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Abstract. We define a language for Web services contracts as a parallel-
free fragment of ccs and we study a natural notion of compliance be-
tween clients and services in terms of their corresponding contracts. The
induced contract preorder turns out to be valuable in searching and
querying registries of Web services, it shows interesting connections with
the must preorder, and it exhibits good precongruence properties when
choreographies of Web services are considered. Our contract language
may be used as a foundation of Web services technologies, such as wsdl
and wscl.

1 Introduction

Web services contracts are coarse-grained abstract descriptions to be used in
workflows and business processes implemented in composite applications or por-
tals. These descriptions are intended to be replaced by fine-grained implemen-
tations that provide complex Web services.

Current technologies for describing contracts specify the format of the ex-
changed messages – the schema –, the locations where the interactions are going
to occur – the interface –, the transfer mechanism to be used (i.e. soap-rpc,
or others), and the pattern of conversation of the service – the behavior. For
example, the Web Service Description Language (wsdl) [10, 9, 8] defines simple
behaviors: one-way (asynchronous) and request/response (synchronous) ones.
The Web Service Conversation Language (wscl) [2] extends wsdl behaviors
by allowing the description of arbitrary, possibly cyclic sequences of exchanged
messages between communicating parties. (Other languages, such as the Ab-
stract business processes in the Web Service Business Execution Language (ws-
bpel) [1], provide even more detailed descriptions because they also define the
subprocess structure, fault handlers, etc. We think that such descriptions are
too much concrete to be used as contracts.)

Documents describing wsdl and wscl contracts can be published in reg-
istries [3, 11] so that Web services can be searched and queried. These two basic
operations assume the existence of some notion of contract equivalence. The lack
of a formal characterization of contracts only permits excessively demanding no-
tions of equivalence such as syntactical equality. In fact, it makes perfect sense
to further relax the equivalence into a subcontract preorder (denoted by � in this
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paper), so that Web services exposing “larger” contracts can be safely returned
as results of queries for Web services with “smaller” contracts. The purpose of
this paper is to define precisely what “larger” and “smaller” mean, as well as
to define which safety property we wish to preserve when substituting a service
exposing a contract with a service exposing a larger contract.

In our formalization, contracts are pairs I : σ, where I is the interface,
i.e. the set of names used by the service for responses and requests, and σ is
the behavior, i.e. the conversation pattern (it is intended that names in σ are
included into I). Our investigation abstracts away from the syntactical details
of schemas as well as from those aspects that are too oriented to the actual
implementations, such as the definition of transmission protocols; all of such
aspects may be easily integrated on top of the formalism. We do not commit to
a particular interpretation of names either: they can represent different typed
channels on which interaction occurs or different types of messages. Behaviors
are sequences of request or response actions at specific names, possibly combined
by means of two choice operators. The external choice “+” means that it is the
interacting part that decides which one of alternative behaviors to carry on; the
internal choice “⊕” means that the it is the part exposing the contract that
decides how to proceed. Recursive behaviors are also admitted in our contract
language. As a matter of facts, contracts are ccs (without τ ’s) processes that
do not manifest internal moves and the parallel structure [17, 19].

To equip our contracts with a subcontract preorder �, we commit to a testing
approach. We define client satisfaction as the ability of the client to complete
successfully the interaction with the service; “successfully” meaning that the
client never gets stuck (this notion is purposefully asymmetric as client’s satis-
faction is our main concern). The preorder arises by comparing the sets of clients
satisfied by services. The properties enjoyed by the � preorder are particularly
relevant in the context of Web services. For example, a service exposing the con-
tract {a, b, c} : a.c⊕ b.c is one that sends a message on a or on b – the choice is
left to the service – and then waits for a response on c. A client compatible with
such service must be prepared to accept messages from both a and b. Hence,
such a client will also be compatible with services exposing either {a, b, c} : a.c
or {a, b, c} : b.c, which behave more deterministically than the original service,
or even {a, b, c} : a.c+b.c, which leaves the choice to the client. This is expressed
as {a, b, c} : a.c⊕ b.c � {a, b, c} : a.c and {a, b, c} : a.c⊕ b.c � {a, b, c} : a.c+ b.c.
Notice that {a, b, c} : a.c � {a, b, c} : a.c + b.c should not hold. For example a
client with contract {a, b, c} : a.c+ b.a.c successfully completes when interacting
with {a, b, c} : a.c, but it may fail when interacting with {a, b, c} : a.c + b.c.
However, a client interacting with {a, c} : a.c, that is never interacting on b,
cannot fail with {a, b, c} : a.c + b.c. Namely, if a service is extended in width
with new functionalities, the old clients will still complete successfully with the
new service. Similarly, extensions in depth of a service should allow old clients
to complete: {a, c} : a.c � {a, b, c} : a.c.b.c. To the best of our knowledge, there
is no process semantics corresponding to � in the literature. However, the re-
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striction of � to contracts with the same interface is a well-known semantics:
the must-testing preorder [18, 19, 14].

