+ σ′i are total with respect to the species Ai.

Using structural equivalence it is possible to identify solutions that should not
be kept distinct, such as H (bx),H (bx),H (bz),H (bz) ≡ H (by),H (bk),H (bk),H (by).
We also notice that an instance may not be necessarily a proper solution. For
example A[u0](1y + 2x) is an ([x 7→ y], [u 7→ 0], [2 7→ x])-instance of A(1x), but
it is not a proper solution (bonds occur once).

Definition 4 The reduction relation of the κ calculus, written −→, is the
least relation satisfying the rules:

(1) let P −→ P′,Q be a creation and S is an (ı, u′1, σ
′
1, · · · , u′n, σ′n)-instance of

P, S′ is an (ı, u′1, σ
′
1, · · · , u′n, σ′n)-instance of P′ and T is an (ı, ∅, ∅, · · · , ∅, ∅)-

instance of Q. Then S −→ S′,T;
(2) let P −→ Q be a destruction and S is an (ı, u′1, σ

′
1, · · · , u′n, σ′n)-instance of

P and T is an (ı, u′i1 , σ
′
i1
, · · · , u′ik , σ

′
ik

)-instance of Q. Then S −→ T;
(3) let S −→ S′ and (bonds(S′) \ bonds(S)) ∩ bonds(T) = ∅; then S,T −→

S′,T;
(4) let S ≡ S′, S′ −→ T′, and T′ ≡ T; then S −→ T.

The definition of reduction regards reactions as schemas. Namely, a reaction
such as Na[e0](1),Cl [e0]1 → Na[e1](1x),Cl [e−1](1x) only addresses the fields
and the the sites of the reactants that are useful for the reaction. For example,
it may be the case that Na retains a site to be used for other complexes (the
sodium peroxide, for example). In this case, the rule may be applied either to
Na[e0](1 + 2), where the site is unbound, or to Na[e0](1 + 2z). In this latter
case, the reaction is instantiated as the reduction:

Na[e0](1 + 2z),Cl [e0](1) −→ Na[e1](1x + 2z),Cl [e−1](1x) (1)

Items 3 and 4 of Definition 4 allow one to derive the reductions of bigger
solutions, such as

Na[e0](1 + 2z),Cl [e0](1),Na[e1](1x + 2z),Cl [e−1](1x) (2)

Reduction (1) may be used for deriving a reduction of the first two terms
of (2), however it cannot be lifted to the whole solution because the bond
created in (1) clashes with a bond already present in the solution. In this
case, one derives a reduction for the structural equivalent solution Na[e0](1 +
2z),Cl [e0](1),Na[e1](1y + 2z),Cl [e−1](1y) and then a reduction of (2) is got
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by applying the last rule of Definition 4. It is straightforward to verify that
the check of bond-clashes and the properness of reactants and products imply
that proper solutions always reduce to proper solutions.

A basic property of κ calculus (and the other calculi of the family) is locality :
if a sub-solution reduces then the reduction may be lifted to the whole solution
without any effect on the remaining part – a direct consequence of Definition 4.
In other words, the effects of a reduction are localized to the parts of molecules
specified in the reaction rules.

Two other calculi, similar to κ calculus, have also been studied: the mκ calculus
and the nanoκ calculus 2 .

Definition 5 The mκ calculus has species and solutions as the κ calculus but

(1) bonds may occur more than twice in a solution (multi-edges are admitted:
these are called group-names in [1]);

(2) reactants consist of at most two terms and, as well as products, may be
not proper.

The nanoκ calculus has species and solutions as the κ calculus but

(1) reactants consist of at most two terms;
(2) there is a third type of reactions, the exchanges E, whose format is

A[u](ρ),B [v](ψ) −→ A[u′](ρ′),B [v′](ψ′)

with either ρ = ρ′ and ψ = ψ′ or ρ = ax + cy + ρ′′, ρ′ = a + cy + ρ′′ and
ψ = b+ dy + ψ′′, ψ′ = bx + dy + ψ′′.

