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Computations, Ö. Babaoğlu, E. Fromentin, M. Raynal, January 1995 (Revised February 1995).
95-4 Effective Applicative Structures, A. Asperti, A. Ciabattoni, January 1995.
95-5 An Open Framework for Cooperative Problem Solving, M. Gaspari, E. Motta, A. Stutt, February 1995.
95-6 Considering New Guidelines in Group Interface Design: a Group-Friendly Interface for the CHAOS System,

D. Bottura, C. Maioli, S. Mangiaracina, February 1995.
95-7 Modelling Interaction in Agent Systems, A. Dalmonte, M. Gaspari, February 1995.
95-8 Building Hypermedia for Learning: a Framework Based on the Design of User Interface, S. Mangiaracina, C.

Maioli, February 1995.
95-9 The Bologna Optimal Higher-Order Machine, A. Asperti, C. Giovannetti, A. Naletto, March 1995.

95-10 Synchronization Support and Group-Membership Services for Reliable Distributed Multimedia Applications,
F. Panzieri, M. Roccetti, March 1995 (Revised July 1995).

95-11 The Inherent Cost of Strong-Partial View-Synchronous Communication, Ö. Babaoğlu, R. Davoli, L.-A.
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Abstract

The may and must-semantics are studied for the join-calculus. We provide a complete characterization of
may-testing through a restricted set of contexts. The same characterization, up-to the basic observations,
is also proved to be complete with respect to the must-testing semantics.
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1 Introduction

1 Introduction
The join-calculus has been recently introduced for describing communicating processes [6]. As
in the asynchronous � -calculus [2, 9] messages have no continuation and the scoping discipline
is static. However, the join-calculus departs from the asynchronous � -calculus for two features:
the presence of elaborate synchronization schemas and the possibility to create computational
rules dynamically. Dynamic creation may happen when a pattern of messages matches with a
synchronization schema. This triggers a new process which may add new computational rules.
These new rules do not concern already defined names (static binding).

The main motivation pervading the definition of join-calculus is pragmatical: the distributed
implementation of the � -calculus [11]. We refer to [6] for a detailed discussion of this issue. Apart
from that, Fournet and Gonthier have also pursued on a semantic investigation with the worthy
purpose of carrying over the join-calculus the metatheory of the � -calculus. To this aim they
have considered weak barbed congruence and, up-to this equivalence, they have proved that
join-calculus and � -calculus have the same expressive power.

However the semantic theory of the join-calculus deserves a more detailed analysis because
the results of [6] cannot reveal properties which are peculiar of the calculus. In this paper we
undertake this analysis by considering the testing approach and exploring the corresponding
theory in the join-calculus.

Testing semantics [4, 7] is the adaptation of Morris’ semantics in the
�

-calculus to generic
languages. The paradigm is the following:

1. define a notion of “observable” for terms of the language. Usually it is the outcome of a
computation or a test whether a computation terminates or not;

2. take the coarsest congruence which is closed under the above notion of observable.
In deterministic calculi (such as call-by-name, lazy or call-by-value

�
-calculus) every term has

always a unique observable outcome. This is false in nondeterministic calculi. Take for instance
the convergence of a computation as observable. Then, given a term � , we have the following
outcomes: (a) every computation starting at � converges, (b) there are convergent and divergent
computations starting at � , (c) every computation pointed at � diverges. Testing equivalence is
the congruence yielded by these three observations. It turns out that this equivalence is indeed
the intersection of two coarser semantics: may and must-testing semantics. May-semantics is the
congruence which is unsensitive to observations (a) and (b). Must semantics is unsensitive to
outcomes (b) and (c).

Checking testing equivalence between processes is usually difficult because one has to verify
the coincidence of observables over all possible contexts. The expedient to overcome this problem
consists in determining a set of canonical tests which is suitable to establish testing equality.
The characterization of these tests in the join-calculus is the main contribution of this paper. In
particular we prove that the same tests suit both for may and must-testing (and therefore for
testing equivalence). This seems odd, if compared to the corresponding property owned by
Milner’s CCS, for instance [7]. Therefore some insights on our results may be useful.

Let � be a join-calculus process. Each test ����� allows to check the immediate emissions only,
that is the messages emitted by ��� �	� after a sequence of internal moves. In order to check for
successive emissions we have to plug ���
��� into other contexts which define free variables of
���
��� , and so on. It follows that may-tests are sequences of nested definitions. The crucial point
is to realize that may-tests can be rid of computational rules replacing patterns of messages with
complex processes. Better, the relevant tests for may-testing have the shape:

������
1 ��� 1 ��������� �������� ��� � ��� ���! �#"

where
��$

, � $ , � are multisets of emissions %'&)( 1 * ����� * (,+.- . After that, the striking observation is
that the same tests allows to check for the alternative presence of a set of emissions. To this
purpose it suffices to define separately each variable which is emitted. These latter tests allow
in some sense to encode the must-tests of [7], thus justifying our contribution. Finally, thanks
to the elaborate synchronization schema of the join-calculus, it is also possible to test for the
simultaneous presence of a multiset of emissions. In other words, the testing approach in the
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2 The join-calculus

join-calculus gives a multiset testing semantics.
The structure of the paper is as follows. In Section 2 we present the join-calculus, namely its

syntax, the structural equivalence and the reduction relation. Our contribution starts at Section 3
with the definition of may-testing semantics and few simple properties about it. Section 4 is
devoted to the proof of the Context Lemma for the may-semantics. Evidence is given to the
importance of this result for checking semantic relations. The must-semantics is defined in
Section 5. In the same section it is also proved the Context Lemma for must-testing. The
Conclusion contains few remarks on related works and some issues for future research.

2 The join-calculus
Let

�
be a countable set of variables �.% *�� *�� * ( *�� * ����� � , each of them comes with an arity. Let �� be

a tuple of variables in
�

. We shall write % &��� - provided that the length of the tuple � � is equal to
the arity of % . This amounts to use a recursive sort discipline and to consider only well-sorted
processes. A process � , a definition 	 and a join pattern

�
are inductively defined by the following

syntax:
� :: 
 %'&��� -� �.�� 	 ��� �  �� �	 :: 
 � � �  �	� � � 	�

:: 
 %'&��� -� �  �
In an elementary definition

� � � , where
� 
 % 1 &��� 1 -' �����  �%���&��� ��- , we shall always assume that

variables in �� $ are pairwise distinct; similarly the sets ���� $ � * ������ � and �.% 1 * ����� * %�� � are mutually
disjoint, with ���
�� . The set ���� 1 * ����� * �� � � is called the set of received variables of

�
(notation ��� � �"! );��% 1 * ����� * %#� � is the set of defined variables of

�
(notation

� � � �$! ), which lifts to definitions as follows:
� � � � 1 � � 1  � � �����  � � � � � �"� ! 
 %

1 & $ & �
� � � � $ !