Our investigation about a semantics for contracts also addresses the problem
of determining, given a client exposing a certain behavior, the smallest (according
to �) service contract that satisfies the client – the principal dual contract.
This contract, acting like a principal type in type systems, guarantees that a
query to a Web services registry is answered with the largest possible set of
compatible services in the registry’s databases. Technically, computing the dual
contract is not trivial because it cannot be reduced to a swapping of requests
and responses, and external and internal choices. For example, applying this
swapping to the contracts {a, b, c} : a.b+a.c and {a, b, c} : a.(b⊕c), which happen
to be equivalent according to �, would produce the contracts {a, b, c} : a.b⊕ a.c
and {a, b, c} : a.(b+ c), respectively, but only the latter one does actually satisfy
the clients exposing one of the two original contracts. As another example, the
dual contract of {a} : a cannot simply be {a} : a, because a service with contract
{a} : a⊕ (a+a) satisfies the original contract and yet {a} : a 6� {a} : a⊕ (a+a).

We also study the application of our theory of contracts to choreographies of
Web services [15]. A choreography is an abstract specification of several services
that run in parallel and communicate with each other by means of private names.
(Actually, the behavior of each service may be synthesized out of a global de-
scription [5, 4]). We show that � is robust enough so that, replacing an abstract
specification with an implementation that is related to the specification by means
of �, the observable features of the choreography as a whole are preserved.

Related work. This research was inspired by “ccs without τ ’s” [19] and by
Hennessy’s model of acceptance trees [13, 14]. Our contracts are an alternative
representation of acceptance trees. While the use of formal models to describe
communication protocols is not new (see for instance the exchange patterns
in ssdl [20], which are based on csp and the π-calculus), to the best of our
knowledge the subcontract relation � is original. Although it resembles the must
preorder (and it reduces to the must preorder when the interfaces are large
enough), � arises from a notion of compliance that significantly differs from the
notion of “passing a test” in the testing framework [18] and that more realistically
describes well-behaved clients of Web services. The width extension property
enjoyed by � is closely related to subtyping in object-oriented programming
languages. The works that are more closely related to ours are by Carpineti et
al. [6], by Castagna et al. [7] and the ones on session types, especially [12] by
Gay and Hole. In [6] the subcontract relation (over finite contracts) exhibits all
of the desirable properties illustrated in the introduction. Unfortunately, such
relation turns out to be non transitive as the preorder arises as a syntactic
notion. Transitivity, while not being strictly necessary as far as querying and
searching are concerned (in fact, the coinductive notion of compliance defined
in [6] would suffice) has two main advantages: on the practical side it allows
databases of Web services contracts to be organized in accordance with the
subcontract relation, so as to reduce the run time spent for executing queries. The
transitive closure of a query can be precomputed when a new service is registered.
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On the theoretical side, it is a fundamental prerequisite when contracts are
considered as (behavioral) types for typing processes: the subcontract relation
is just the subsumption rule. The transitivity problem has been also addressed
in [7] in a more general way. However, the authors of [7] must introduce a rather
powerful construct (the filter) which prevents potentially dangerous interactions.
Roughly speaking, a filter actively mediates the client/service interaction at run
time, by dynamically changing the interface of the service as it is seen from the
client. With respect to [12] our contract language is much simpler and it can
express more general forms of interaction. While the language defined in [12]
supports first-class sessions and name passing, it is purposefully tailored so that
the transitivity problems mentioned above are directly avoided at the language
level. This restricts the subcontract relation in such a way that internal and
external choices can never be related (hence, {a, b} : a ⊕ b � {a, b} : a + b does
not hold).