Reactions of mκ and nanoκ retain a process-calculus flavour since they amount
to interactions between at most two terms. However, in order to recover (at
least, to some extent) the expressivity of κ, reactions are extended with two
different features:

• in mκ one may write A[10](1x),B [10](2x) −→ A[11](1x),B [11](2x),C [01 +
11](1x + 2 + 3) meaning that C is created and complexed both with A and
with B: the multi-edge x represents the skeleton of the complex;
• in nanoκ one may write A[10](1x+2y),B [10](1y+2) −→ A[11](1+2y),B [11](1y+

2x) meaning that the edge x migrates from A to B: the other end of the
edge remains untouched. We notice that exchanges never modify the con-
nectedness of a solution.

2 The following definitions of mκ calculus and nanoκ calculus are a bit different from
those in [1,2]. In particular we admit creations of several terms at once, while this
was not admitted in [1] and was not considered in [2]. However, these differences
are not meaningful in the rest of the paper.
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3 The self-assembling problem

The κ calculus allows for several many molecules to react in a reaction. The
self-assembling problem questions whether it is possible to obtain the same
behaviour with “elementary” reactions involving at most two molecules. This
problem got a positive answer when the elementary reactions were those of
mκ [1,3]. κ-reactions were decomposed in sequences of mκ reactions by using
the following protocol:

(1) Recruitment step: every κ reaction has a unique spanning tree covering
its reactants; in this step all the reactants are recruited (by using ad-hoc
sites in the encoded molecules). At the end of the step, all the molecules
in the spanning tree share a common multi-edge.

(2) Later contacts step: the spanning tree is inadequate when the left-hand
sides of κ reactions are not trees, such as A(1x+2y),B(1x+2z),C (1y+2z).
In this case, letting A be the root of the spanning tree, the protocol has
to verify that B and C are connected by means of the two sites 2 and
share the same multi-edge.

(3) Phase shift step: when the left-hand side of the reaction has been com-
pletely checked, the (κ) reaction may occur and the product is generated.
The κ reaction is implemented as a sequence of mκ reactions.

It is clear that every mκ reaction of steps (1) and (2) may fail; for this reason
such reactions are reversible and the protocol has been proved to be correct
with respect to weak coupled simulation in [1] and weak bisimulation in [3]
(which are both unsensible to divergence).

The protocol used for self-assembling κ in mκ may be adapted to nanoκ. In
particular, the steps are the same as those described in [1,3], except for the
later contacts, where the spanning tree must be checked for the presence of
additional bonds between the molecules therein. This case is illustrated in the
following picture – called the triangular trade –, where A is a common parent
of B and C in the spanning tree (one may take A as the unique parent at
highest depth) and the bond between B and C must be verified (they have
already been recruited and the protocol may fail because of the absence of
such a bond).
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Without loss of generality, we illustrate the protocol for a κ reaction rewriting
a triangular trade:
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(the arrow is indexed by κ in order to avoid ambiguities). To ease the under-
standing, the description is pictorial. In this reaction, fields have been omitted
for simplicity. Molecules are encoded into lower-level ones having an additional
site (for a bond to be exchanged) and an additional field that, in the following
protocol, will store the color. Colors are used to mark the step of the protocol
in the molecules. The recruitment step is the following sequence of reversible
nanoκ reactions, where the spanning tree is assumed to be the right-hand side
of the κ reaction. At the end of the step, every molecule is gray.
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The later contacts step checks that B and C are actually bound each other
(this may be not the case, in general, because B may be bound to a C different
from the recruited one).

!

A

12 24 32

B

1 27

C
7 11 5

recrute the first
and connect with a

group edge

nano!

B C

A

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

nano!

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

nano!

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

nano!

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

B C

A

A’ A”

B C

A

A’ A”

nano!