Finally, the set of free variables of a definition 	 (resp. process � ), written
� �'�(	 !

(resp.
� �'� � ! ), is

defined inductively as follows:� � � � � � ! 
 � � � �$!�) � � ��� � !+* ��� � �$!,!� � �(	- � � 	/. ! 
 � �'�(	 !0)�� � �(	/. !
� � � %'&��� - ! 
 ��% * � � �� ��� �.�� 	 ��� � ! 
 � � � � � !#)�� � �(	 !,!�*�� � �1	 !
� � � �� 32 ! 
 � �'� � !+)�� � �12 !

The process %'&��� - is called atom. The following ones are syntactical definitions:

Definition 2.1 A process is simple if it is the parallel composition of atoms. A definition is simple when
it has the shape

� � � , where � is a simple process.

Simple definitions will play an important role in the theory we are going to develop.

2.1 The structural equivalence
The structural equivalence 4 is the least congruence over processes, definitions and patterns satis-
fying the following axioms:5 let � be 6 -equivalent to 2 , then �7
82 ;5 �� 328
72  � , � �  ,2 !  ,9:
 �� ;�12  39 ! ;5 if

� �<�(	 !0= � � � � ! 
?> then �  �.�� 	 ��� 28
 �� � 	 ��� � �  32 ! ;5 if
� � �1	 !�=�� �'�(	/. ! 
7> then

�.�� 	 ��� �.�� 	/. ��� �7
 �.�� 	/. ��� ���� 	 ��� � ;5 	� � � 	/.#
7	/.+ � � 	 , 	- � � �(	/.� � � 	/.@. ! 
A�(	- � � 	/. !  � � 	/.@. , 	� � � 	-
7	 ;5 �  � .�
 � .  � .
It is immediate by induction on the definition of 4 (including the rules of reflexivity, symmetry,
transitivity and congruence) that �7472 entails

� �'� � ! 
 � �'�(2 ! and that �84 �� � 	 1 ��������� �.�� 	 � ��� � ,
for some 	 1 * ����� 	 � * � .
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2 The join-calculus

2.2 The reduction relation
The reduction relation is the set of � -transitions of a labelled transition system

���� , where
�

ranges
over � � � � � ) � � � . The transition relation is the smallest relation such that for every

� � � ,

���	��
���� � � �
is a renaming of ���'� �"!

and for every transition � ��� � . ,
�  32 ���� � .  32�� � 	 ��� �

���� ���� 	 ��� � . if
� ���1	 !�= � � � �'! 
���� � 	 ��� � ���� ���� 	 ��� � . if 	�
 �

or 	�
 �  � � 	/.
2 ���� 2 . if �7482 and 2 .#4 � .

We give some examples of processes together with a description of their meaning.

(the forwarder) The process �.�� %'&)( - � � & (,- ��� �
behaves as � except that every emission over % is captured by the definition % & (,- � � & (,- and
transformed into an emission on � . More precisely the above process is equivalent, up-to an
internal move, to the process ��������� � , where � ����� � � is the substitution operator.

(the chaos) The process �
def
 �.�� %'& - � %'& - ��� %'& -

is the most undefined process (in our semantics). It performs an infinite sequence of internal
moves and it is reminiscent of the term � � % " % % ! � � % " % % ! in the

�
-calculus.

(the internal and external nondeterminism) The process

�.�� %'& - � �8 � � % & - � 2 ��� %'& -
encodes internal nondeterminism. It may become � or 2 by means of an internal move. This
choice is by no means affected by the environment. The process

�.�� ( & -  ���& - � �7 � � � & -' ���& - � 2 ��� %'&)( *�� -  ���& -
encodes external nondeterminism. It may become � or 2 according to the environment emits
an atom ( & - or � & - . In virtue of the static scoping discipline, this is possible provided that a rule
involving the atom % & ( *�� - is fired. Indeed, it is the participation of %'&)( * � - into a rule which allows
to extrude the variables ( and � out of the enclosing definition ( & -  ���& - � �8 � � � & -  ���& - � 2 . The
atom ��& - guarantees that at most one of the processes � and 2 is triggered.

The transition system of the join-calculus, restricted to � -moves, is finite branching.

Proposition 2.2 (Finite branching property) For every � , � �
�/. �  � �� � . and � .<4 �
� . � � is finite.

Proof: By definition every process may emit a finite number of atoms. Moreover emissions may
be enclosed by a finite number of definitions. Now observe that a finite number of emissions may
trigger definitions in a finite number of different ways. Henceforth the finiteness of successors of
processes.

UBLCS-96-4 4



3 The may-testing semantics

3 The may-testing semantics
The only way for a process to communicate with the environment is eventually to emit a message
on one of its free variables. The emission of a message is formalized by the following predicate���

. We first define the immediate emission on a particular variable % , in notation ��� % , as the least
predicate satisfying:

1. %'&��� -��	% ;
2. ��� % implies � �  ,2 ! � % ;
3. ��� % and % �� � � �1	 !

imply � ���� 	 ��� � ! � % .

Remark 3.1 1. ��� % implies % � fv � � ! ;
2. an immediate emission cannot be destroyed by reductions, namely if ���	% and � �� � 2 then 2�� % .

Definition 3.2 The may-emission relation is defined by:

� � � % def
 �<2 " � ���
	 2 and 2��	% "
We shall write � �� � % when � � � % is false. When � � � % we say � may-emits on % , and we shall
often omit the prefix “may”.

Remark 3.3 It is important to note that in the join-calculus we are forced to observe outputs only. This
because inputs are hidden in the definitions. In other calculi, the choice of observations is questionable [1,
2, 9].

Proposition 3.4 � ��� % and ��482 imply 2 ��� % .

This is an immediate consequence of definitions of may-emission and structural equivalence.
The semantics we are going to define is the may-testing preorder. Firstly let us introduce the

join-calculus contexts as the set of processes with exactly one hole ��� in the place where a process
may appear. Contexts are ranged over by ����� .
Definition 3.5 The may-testing preorder is the relation � � over processes defined by

��� � 2 def
 ,����� " ,% " ���
��� � � %�� ��� 2	� � � %
Two processes � and 2 are may-testing equivalent, in notation ��� � 2 , if ��� � 2 and 2�� � � .