Structure of the paper. In Section 2 we formally define our language for con-
tracts, the corresponding transition relation and the compliance of a client with
a service. In Section 3 we study the subcontract preorder and its relationship
with the must preorder. In Section 4 we analyze the problem of determining
the principal dual contract. In Section 5 we discuss the application of the sub-
contract preorder to choreographies. Section 6 discusses the expressivity of our
contracts by showing the encoding of a wscl conversation into our language, it
draws our conclusions, and hints at future work.

Extended proofs of the relevant results are provided for referee convenience
only. They will reduced in case of acceptance to fit the page limit.

2 The contract language

The syntax of contracts uses an infinite set of names N ranged over by a, b,
c, . . . , and a disjoint set of co-names N ranged over by a, b, c, . . . . We use
the term action for referring to names and co-names without distinction. We let
a = a, we use α, β, . . . to range over N ∪ N , and we use ϕ,ψ, . . . to range over
(N ∪N )∗. Contracts are pairs I : σ where I, called interface, is a finite subset of
N representing the set of names on which interaction occurs, whereas σ, called
behavior, is defined by the following grammar:

σ ::=
| 0 (null)
| α.σ (prefix)
| x (variable)
| σ + σ (external choice)
| σ ⊕ σ (internal choice)
| rec x.σ (recursion)

The behavior 0 defines the empty conversation; the behavior a.σ defines a conver-
sation protocol whose initial activity is to accept a request on a and continuing



The must preorder revisited 5

as σ; the behavior a.σ defines a conversation protocol whose initial activity is
to send a response to a and continuing as σ. Behaviors σ + σ′ and σ ⊕ σ′ define
conversation protocols that follow either the conversation σ or σ′; in σ + σ′ the
choice is left to the remote party, in σ⊕σ′ the choice is made locally. For exam-
ple, Login.(Continue+End) describes the conversation protocol of a service that
is ready to accept Logins and will Continue or End the conversation according
to client’s request. This contract is different from Login.(Continue⊕End) where
the decision whether to continue or to end is taken by the service. The behavior
rec x.σ defines a possibly recursive conversation protocol whose recurrent pat-
tern is σ. A (free) occurrence of the variable x in σ stands for the whole rec x.σ.
In the following we write Ω for rec x.x.

Let names(σ) be the set of names a such that either a or a occur in σ.
We always assume that names(σ) ⊆ I holds for every I : σ. With an abuse of
notation we write names(ϕ) for the set of names occurring in ϕ.

Behaviors retain a transition relation that is inductively defined by the rules

α.σ
α−→ σ σ1 ⊕ σ2 −→ σ1

σ1
α−→ σ′1

σ1 + σ2
α−→ σ′1

σ1 −→ σ′1

σ1 + σ2 −→ σ′1 + σ2

rec x.σ −→ σ{rec x.σ/x}

plus the symmetric rules for ⊕ and +. This operational semantics is exactly
the same as ccs without τ ’s [19]. In particular, the rules for ⊕ say that the
behavior σ1⊕σ2 may exhibit σ1 or σ2 through an internal, unlabeled transition.
The behavior σ1 + σ2 may exhibit σ1 or σ2 only after performing a visible,
labeled transition of σ1 or σ2, respectively; internal transitions do not modify
the external choice. A recursive behavior rec x.σ unfolds to σ{rec x.σ/x} with
an internal transition. We write =⇒ for the reflexive and transitive closure of
−→; σ α=⇒ σ′ for σ =⇒ α−→=⇒ σ′; σ α1···αn=⇒ σ′ if σ α1=⇒ · · · αn=⇒ σ′; σ

ϕ
=⇒ if

there exists σ′ such that σ
ϕ

=⇒ σ′. We write σ↑ if σ has an infinite internal
computation σ = σ0 −→ σ1 −→ σ2 −→ · · · and σ↓ if not σ↑. We write σ ↓ ϕ if
σ

ϕ
=⇒ σ′ implies σ′↓. Finally, we write σ ↑ϕ if σ

ϕ
=⇒ σ′ and σ′↑ for some σ′. For

example Ω↑, rec x.a + x↑, and rec x.(a.x + b.x) ↓ ϕ for every ϕ ∈ {a, b}∗. Let
init(σ) def= {α | σ α=⇒}.