10



In order to verify that B and C are bound as required, a new edge is created
by the root A and it is percolated among the nodes by means of exchange
reactions till reaching the configuration depicted in the rightmost complex
of the first line. Up-to now, every nanoκ reaction is reversible because the
protocol may fail. On the contrary, once the double connection between B
and C is verified – leftmost reaction in the second line –, the protocol cannot
fail anymore and the reactions are unidirectional. The success is reported to
the root A of the spanning tree by coloring the molecules in yellow. (Actually,
every reaction has to be reversible when there are several triangular trades
in the reactants of κ.) At this stage the phase shift step may begin and the
effects of the κ reaction may be implemented. This is described by the following
reactions.
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Following the same pattern of [1,3], it is possible to demonstrate the correct-
ness of the self-assembling protocol in nanoκ calculus. The formal proof is
omitted.

4 Divergence and determinism

The self-assembling protocols proposed in [1,3] and in the previous section
are divergent: the protocols backtrack in case of failures that may happen
in the recruitment or the later contacts steps. The combination of forward
and backward computations produce (infinite) loops. The questionable issue
is whether a deterministic, not-divergent protocol encoding κ into a calculus
with binary interactions does exist or not.

We remark that, the self-assembling protocol [[·]] must encode both a solution
– the initial one – and a set of κ reactions. Following Palamidessi [6], let [[·]]
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be uniform if

• it is homomorphic with respect to “,”, namely [[S,T]] = [[S]],[[T]];
• it is renaming preserving, namely for every injective renaming ı on bonds

of S there exists an injective renaming  such that [[ı(S)]] = ([[S]]).

and be semantically reasonable if

• it preserves the relevant observables and the termination properties.

Uniformity guarantees that the degree of distribution of the solution is main-
tained by the encoding, i.e. no coordinator is added, and that the encoding
does not depend on bonds. It is worth to notice that, in our case, [[·]] might
introduce new fields and new sites in the nanoκ molecules (called low-level
fields and sites in the following). In addition, [[·]] must redefine κ reactions in
order to fit with the new schemas of nanoκ. We therefore extend Palamidessi’s
notion of uniformity of [[·]] with the following requirements:

– for every κ reaction L → R, [[L → R]] = {L1 → R1, · · · , Lm → Rm}, where
Li → Ri are nanoκ reactions;

– (this is for simplicity) [[A[u](σ)]] = A[[[u]] + v]([[σ]] + ρ), that is [[·]] preserves
the granularity but may augment fields and sites. ([[u]] and [[σ]] may also
have larger domains than u and σ, respectively.)

As regards the semantics reasonableness, in our setting the “relevant observ-
ables” are the complexes. The following equivalence equates two solutions if
they possess the same complexes.

Definition 6 S and T are equivalent, in notation S ≈ T, if there exists a bi-
jection f from nodes of graph(S) to nodes of graph(T) that preserves the species
and such that A[u](σ) and B [v](ρ) are connected if and only if f(A[u](σ)) and
f(B [v](ρ)) are connected.

Notwithstanding the above revisions of Palamidessi’s requirements, they turn
out to be insufficient to exclude odd self-assembling protocols. In fact, our
case is different than the one discussed in [6] where the dynamics of the cal-
culi were fixed (those of pi calculus). In particular, the self-assembling protocol
might completely redefine the dynamics of the encoded solution by tailoring
the low-level reactions to the particular problem one wants to solve. For ex-
ample, one might encode a κ-reaction by grabbing the reactants into one big
molecule – that is, changing the degree of distribution – and then yielding
the products – that is, re-establishing the degree of distribution. However,
these encodings cannot be considered reasonable as much as maps that do not
match Palamidessi’s requirement of homomorphism.

Definition 7 Let [[·]] be an homomorphic encoding of (pre-)solutions and re-
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actions in κ into (pre-)solutions and reactions in nanoκ. The encoding [[·]] is
twinned if, for every L→ R

– if it is a creation and [[L → R]] contains a nanoκ destruction L′ → R′ then
it also contains a twin creation R′ → L′′ such that L′ and L′′ only differ for
the values of fields;

– if it is a destruction and [[L → R]] contains a nanoκ creation L′ → R′ then
it also contains a twin destruction R′ → L′′ such that L′ and L′′ only differ
for the values of fields.