Both the may-testing preorder and the may-testing equivalence are pre-congruences, by defi-
nition. By Proposition 3.4 we have the following:

Corollary 3.6 �7482 implies ��� � 2 .

A few examples should clarify the discriminating power of the may-testing preorder. For
every process � :5

�
� � � (recall that

�
def
 �� � %'& - � %'& - ��� %'& - ). This because, for every context ��� � ,

if ���
�
� ��� � then there must be a derivation � of ���

�
� which never uses the definition

%'& - � % & - . Observe that � is also a derivation of ��� �	� ;5 ��� � ���� %'& - � % & -  � � %'& - � � ��� %'& - (we assume % �� � � � � ! ). This because, at each
moment, the process

�.�� %'& - � %'& -/ � � %'& - � � ��� %'& - may behave as � or perform an
internal move and may-testing is unsensitive to internal moves;

UBLCS-96-4 5



4 The context lemma for the may-testing

5 ��� � � � � � � ���� %'& �( - � � & �( - ��� � . Because every emission on % by � is replaced by an
emission on � in ��� � � � � . This replacement is explicitly defined in

�� � % &1�(,- � � & �(,- ��� � at the
cost of an internal move.

In standard process algebras (CCS, CSP, � -calculus, etc.) may-testing coincides with trace
semantics [7]. In join-calculus this coincidence fails because the synchronization schemas allow
to test for the presence of multisets of messages (see Remark 3.7 below). So we get some sort of
multiset trace semantics. However this is still not so evident because definitions combine in a
single place the operation of restriction, reception and replication of � -calculus (the reader may
get some evidence by looking at the encoding of the core join-calculus into the � -calculus in [6]).
For instance

� & - � � �� � % & - � � & -  � � %'& - � � & - ��� %'& -
but the vice versa is false because the process in the right may also emit on � . Now take the process

�7
 �.�� %'&)( - � � & (,- ��� � & %!- "
The environment recognizes immediately that � emits on � . However it is also possible to test
that � emits on � after the emission on � . To this aim take the context

������
 ���� � & � - � � & � - ��� ���
and observe that ��� � distinguishes between � and � & % - , for instance.

It is also possible to count the number of times a definition is used (this is an expedient we
will exploit in the proofs). For example in order to count how many times the definition

� � 2
is used in

�� �	� � 2 ��� 2 . , consider the process
����	� � 2  � & - ��� 2 . where

�
is a fresh variable.

When the process reaches a stable state (no transition is possible) the foregoing number is given
by the amount of emissions on

�
.

Remark 3.7 Alternative definitions of may-testing, still equivalent to the foregoing one, may be provided
by taking one of the following basic observations:

1. � may-converges if and only if there exists % such that � � � % ;
2. � may-converges to �  % 1 * ����� * % �  � ( �   � is the multiset constructor) if there exist � . such that
� �� 	 � . and � . emits on the multiset �  % 1 * ����� * % �  � . This last predicate can be formalized
generalizing the definition of immediate emission.

4 The context lemma for the may-testing
Due to the universal quantification over contexts, it is difficult to prove or disprove � � � 2 . We
now prove a property, called the context lemma, which establishes that, in order to test a process,
it is enough to plug it into a restricted set of contexts. These contexts, ranged over by � � � and
called simple contexts, are those given by the grammar:

� � � :: 
 ���  ���! �  �� ��� � � ��� � ���
where � is simple process. simple processNamely, the generic shape of a simple context is:

������
1 ��� 1 ��������� ������ � ��� � ��� ���! �#"

Observe that the definitions in the above contexts are always simple. Simple contexts induce the
following preorder:

����� 2 def
 �� ��� " ,% " � � �	� � � %���� �@2�� � � %
(the index � stays for “simple”). Clearly � �
	 ��� but the vice versa is by no means obvious. In
order to prove the coincidence of � � and ��� it is enough to prove that ��� is a pre-congruence.
This is the purpose of the following propositions. The proof technique consists in encoding the
behaviours induced by generic contexts into behaviours of simple ones.

UBLCS-96-4 6



4 The context lemma for the may-testing

It turns out that a satisfactory formalization of the following proof must use a labelled variant
of the join-calculus. Let

�
be a countable set of labels and 6 � � . The labelled join-calculus is

similar to the one defined in Section 2 with the following changes:5 definitions are generated by the following grammar:

	 :: 
 � � �  � � � �  	- � � 	5 the reduction relation is enriched by adding the following rule:

� ��
����� � . implies
������ � � 2 ��� � ���� ������ � � 2 ��� � .������ � � 2A � � 	 ��� � ���� �.���� � � 2A � � 	 ��� � .

It is possible to generalize may-emission in order to take into account transitions labelled in� ) � � � . Namely

� ���� % def
 �<2 " � �� 	 2 and 2��	% "
where ��� 	 denotes a sequence of transitions labelled in

� ) � � � .

Proposition 4.1 1. Let � be a process, syntactically equal to 2 , up-to labels of definitions. Then
� � �� % if and only if 2 � �� % .

2. Let � be an unlabelled process (definitions miss of labels); let 2 be a process syntactically equal to
� , up-to labels of definitions. Then � � � % if and only if 2 � �� % .

In virtue of the foregoing proposition we can safely reason on labelled processes and carrying
the results over the unlabelled ones. In particular, we shall always consider well-labelled processes:

Definition 4.2 A process is well-labelled when every definition 	 is generated by the following syntax:

	 :: 
 � � �  � � � �  	�� and 	��:� � is simple; � is not simple
!

	�� :: 
 � � � 2  �	�� and 	��
and labels are pairwise different.

Informally, a process is well-labelled when every not simple definition is labelled by a unique label.

Proposition 4.3 ����� 2 implies �  39���� 2  39 , for every process 9 .