A basic use of contracts is to verify whether a client protocol is consistent
with a service protocol. This consistency, called behavioral compliance in the
following, requires two preliminary definitions: that of communicating behaviors
and that of matching:

– The notion of communicating behaviors extends the transition relation −→
to pairs of behaviors as follows:

ρ −→ ρ′

ρ | σ −→ ρ′ | σ
σ −→ σ′

ρ | σ −→ ρ | σ′
ρ

α−→ ρ′ σ
α−→ σ′

ρ | σ −→ ρ′ | σ′
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– The notion of matching is modeled using a special name e for denoting the
successful termination of a party (“e” stands for end). By “success” we mean
the ability to always reach a state in which e can be emitted.

Definition 1 (Behavioral compliance). Let e /∈ names(σ). The (client) be-
havior ρ is compliant with the (service) behavior σ, written ρ a σ, if ρ | σ =⇒
ρ′ | σ′ implies

1. if ρ′ | σ′ X−→, then {e} ⊆ init(ρ′);
2. if σ′↑, then {e} = init(ρ′).

According to the notion of behavioral compliance, if the client-service conversa-
tion terminates, then the client is in a successful state (it will emit an e-name).
For example, a.e+ b.e a a⊕ b and a.e⊕ b.e a a+ b but a.e⊕ b.e 6a a⊕ b because
of the computation a.e ⊕ b.e | a ⊕ b =⇒ a.e | b X−→ where the client waits for
an interaction on a in vain. Similarly, the client must reach a successful state
if the conversation does not terminate but the divergence is due to the service.
In this case, however, the compliance relation takes into account the subtleties
that divergence imply. In particular, the client is constrained to autonomously
reach a state where the only possible action is e. The practical justification
of such a notion of compliance derives from the fact that connection-oriented
communication protocols (such as tcp/ip) typically provide for an explicit end-
of-connection signal. So for example e+a.e a 0 because the client can detect the
fact that the service has dropped every connection. A divergent service might
keep its connections open, so that a client would have no way to distinguish a
service that is taking a long time to offer the next interaction from a service that
is perpetually performing internal computations. Hence e+a.e 6a Ω because the
service silently diverges and the client might rely on the end-of-connection signal
to be able to terminate immediately.

Our notion of behavioral compliance enjoys the following “subject reduction”
property, stating that given two compliant behaviors ρ and σ, every residual
behaviors ρ′ and σ′ are also compliant.

Proposition 1. If ρ a σ and ρ | σ −→ ρ′ | σ′, then ρ′ a σ′.

3 The subcontract relation

The behavioral compliance is actually a basic test for investigating services.
Following De Nicola and Hennessy’s approach to process semantics [18], this
test induces a preorder on services on the basis of the set of clients that comply
with a given service.

Definition 2 (Contract semantics). Let JI : σK def= {J : ρ | J ⊆ I and ρ a
σ}. A contract I : σ is a subcontract of I ′ : σ′, written I : σ � I ′ : σ′, if and
only if JI : σK ⊆ JI ′ : σ′K. Let ' be � ∩ �.
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For example, J∅ : ΩK = {∅ : e, ∅ : rec x.e + x, . . .} and J{a, b} : a ⊕ bK = {∅ :
e, ∅ : rec x.e+x, {a} : e, {b} : e, {a, b} : e, {a, b} : a.e+ b.e, . . .}. It turns out that
clients in J∅ : ΩK comply with every other service, hence the service ∅ : Ω is the
smallest one. As usual it is easier to figure out inequalities: {a, b} : a 6� {a, b} : a.b
because a.(e+b) a a but a.(e+b) 6a a.b; {a, b} : a 6� {a, b} : a+b because e+b a a
but e + b 6a a+ b.

The next proposition states the desirable properties listed in Section 1 in
a formal way. Notice that for most of them it would be possible to weaken
the premises, but we prefer this presentation as it highlights more clearly the
relevant features of�. The proofs are omitted as they are easy (see the alternative
characterization of � in Definition 3).