Twinning guarantees that the self-assembling may undo some previous oper-
ation. The circularity may be avoided by yielding pre-solutions with different
fields. Twinning also allows to localize the effects of protocols. Let us discuss
the case of a κ creation L→ R. Then every destruction in [[L→ R]] has a cor-
responding creation restoring the bonds in the reactants. This means that if
a destruction unbinds a molecule then the released molecule may be rebound,
thus yielding either the previous complex with a same state – and the com-
putation may diverge – or a previous complex with a different state. In this
latter case, if the complex is too big with respect to those in R, then, there is
a computation that either diverges or retains the complex (or a larger one).
This because twinning will restore the complex if it is broken at some point.
Therefore, in any case, the protocol is not semantically reasonable.

Definition 8 Let A be a species with no field and two sites 1 and 2. An
homeotrimerization is a κ-reaction:

A(1x + 2),A(1 + 2x),A(1y + 2),A(1 + 2y),A(1z + 2),A(1 + 2z)

−→ A(1x + 2u),A(1v + 2x),A(1y + 2w),A(1u + 2y),A(1z + 2v),A(1w + 2z)

that may be rendered as:
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Theorem 8.1 There exists no self-assembling protocol that is uniform, se-
mantically reasonable and twinned for the homeotrimerization.

Proof : Let S be a solution consisting of 2m ∗ 3 sticks A(1x + 2),A(1 + 2x)
(we assume m > 0). This κ solution yields a stable solution T containing 2m

homeotrimeric complexes. By contradiction, let [[·]] be a self-assembling proto-
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col that satisfies the requirements of the theorem. We show that it is possible
to construct an infinite derivation, thus yielding a contradiction because the S
always terminates. We notice that the homeotrimerization is a creation; there-
fore in this case positive-direction set consists of creations and exchanges, while
the negative-direction set consists of destructions and exchanges.

We analyze the protocol:

1. Initially every [[A(σ)]] may arrange itself in order to participate to the
homeotrimerization. Let us call ready stick such arranged sticks.

2. Then two ready sticks must be bound, thus making an homeodimeric
complex.

Failure 1: Since the initial solution S consists of an even number of sticks,
it is possible to obtain a solution with 2m−1 ∗ 3 homeodimeric complexes.

3. In order to avoid a deadlock, the protocol must admit bonds between two
homeodimerics and then discharge one stick.

Failure 2: The step 3 is not possible because the reaction discharging
one stick is a destruction. By the twinning, the protocol must also admit
a creation reconnecting the two sticks. Therefore, either one obtains the
previous complex, thus yielding a divergent computation, or one obtain
a complex that does not admits the destruction. In this last case, if no
destruction is possible then the final solution is not equivalent to [[T]],
otherwise we are again in case 3.

4. It remains the possibility for an homeodimeric to break the bond created
in 2, thus releasing two sticks and breaking the symmetries (changing
the fields). That is, while rolling back to 1, it is possible to mark the
two sticks in “winner” and “loser”, respectively. It is possible to obtain
a solution where half sticks are marked as “winners” and half sticks are
marked as “losers”. Reactions of losers are frozen (otherwise no symmetry
is broken). Then it is possible to build homeodimeric of winners and use
losers to build homeotrimerics.

Failure 3: It is possible to obtain a solution where a quarter of initial
sticks is frozen (because they are losers). Therefore the protocol, in order
to be semantically reasonable, must admit interactions between losers
that yield homeodimerics. But this is not possible because they might be
also performed before (losers do not know what happens in the context
– the locality principle of the κ family), when homeodimerics of winners
are built (and obtaining again a solution like 2). 2

Our result has rather negative consequences. One for all is the impossibility of
implementing a stochastic version of κ in nanoκ (or pi calculus) by preserving
the distribution of rates (see [2]). This means that stochastic simulations must
be done directly in κ [7].
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