Proof: We assume that 9 is well labelled. Let � � � be a simple context such that � � �  ,9 � � �� %
and � � 2  39 � �� �� % . Let � be the derivation � �
�� ,9 � ��� 	 � . � % , and let � be the number of
reductions along � which are marked by labels in

�
. By induction on � we prove that, for every9 and for every context � � � such that � �
�� 39 � ��� 	 � . � % , with � . transitions marked in

�
, and

� �@2  ,9 � �� �� % and � .
	�� , there exists a simple context ��. ��� such that � . �
��� ��� % and � . �@2�� ���� % .
Without loss of generality we may assume that 9 
 �.�� 	 1 ��� ����� ���� 	� ��� � and bound

variables in 9 are different from variables in � and 2 .
( � 
 0) Then only simple definitions 	 $ are used along � . Let 	 .$ be 	 $ if 	 $ is simple and 	 .$

be % 1 & �� 1 -  �����  �% + &�� � + -  ��,& - � � & - , where
� � �1	 $ ! 
 ��% 1 * ����� * % + � and where � is a fresh variable (with

respect to those used in � * 2 and 9 ), otherwise. The simple context � . ��� is defined as follows:

� . ����
 � � �.�� 	 .1 ��� ����� �.�� 	 .� ��� � ���! �"! �
( ��� 0) Let � 1 ����� � � be the sequence of labels in

�
along � and let 	 $ be the first definition in9 such that a label in 	 $ occurs in � 1 ����� � � . Let

� 1 ����
 ���� 	 .1 ��������� ���� 	 .$ � 1 ��� ���
where 	/.� is defined as in the basic case (with respect to definitions 	 1 * ����� * 	 $ � 1). There are two
subcases:
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4 The context lemma for the may-testing

1. 	 $ is
� . � � 9 . . Let � be the number of occurrences of 6 in � 1 ����� � � and let

� � �19�. ! 
�.% 1 * ����� * % � � . Consider the following context � 2 ��� :
� 2 ��� 
 ���� % 1 &��( 1 -' � � 1 & � - � � & �( 1 -  � � 1 & � - ���

...���� % � & �( � -  � ��� & � - � � & �( � -  � ��� & � - ��� � ���  � & � � 1 * ����� * � ��� - !
where

�
and

� ��� are fresh variables. Now consider the context � 3 � � :
� 3 ��� 
 �� ��� .  � & � � 1 * ����� * � � � - � � � 1 & % 1 -  �����  � � � & % � - ��� ���

and let
� 4 ��� 
 � 1 � � 3 �����9 .@. 
 � �.�� 	 $ � 1 ��� ����� �.�� 	� ��� �$!  � 2 �@9 . �  �����  � 2 �@9 . �� �	� 
� times

where the labels in the istances of 9�. in 9 .@. are pairwise different. It is possible to verify
that � � � 4 � �� 39�.@. ��� ��� % and � � � 4 �@2  39 .@. ��� ���� % . Moreover � � � 4 � �� 39�.@. ��� shows up % with
a number of reductions labelled in

�
which is strictly less then � .

2. 	 $ is
�

1 � � 1 9 1  � � �����  � � � $� � � � � 9 $�� . Let
�

1 ����� � � be the subsequence of � 1 ����� � � such
that � � � � 6 1 * ����� * 6 $ � � . We denote with

��� �	� ����� 9 � �	� the subdefinition of 	 $ labelled by� � . Let
��� �	� 
 % �1 &��� 1 -  �����  �% �� � & ��

�
� - , � 
�� ��	� 1 � � and

� � �(	 ! 
-�.% 1 * ����� * % � � � (observe that������. ). Let � �� 
 � ! � �  �"� �	� 4 % � &��� 1 -  �����  �% � &��� � -� �#� 

� times

 � . �
$ � 
 � ��	� 1

� ��
Let �� � 
 � �1 * ����� * � � %'& � 1. The sets �� � and

�
1 * ����� * � � � are all fresh variables with respect to

those in � * 2 * 9 . Let
( ��� 
 �.�� % 1 &��� 1 -  � 1 & � . * �) 1 - � � . & % 1 * �� 1 -' � 1 & �) 1 * � . - ���

...���� % � � & �� � � -  � � � & � . * �) � � - � � . & % � � * �� � � -  � � � & �) � � * � . - ��� ���
and let * 
 � % 1

� 1 &��( 1 -  �����  � %,+ � � 1 & �( � � - in

��� � 
 �.�� * � * ����� � � � � �.- & � �1 * �� 1 -  �����  �� � & � ��/- * �� � - � 9 �/- ���
...�.�� � 1 & � 1

1 * �� 1 -' �����  � � 1 & � 1�
1 * �� � - � 9 � 1 ���� �  � 1 & �� 1 -  �����  � � � & �� � � -

where �"0 and � �� are defined as follows:5 �10 is � �� if over the first 2 -th emissions in the sequence
� �

1 � ����� � � � � there are exactly 3
emissions on % � ;5 � �� 
 % �� if over the first � emissions in the sequence

� � �	� (fix an ordering for
� � �	� ) there is

exactly one emission on % �� . Otherwise � �� is a fresh variable.
Observe that definitions in ��� � are not simple in general. Let

9 .@. 
 ( � ��� �.�� 	 $ � 1 ��� ����� �.�� 	 � ��� � � � "
where 9 � 1 * ����� * 9 �/- are such that labels are pairwise different. It is possible to prove that
there is a derivation of � � � 1 � 9 .@.  ���� � which emits % by using at most � -times not simple
definitions in 9�.@. . Similarly no derivation of � � � 1 �@9�.@.� ,2�� � emits % . Finally remark that it
is possible to transform 9�.@. as described in the subcase 1. This allows to apply inductive
hypothesis and terminate the proof.
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4 The context lemma for the may-testing

Proposition 4.3 has an immediate consequence:

Corollary 4.4 ��� � � . and 2�� � 2 . imply �� ,2�� � � .  32 . .

Proposition 4.5 ��� � 2 implies def 	 in ��� � def 	 in 2 , for every definition 	 .

Proof: The proof is along the lines of the one of Proposition 4.3. Indeed, if
�.�� 	 ��� � �� ��� � 	 ��� 2 , by means of the technique developed in Proposition 4.3, it is possible to define a

simple context � ��� such that � �
�� 39 � � � % and � � 2  39 �"�� � % , for some 9 and % . This means that
�� ,9����� 2  39 and, by Proposition 4.3, this entails � �� � 2 .

Proposition 4.6 � ��� 2 implies def
� � � in 9 ��� def

� � 2 in 9 and def
� � � and 	 in 9�� �

def
� � 2 and 	 in 9 , for every definition 	 and process 9 .

Proof: Let 	 � and 	 � be
� � � and

� � 2 , respectively, or
� � �A � � 	 and

� � 2A � � 	 , re-
spectively. Let � � � be a simple context which discriminates between

�� � 	 � ��� 9 and
�.�� 	 � ��� 9

and let � be a derivation of � � �� � 	 � ��� 9 � showing up % and let � be the number of times the
definition

� � � is used along � . We consider the case 	 � 
 � � �  � � 	 , the other being
simpler.