Proposition 2. Let I : σ and I ′ : σ′ be contracts such that I ∩ I ′ = ∅. Then:

1. if J : ρ � I ∪ I ′ : σ and J : ρ � I ∪ I ′ : σ′, then J : ρ � I ∪ I ′ : σ ⊕ σ′;
2. if σ↓ and σ′↓, then I ∪ I ′ : σ � I ∪ I ′ : σ + σ′;
3. if σ′↓, then I ∪ I ′ : σ{0/x} � I ∪ I ′ : σ{σ′

/x};
4. I : σ � I ∪ I ′ : σ.

Item 1 states that I∪I ′ : σ⊕σ′ is the largest contract that satisfies the clients
that are compliant with both I∪I ′ : σ and I∪I ′ : σ′. Namely, JI∪I ′ : σK∩JI∪I ′ :
σ′K = JI ∪ I ′ : σ ⊕ σ′K. Item 2 gives sufficient conditions for width extensions of
Web services: a Web service may be upgraded to offer additional functionalities
without affecting the set of clients it satisfies, so long as such new functionalities
regard names that were not present in the original service. In fact, it suffices to
require init(σ′)∩I = ∅ to establish the result. Contrary to item 1, I∪I ′ : σ+σ′

is not the smallest contract that satisfies the clients that are compliant with
either I ∪ I ′ : σ or I ∪ I ′ : σ′. For example, {a, b} : a.e ⊕ b.e ∈ J{a, b} : a + bK
but {a, b} : a.e ⊕ b.e 6∈ J{a, b} : aK and {a, b} : a.e ⊕ b.e 6∈ J{a, b} : bK, hence
JI ∪ I ′ : σK ∪ JI ∪ I ′ : σ′K ( JI ∪ I ′ : σ + σ′K. Item 3 states a similar result, but
for depth extensions, that is the ability to extend the conversation offered by
a service, provided that the additional conversation occurs on names that were
not present in the original service. The premises can be weakened as for item 2.
In fact, item 2 can be seen as a special case of item 3, if we consider the contract
I ∪ I ′ : σ+x. Item 4 shows that merely increasing the names that a Web service
can interact on does not affect the clients it satisfies.

As usual with testing semantics, it is hard to establish a relationship between
two contracts because the sets JI : σK are infinite. A direct definition of the
preorder is therefore preferred.

Definition 3. Let σ ⇓ r if and only if σ =⇒ σ′ and r = init(σ′). A coinductive
subcontract is a relation R such that if (I : ρ, J : σ) ∈ R, then I ⊆ J and
whenever ρ↓ then

1. σ↓, and
2. σ ⇓ r implies ρ ⇓ r′ and r′ ⊆ r, and
3. α ∈ I and σ

α=⇒ σ′ imply ρ
α=⇒ ρ1, . . . , ρ

α=⇒ ρn and (I :
⊕

1≤i≤n ρi, J :
σ′2) ∈ R.
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By this definition, a contract I : ρ such that ρ↑ is the smallest one with
interface I. When ρ↓, condition 1 constrains the larger contract J : σ to con-
verge as well, since clients might rely on the convergence of ρ to complete
successfully. Condition 2 states that J : σ must exhibit a more deterministic
behavior: the lesser the number of ready sets is, the more deterministic the
contract is. Furthermore, J : σ should expose at least the same capabilities as
the smaller one (r′ ⊆ r). Condition 3 is perhaps the most subtle one, as it
deals with all the possible derivatives of the smaller contract. The point is that
{a, b, c} : a.b + a.c ' {a, b, c} : a.(b ⊕ c) since, after interacting on a, a client of
the service on the left side of ' is not aware of which state the service is in (it
can be either b or c). Hence, we have to consider all of the possible derivatives
after a, thus reducing to verifying ({a, b, c} : (b+ c)⊕ b⊕ c, {a, b, c} : b⊕ c) ∈ R
which trivially holds.

The largest coinductive subcontract and � do coincide (Theorem 1). The
following lemma is preparatory to this result.