Let
� ��� � ! 
7��% 1 * ����� * % � *�� 1 * ����� * � + � and

� � �12 ! 
7��% 1 * ����� * % � *�� 1 * ����� *�� 0 � with % $ �
 � � �
 � � . Take
( ��� 
 �.�� % 1 &��( 1 -  � � 1 & � - � � & �( 1 -  � � 1 & � - ���

...���� %#��& �(�� -  � � � & � - � � & �(��.-  � � � & � - ������� � 1 & �� 1 -  � � 1 & � - � � &��� 1 -  � � 1 & � - ���
...�.�� � + &�� � + -  � � � & � - � � &�� � + -  � � � & � - ����.�� � 1 & �� 1 -  � � 1 & � - � � & �� 1 -  � � 1 & � - ���

...���� � 0 & � � 0 -' � ��� & � - � � &�� � 0 -  � ��� & � - ������! � & � � 1 * ����� * � � � * � � 1 * ����� * � � � * � � 1 * ����� * � ��� -
where

�
and

� � � * � � � * � � � are fresh variables with respect to those in � * 2 * 9 . Now take
�

,
� &�� -

and the context ��� � defined below:
� 
 � � 1 * ����� * � � � * � � 1 * ����� * � � � * � � 1 * ����� * � � �
� &�� - 
 � � 1 & % 1 -� �����  � � � & % � -� � � 1 & � 1 -� �����  � � � & � +�-� � � 1 & � 1 -� �����  � � � & � 0)-
��� ��
 �.����  � & � - � � &�� -  � � 	 ��� � �

It is possible to show that

� �
���@9  ( �
���! �����  ( �
���� �#� 
�
times

� � ��� % � �
���@9� ( �@2��! �����  ( �@2��� �#� 
�
times

� � ���� %

and, by Proposition 4.5 and Corollary 4.4, this implies � �� � 2 .

Corollary 4.7 The relation � � is a pre-congruence.

Lemma 4.8 (The context lemma for the may-testing) � � coincides with � � .
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5 The must-testing semantics

Proof: The containment � �
	 ��� is obvious by definition. Let us prove � � 	 � � . Let � ��� 2 and
���
��� � � % , where ����� is a (generic) context. Then ���
����� � ��� 2	� because ��� is a pre-congruence.
This implies that ���@2�� ��� % .

The context lemma is important for several reasons. It shows that the may-semantics of a
process is completely characterized by replacing multiset of emissions on free variables with other
multisets of emissions. In a sense, what counts of a process is its reaction in terms of emissions
to stimuli which are also emissions. It is useless to look at complex reactions. Moreover, by
restricting the universal quantification over contexts, the context lemma allows us to prove more
easily some semantic relations. For instance, let us check the following:

,� " � ��� � ! 
?> �
�
� � � "

It suffices to verify that, for every simple context � � � and for every % , � �
�
� � � % if and only if

� �
��� ��� % . Since both

�
and � are closed, there exists a 2 such that � �

�
��482  

�
and � �
���#472  � .

Then, by definition of may-emission and the hypothesis
� � � � ! 
 > , 2  

� � � % if only if 2 � � %
if only if 2  �� � � % . This entails

�
� � � .

Remark 4.9 By the proof of the context lemma it appears that simple contexts are in some sense a minimal
set of tests for checking whether two processes are may-testing equivalent or not. The existence of a smaller
set of tests is a question that this paper leaves open. Surely, if this is the case, one should provide completely
different proofs.

5 The must-testing semantics
In the may-testing approach the relevant tests for processes were the ability to respond positively to
a test. Must testing is obtained by changing the relevant tests into the inability to respond negatively
to a test. Namely a process � is considered less specified than the process 2 if, whenever � must
respond positively to a particular test, 2 must respond positively, too.

It turns out that a satisfactory formalization of the must-testing semantics must take into
account the notion of maximal computation. We say that � 1 ���� ����� ��� � � is maximal � � is
terminal, namely there is no 2 such that � � ��� 2 , noted with � � �� .

Definition 5.1 The must-emission relation is defined as follows: � 1
� % % if, for every maximal compu-

tation
� 1 ��� ����� ���� � � ���� �����

there exists
�

such that � � � % .
We write � �� % % when � � % % is false. When � � % % we say � must-emits on % , and we shall

often omit the prefix “must”.

In the following we note � � � �
� . when there is a computation �7
 � 1 ���� ����� ���� � � 
 � . .

Proposition 5.2 � � % % if and only if there exists � such that the following items hold:
1. � � �� � � . �� � ��� � ! � � .�� % ;
2. � � �� � �

� . � �+.
��� ! � � .�� % .

Proof: The if-direction is obvious. Let us check the only-if one. Assume that, for every � ,

� � ��� � � . �� � ��� � � � . �� % !�� � � � �� � �
� . � � . � � � � . �� % !

We prove that � �� % % . This is immediate when � ��� � � . �� � ��� � � � . �� % because, by
Remark 3.1, emission is persistent over transitions.

Let � ��� � �
� . � �+. � � � � . ���% . Let � 
 lim

� � � , where � � is inductively defined as
follows:
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5 The must-testing semantics

1. � 0 is the tree with the node � � * 0 ! and without edges;
2. � � � 1 is the tree � � where an edge is added to every leaf � � * � ! such that � ��	% and � ���� � . .

The edge connects � � * � ! and � � . * � � 1
!
.

� is finite branching, by Proposition 2.2. Moreover, by hypothesis, � � � 1 �
 � � . Then, by the König
Lemma, � has an infinite path. This means there exists a maximal computation

�7
 � 1 ���� � 2 ���� �����
such that, for every � , � $ �� % . Hence � �� % % .

Proposition 5.3 � � % % and �7472 imply 2 � % % .

Now we can define the must-testing preorder.

Definition 5.4 The must-testing preorder is the relation � % over processes defined by

��� % 2 def
 ,����� " ,% " ���
��� � % %�� ���@2�� � % %
Two processes � and 2 are must-testing equivalent, in notation � � % 2 , if ��� % 2 and 2 � % � .

Must-testing preorder and equivalence are pre-congruences, by definition. An immediate
consequence of Proposition 5.3 is:

Corollary 5.5 �7482 implies ��� % 2 .

We examine the discriminating power of must-testing through some examples which also
highlight differences with may-testing. For every process � and 2 :5

�
� % � because, informally, if ���

�
� � % � then every derivation � starting at ���

�
� must

converge. This means that the process

�
is never “enabled” along � . Therefore also � is

never enabled along derivations of ���
��� .5 let % �� � � � � !+)�� ���12 ! . Then

�
 ���� %'& - � � ��� %'& - � %

�
 �.�� %'& - � 2 ��� %'& - ;5 let � 
 �� � % & -  � & - � % & - ��� % & - . Observe that �7�� %
�

. For example take the context
��� � 
 �� � � & - � � & - ��� � �  � & - . It happens that ������� � % � while ���

�
���� % � because of the

computation
���

�
� ���� ���

�
� �� � �����

and ���
�
� �� � .