Lemma 1. Let (I : ρ, J : σ) ∈ R, with R a coinductive subcontract, and
σ
α1···αn=⇒ σ′, with names(α1. · · · .αn) ⊆ I. If, for every i, ρ ↓ α1 · · ·αi, then there

exist ρ α1···αn=⇒ ρ1, . . . , ρ
α1···αn=⇒ ρm, m ≥ 1, such that (I :

⊕
1≤j≤m ρj , J : σ′) ∈ R.

In the proofs that follow we often mention the “unzipping” of a derivation
ρ | σ ϕ

=⇒ ρ′ | σ′, which results into two sequences ψ and ψ′ of actions such

that ρ
ψ

=⇒ ρ′ and σ
ψ′

=⇒ σ′. Intuitively, ψ and ψ′ contain (a subset of) the
actions in ϕ interspersed with the actions on which (the derivatives of) ρ and σ
have synchronized. When ϕ is empty, then ψ = ψ′, where ψ is the co-sequence
obtained from ψ by swapping names and co-names. By “zipping” we mean the

inverse process whereby two or more derivations such as ρ
ψ

=⇒ ρ′ and σ
ψ′

=⇒ σ′

are combined to produce ρ | σ ϕ
=⇒ ρ′ | σ′. See [14] for a more detailed discussion.

Theorem 1. � is the largest coinductive subcontract relation.

Proof. We prove that I1 : σ1 � I2 : σ2 if and only if there exists a coinductive
subcontract R such that (I1 : σ1, I2 : σ2) ∈ R.

Let R be a coinductive subcontract and (I1 : σ1, I2 : σ2) ∈ R. In order to
demonstrate I1 : σ1 � I2 : σ2, let ρ | σ2 =⇒ ρ′ | σ′2 X−→. By unzipping this

derivation we obtain ρ
ϕ

=⇒ ρ′ and σ2
ϕ

=⇒ σ′2, for some sequence ϕ of actions.

At any intermediate step of σ2
ϕ

=⇒ σ′2, the behavior converges because e actions
cannot occur in σ2 and, by definition of behavior compliance, if the (service)
behavior diverges then the (client) behavior cannot propose actions other than e.

By Lemma 1 there exist σ1
ϕ

=⇒ τ1, . . . , σ1
ϕ

=⇒ τn, n ≥ 1, such that (I1 :⊕
1≤i≤n τi, I2 : σ′2) ∈ R. Let σ2 ⇓ r′ and let τ be such that τi =⇒ τ X−→ and

init(τ) ⊆ r′. We know that such τ exists since τi↓ for every 1 ≤ i ≤ n and
because of the coinductive subcontract we know that

⊕
1≤i≤n τi ⇓ r and r ⊆ r′.

Hence, by zipping the derivations from ρ and σ1 we obtain

ρ | σ1 =⇒ ρ | τi =⇒ ρ | τ X−→
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and from ρ a σ1 we conclude {e} ⊆ init(ρ). Next, consider a derivation ρ |
σ2 =⇒ ρ′ | σ′2 and σ′2↑. By unzipping the derivation as before, we conclude

that there exists a sequence ϕ of actions such that σ1
ϕ

=⇒ σ′1 and σ′1↑. Hence
ρ | σ1 =⇒ ρ′ | σ′1 and from ρ a σ1 we conclude {e} = init(ρ′).

As regards the opposite direction, let

R def= {(I1 : σ1, I2 : σ2) | I1 : σ1 � I2 : σ2} .

We prove that R is a coinductive subcontract. Let (I1 : σ1, I2 : σ2) ∈ R. The
client I1 : e belongs to JI1 : σ1K; therefore it belongs to JI2 : σ2K as well. Hence
I1 ⊆ I2. If σ1↑ there is nothing to prove. So assume σ1↓. Proofs of conditions 1,
2, and 3 in the definition of coinductive subcontract are in order:

1. Since Ω a σ1 we have Ω a σ2. Hence σ2↓ for init(Ω) = ∅.
2. Let r1, . . . ,rn be the ready sets of σ1 and assume by contradiction that

there exists r′ such that σ2 ⇓ r′ and for every 1 ≤ i ≤ n there exists
αi ∈ ri and αi 6∈ r′. By definition of ready set we have σ2 =⇒ σ′2 X−→ and
init(σ′2) ⊆ r′. Consider ρ def=