Notice that the second and third items establish that may and must-testing are uncomparable.
The first item decrees that

�
is the least process in the must-testing scenario, too. It is also

worth noting that must-testing remains unchanged by taking the “must-adaptations” of the basic
observations defined in Remark 3.7. Since we are not primarily concerned with these refinements
here, we overlook this issue.

The surprising property (at least for us) of the join-calculus is that, up-to the basic observations,
the must-testing preorder holds the same context lemma of the may-testing one. This is false in
Milner’s CCS, for instance [7]. In order to show that simple contexts suffice, let

����� 2 def
 �� ��� " ,% " � �
��� � % %���� �@2�� � % %
where � � � are the simple contexts defined in the previous section. The proof for checking the
coincidence of � % and � � carries over along the same lines as the one of Lemma 4.8. Nemely,
we (re)consider the labelled join-calculus and the relation � � �% % which is similar to the must-
emission, except that it forgets labels. We also omit the adaptation of Proposition 4.1 to the case
of must-testing. For running the induction in the case of must-testing it is crucial a measure
of complexity of well-labelled processes, noted � , which gives a sequence of integers � � ����� � 0.
Foremost let us define the complexity of a not simple definition labelled 6 in a well-labelled
process � , noted ��� � * 6 ! , by structural induction over � as follows:
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1. if �7
 � 1  �����  �� � and 6 occurs in � $ then �;� � * 6 ! 
 �;� � $ * 6 ! ;
2. if �7
 ������

1 ��� 1 2 1  � � �����  � � � � � � � 2 � ��� 9 and 6 � � � 1 * ����� * � � � then ��� � * 6 ! 
 1;
3. if �7
 ���� 	 ��� 9 and 6 occurs in 9 then �;� � * 6 ! 
 �;�19 * 6 ! ;
4. if � 
 �.�� �

1 ��� 1 2 1  � � �����  � ��� � ��� � 2 � ��� 9 and 6 occurs in 2 $ then �;� � * 6 ! 

�;�12 $ * 6 ! � 1.

The complexity of a label is robust with respect to structural equivalence:

Proposition 5.6 If �8472 then �;� � * 6 ! 
 ���(2 * 6 ! .
Finally, the complexity of a well-labelled process � , noted �;� � ! is the sequence of integer

� � ����� � 0 such that � $ is the cardinality of the set of labels 6 such that ��� � * 6 ! 
�� � 1.

Proposition 5.7 ��� � 2 implies �� ,9 ��� 2  ,9 , for every process 9 .

Proof: For every
�

and for every 9 such that ���(9 ! 
 � and � � �� 39�� � �% % and � � 2  39 ���� �% % ,
for some � �.� , we show the existence of a � . ��� such that � . � �	� � % % and � . � 2	���� % % . We argue
by induction on

�
, where sequences are ordered by the lexicographic ordering. Without loss of

generality we assume 9 
 �� � 	 1 ��������� �.�� 	 � ��� � .
� � 
 0

!
Obvious.

� � 
 � � ����� � 0
!

Let � �
�� ,9 � � % % and let � be a maximal computation of � �@2  ,9 � never emitting
on % .
If no label in

�
occurs along � then let 9 . 
 (

1 � ����� ( � � � ����� � where
( $ �,� 
 ���� 	 $ ��� � �

if 	 $ is simple and
( $ � � 
 �� � % 1 &��� 1 - � % 1 &��� 1 - ��� ����� �� � % + &�� � +�- � % + &�� � +�- ��� � � if 	 $

is not simple and
� � �(	 $ ! 
 ��% 1 * ����� * % + � . It is easy to prove that � �
�� 39�. � � % % and

� �@2  39 . ���� % % . Remark also that by the structural equivalence � � �� 39 . � and � �@2  ,9�. � may
be easily transformed into � . �
��� and � . �@2�� , for some simple context � . ��� .
Otherwise, let 	 $ be the not simple definition of 9 whose label (or a label of a component
definition) 6 occurs as first label in

�
along � . There are three subcases:

1. 	 $ is
� � ��� or 	 $ is a sub-definition, namely

�
1 ��� 1 9 1  � � �����  � ����$ � ��� � � 9 $ � ,6 � � � 1 * ����� * � $ � � and no

� � is the first label in
�

occurring along � .
Let 9 . 
 (

1 � ����� ( � ��� ����� � where
( � ��� 
 ���� 	 � ��� ��� if 	 � is simple;

( $ ��� 
�.�� % 1 &��� 1 - � % 1 &��� 1 - ��� ����� �.�� % + &�� � +.- � %!+ &�� � +.- ��� �'� where
� � �1	 $,! 
 �.% 1 * ����� * %!+ � ;( � � � 
 ���� % 1 &��� 1 - � % &��� - ��� ����� ���� %!+ &�� � +�- � % &��� - ��� � � if 	 � is not simple and� � �1	 � ! 
7��% 1 * ����� * %!+ � . It is easy to show that � �@9�.  ���� � % % and � �@9 .  32�� �� % % .

2. 	 $ is a sub-definition, namely
�

1 � � 1 9 1  � � �����  � � � $ � ��� � � 9 $ � , 6 � � � 1 * ����� * � $ � �
and no derivation of � �
�� ,9 � has 6 as first label in

�
. Let 6?
 � � and let

� � �(	 $ ! *� � � � � ! 
�� � 1 * ����� * � + � � . Remark that, by hypothesis, � � 1 * ����� *�� + � � is not empty. Now
take 9 . 
 (

1 � ����� ( � ��� ����� � where
( � � � 
 ���� 	 � ��� � � if 	 � is simple;

( $ ��� 
�.�� � � � � � ��� ���� � 1 & �� 1 - � %'&��� - ��� ����� ���� � + � & �� + � - � %'&��� - ��� � � �  �%'&��� - ! ; and
( � � � 
�.�� % 1 & �� 1 - � % &��� - ��� ����� �� � % + & � � + - � % &��� - ��� � � if � �
 � and 	 � is not simple and� � �1	 � ! 
���% 1 * ����� * % + � . It is possible to prove that � �
�� ,9 .
� � % % and � �@2  ,9 . ���� % %

and � �
�  39 .
� and � � 2  39 . � may be easily transformed into ��. � �	� and � . �@2�� , for some
� . ��� .

3. There is a derivation of � �
�� 39 � having 6 as first label in
�

. There are two subcases.
( 	 $ is

� . � � 9 . ). Let
� � �19�. ! 
 �.% 1 * ����� * % � � and let � be the integer of Proposition 5.2.

This means that every derivation of � �
�� 39 � emits % with at most � transitions labelled6 . Now take the following context
( ��� :

( � � 
 �.�� % 1 & �( 1 -  � � 1 & � - � � &��( 1 -  � � 1 & � - ���
...���� % � &��( � -  � � � & � - � � &��( � -  � � � & � - ������! � & � � 1 * ����� * � � � -  � . & -
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5 The must-testing semantics

where
�

,
� . and

� � � are fresh variables. Let
� 
 � . & -  �����  � . & -� �#� 
�

times

and: ( . ����
 ���� � � � ���������  � & � � 1 * ����� * � � � - � � � 1 & % 1 -' �����  � � � & % � - ��� � �
Finally let

9 .@. 
 �� � 	 1 ��� ����� �.�� 	 $ � 1 ���( . � ���� 	 $ � 1 ��� ����� ���� 	 � ��� �  ( �@9 . �  �����  ( �@9 . �� �#� 
�
times

�

It follows that � �
�  ,9�.@. � � % % and � �
�� ,9�.@.
���� % % . Furthermore, notice that �;�19 .@. ! �
�;�19 ! (assuming that occurrences of 9�. in 9 .@. have different labels). This allows to apply
inductive hypothesis.
( 	 $ is

�
1 � � 1 9 1  � � �����  � � ��$ � � � � 9 $ � ). Let 6 
 � � and let

� � �1	 $(! 
-�.% 1 * ����� * % � � .
Take � � 
 � ! � �  � � 4 % � &��� 1 -  �����  �% � & �� � -� �#� 
�

times

 � . �
$ 
 � ! � � 1 * ����� *

� � � "
Moreover let ���$ 
 � $� 1 * ����� * �

$��� , where
� $� & 
 � � & if �	 � � and

� $� & 
 � .� & otherwise.

Observe that
� % � 1� & 
 � .� & and let

� � 
 �� 1 * ����� *
�� % � 1. Now consider the operation� ��� � ���

% � 1$ defined as follows:
� ��� � ���

% � 1$ � � � ! 
 � 1� 1 * ����� * � 2� � * ����� * � 1� � * ����� * � %� 1 * ����� * �
% � 1� � * ����� * �

%� � * �� % � 1

When � �
 � let
� � 
 � � � 1 * � � � 1 * ����� * � � ��� * � � ��� . We define

� 
 �
1 * ����� * � �

� ��� � ��� � � ! 
 � ��� � ��� 21 � � 1
! * ����� * � ��� � ���

% � 1� � � � ! * ����� * � ��� � ��� 2� � � � !
( ����
 �.�� % 1 & �� 1 -  � & � - � � 1� 1

& % 1 * �� 1 -' �� 1� 1
& -  �����  �� �� 1

& -' � & � ��� � ��� � � ! - ���
...�.�� % � & �� � -  � & � - � � 1��� & % � * �� � -' �� 1��� & -  �����  �� ���� & -  � & � ��� � ��� � � ! - ������! � & � -

Moreover, when �8�
 � , let
� ch1� be the pattern

� � where each atom % $ & �� - has been
replaced by � � � � & - ; � ch1� be the pattern

� � each atom % $ & �� - has been replaced by
� � � & % $ * �� - ;� ch2� be the pattern

� � where each atom % $ &��� - has been replaced by
� .� � & % $ * �� - ; 		�

�$ be
the definition 	 $ where each

� � has been replaced by
� ch2� .

Consider ( . ����
 ������ ch1� � 9 � ��� ���� 		�
�$ ����� ��� ch1

1 � %'& �( - ���
...������ ch1� � 1 � %'& �( - ��� ������ ch1� � 1 � %'& �( - ���

...�.���� ch1$ � � % & �(!- ��� %'& �(!- ��� ���
Finally, let

9 . 
 �.�� 	 1 ��������� ���� 	 $ � 1 ��� ( . � ( � ���� 	 $ � 1 ��������� �.�� 	 � ��� � � � "
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5 The must-testing semantics

It is possible to prove that � � �  ,9 .
� � % % and � � 2  39 . � �� % % . On � �
�� 39 .
� and
� �@2  39�. � we eventually reiterate the above argument (if 9 � is a simple process) or use
the subcase 2 and simplify the complexity of 9 . . Remark also that the reiteration is
used a finite number of times because, by Proposition 5.2, there exist � such that every
computation of � �
�  ,9�. � emits % with at most � transitions.

The proof of Proposition 5.7 deserves few comments, in particular the proof of the item 3. In
this case there is a maximal computation � of � �@2  39 � (which never emits on % ) whose first label6 � � marks a not simple definition 	 $ of 9 . There is also a derivation �0. of � � �  ,9 � whose first
label in

�
is 6 . There are two cases: 	 $ is

� . � � 9 . or 	 $ is
�

1 ��� 1 9 1  � � �����  � � � $� � � � � 9 $��
( 6A
 � � ). When 	 $ is

� . � � 9�. , the number of derivations marked 6 before ��. emits on % is
bound by � , where � is given by Proposition 5.2. This means that 9 . may be instantiated at most
� times. The proof states that this instantiation may be performed once at all without altering the
must emission on % . The reader is invited to check that every maximal computation of � �
�  ,9 .@.
�
eventually emits on % . The case when 	 $ is

�
1 ��� 1 9 1  � � �����  � ��� $ � ��� � � 9 $ � ( 6 
 � � ) is more

subtle. Indeed 9�. must be transformed into a “simpler” process 9 .@. by keeping � �
�� 39 .@. � � % %
and � �@2  ,9�.@. � �� % % . To this aim the idea is to take the sequence of labels in

�
along � and define9 .@. in such a way that every computation showing up a different sequence of labels in

�
emits on

% . This is the purpose of the
� ch1� . The argument by recurrence allows to reiterate the technique

to transitions of � after the first labelled 6 .

Corollary 5.8 ��� � � . and 2���� 2 . imply �� 32���� � .  ,2 . .
With an argument similar to the one used for Proposition 5.7 it is possible to prove:

Proposition 5.9 ��� � 2 implies def 	 in ��� � def 	 in 2 , for every definition 	 .

Proposition 5.10 ��� % 2 implies def
� � � in 9�� % def

� � 2 in 9 and def
� � � and 	 in 9 � %

def
� � 2 and 	 in 9 , for every definition 	 and process 9 .

Proof: Let � ��� be a simple context which discriminates between
�.�� 	 � ��� 9 and

�.�� 	 � ��� 9 ,
where 	 � and 	 � may be

� � � and
� � 2 , respectively, or

� � �  � � 	 . and
� � 2� � � 	/. .

Let � be the integer which follows from Proposition 5.2 for � � ���� 	 � ��� 9 � � % % . Let
( � � be the

simple context defined in the proof of Proposition 4.6. Now take

9 � 
79  ( �
���! �����  ( �
���� �	� 
�
times

9 � 
89� ( �@2��! �����  ( �@2��� �#� 
�
times

By Corollary 5.8, 9 �8���� 9 � implies � �� � 2 . Let us focus on the case when 		� be
� � �8 � � 	/.

and 	 � be
� � 2A � � 	/. , the other one being simpler.

Consider the following context ����� where � 
 � � � � 2 (see Proposition 4.6 for the definitions
of
� * � * 2 ): ������
 ���� � � � 1 &1�(,- � � � � 1 & �(,- ����� � � � & � 1 * ����� * ��� * ( 1 * ����� * ( � - � � 1 &)( 1 -  �����  ��� & ( � - ���

...�� � � 1 & � 1 * ����� * ��� * ( 1 * ����� * ( � - � � 1 &)( 1 -' �����  ��� &)( � - ����.����  � & �� -  ��.& ��. * � � - � ��. & �� * � % -  ���&�� � * ��. -" � � 	/. ������! ���& � 1 * ����� * � � � 1 -
If � � �.�� 	 � ��� 9�� � % % and � � �.�� 	 � ��� 9 ���� % % then, by construction, � �
���@9 � � � � % % and

� �
���@9 � � � �� % % . This means that ���@9 � � �� � ���@9 � � and, by Proposition 5.9, 9 � �� � 9 � .

Corollary 5.11 The relation � � is a pre-congruence.
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6 Conclusion

Lemma 5.12 (The context lemma for the must-testing) � � coincides with � % .

Proof: The containment � % 	 ��� is obvious by definition. Let us prove � � 	 � % . Let ����� 2 and
���
��� � % % , where ��� � is a (generic) context. Then ���
��� � � ���@2�� because ��� is a pre-congruence.
This implies that ���@2�� � % % .

Because of the above lemma it is possible to define the may and must-semantics (and their
intersection, the so-called testing semantics [4]) in a uniform way by means of simple contexts.
Moreover, as in the may-testing,Lemma 5.12 turns out useful for proving easily semantic relations.
The reader is invited to check that ,� "

�
� % � ; ,� "

�
 ���� % � ; ,� * 2 "

�
 �� � %

�
 32 .

Lemmas 4.8 and 5.12 entail that much of the strength of the join-calculus must be recognized to
the elaborate synchronization schema it provides. For instance through join patterns it is possible
to test the alternative presence of a set of actions or the simultaneous presence of a multiset of
actions. Precisely, it turns out that elaborate synchronization schema are the unique mechanism
for setting may and must preorders. One should wonder whether even simpler contexts could
be used. In [6] it has been proved that the language yielded by stripping away join patterns
including more than two messages is as much expressive as the full join-calculus. Unfortunately
the encoding therein introduces infinite sequences of internal reductions and this invalidates the
must-testing preorder, which is sensible to divergence.

6 Conclusion
To conclude let us briefly comment on our results with respect to related works and hint to future
research.

6.1 Related works
The asynchronous version of mobile process algebras has been investigated only recently [2, 9].
In particular Honda and Tokoro studied asynchronous bisimulations, whilst Boudol defines
may-testing with the purpose of fixing some adequacy results about Milner’s encoding of lazy�

-calculus into � -calculus [10]. May-testing has been also used in [3] for determining the discrim-
inating power of � -calculus contexts with respect to the encoding of lazy

�
-calculus. However

both [2] and [3] miss of any characterization of “canonical” contexts for may-testing, even if some
conclusions may be drawn (see below).

Switching to synchronous mobile calculi, testing semantics has been studied thoroughly by
Boreale and De Nicola in [1] where a proof system and a term model have been provided for� -calculus. We also recall Hennessy’s detailed study of may-testing for an higher order process
calculus with dynamic binding [8]. Also in [1] and in [8] the problem of determining canonical
tests has not been addressed. Hennessy is investigating a model for the testing semantics of the� -calculus. Details of this work are unknown to us.

6.2 The asynchronous � -calculus
Fournet and Gonthier give equivalence result between the core join-calculus and the asynchronous� -calculus. Therefore it is fair to ask whether the latter also holds a context lemma for testing
semantics. To this aim we foremost observe that there are two kinds of actions that may be
observed in asynchronous � -calculus: inputs and outputs. It turns out that observing inputs
suffices, since it is always possible to find a context which firstly consumes all the outputs and
then performs an input on a fresh variable. This fits with the may-semantics defined in [2].
The results in [3] seem to imply that canonical contexts for may-testing are quite involved. In
particular every operator of asynchronous � -calculus is used (even if we feel that we may rid
of replication). This consideration follows by the Separation Lemma, which provides contexts
discriminating

�
-terms with different lazy-trees, and the full-abstraction result (Theorem 7.5). A

precise characterization of these contexts is still not known.
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6.3 The trinity
In the terminology of [7], the trinity of a language consists of an operational semantics, a denota-
tional one and a proof system, all defining the same congruence over processes. This paper gives
only one vertex of the trinity: finding the other twos is an interesting direction of research. To
this purpose, one soon realizes that the source of problems is the unique, not standard operator:
the definition. Let us start with a simple case. The process

�8
 �� � % &1�(!- � 9 ��� 2
may be modelled in the very same way as

�  � �  � % �(�( ! 
89 ��� 2
in the usual functional languages. Namely the denotation of � is the least upper bound of the
chain of processes 2�� ������� � � � , where 9

� � � is the � -th approximant of the fixpoint of
� %��( " 9 .

The problems begin when patterns have at least two messages. In this case the above approach
is wrong because in the chain 2�� � ����� � � � the patterns which are replaced are those produced by 9
or those produced by 2 . No chance to replace patterns produced by both 9 and 2 . For instance
in the process ���� % & (,-  � & � - � %'& � - ��� %'& � -  � & ) -  � & ��-
the second move is caused by a message from 9 and a message from 2 .

This issue needs surely further investigation. Perhaps recent progresses on denotational
semantics of � -calculus may help [5, 12].
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