∑
1≤i≤n αi.e. Then, ρ a σ1 but ρ 6a σ2 because

ρ | σ2 =⇒ ρ | σ′2 X−→ and e 6∈ init(ρ), which is absurd.
3. Let σ2

α=⇒ σ′2 and α ∈ I1. It must be the case that σ1
α=⇒, otherwise

e + α a σ1 but e + α 6a σ2. Consider the derivatives ρ1, . . . , ρn such that
σ1 =⇒ α−→ ρi. Since σ1↓ there is a finite number of such derivatives. We
must prove that (I1 :

⊕
1≤i≤n ρi, I2 : σ′2) ∈ R, namely that I1 :

⊕
1≤i≤n ρi �

I2 : σ′2. Consider ρ′ such that names(ρ′) ⊆ I1 and ρ′ a
⊕

1≤i≤n ρi and take

ρ
def= e + α.ρ′. From ρ a σ1 we obtain ρ a σ2. Now ρ | σ2 −→ ρ′ | σ′2 and

from Proposition 1 we conclude ρ′ a σ′2. ut

We are not aware of any process semantics corresponding to � in the litera-
ture. However, if we restrict � to contracts with the same interface, we retrieve
a well-known semantics: the must-testing preorder [14]. We recall the definition
of the must preorder for the behaviors in Section 2.

Definition 4 (Must preorder [19]). A sequence of transitions σ0 | ρ0 −→
σ1 | ρ1 −→ · · · is a maximal computation if either it is infinite or the last term
σn | ρn is such that σn | ρn X−→.

Let e /∈ names(σ). Let σ must ρ if, for every maximal computation σ | ρ =
σ0 | ρ0 −→ σ1 | ρ1 −→ · · ·, there exists n ≥ 0 such that ρn

e−→. We write
σ vmust σ

′ if and only if, for every ρ, σ must ρ implies σ′ must ρ.

Before showing the precise relationship between � and vmust, let us comment
on the differences between ρ a σ and σ must ρ. The must relation is such that
σ must e+ρ holds for every σ, so that the observers of the form e+ρ are useless
for discriminating between different (service) behaviors in vmust. However this
is not the case for �. For example e+ a 6a a (whilst a must e+ a). In our setting
it makes no sense to declare that e+ a is compliant with a with the justification
that, at some point in a computation starting from e + a | a, the client can
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emit e. When a client and a service interact, actions cannot be undone. On the
other hand we have e ⊕ e a Ω and Ω must/ e ⊕ e. That is a (client) behavior
compliant with a divergent (service) behavior is such that it is compliant with
every (service) behavior, hence it is useless for discriminating between different
(service) behaviors in �. Historically, Ω must/ e ⊕ e has been motivated by the
fact that the divergent process may prevent the observer from performing the one
internal reduction that leads to success. In a distributed setting this motivation
is no longer sustainable, since client and service will usually run independently
on different processors. Finally, consider a divergent (client) behavior ρ. In the
must relation such observer never succeeds unless ρ e−→. In the a relation such
observer is compliant so long as all of its finite computations lead to a successful
state. So, for example, the client behaviors rec x.a.e + x and a.e have the same
discriminating power as far as � is concerned.

Theorem 2. Let I = names(σ). I : σ � I : τ if and only if σ vmust τ .

Proof (“Only if” part). LetR be a coinductive subcontract and (I : σ, I : τ) ∈ R.
By contradiction, let σ vmust ρ and τ must/ ρ. Therefore there exists a maximal
computation τ | ρ = τ0 | ρ0 −→ τ1 | ρ1 −→ · · · such that, for every i, ρi X e−→.
We distinguish two cases: (a) the computation is finite, (b) the computation is
infinite.

In case (a) there exists n such that τn | ρn X−→ and let τ
ϕ

=⇒ τn and ρ
ϕ

=⇒ ρn.
Since (I : σ, I : τ) ∈ R, from Proposition 1 we obtain σ

ϕ
=⇒ σ1, . . . , σ

ϕ
=⇒ σm,

m ≥ 1, such that (I :
⊕

1≤i≤m σi, I : τn) ∈ R. If σi↑, for some 1 ≤ i ≤ m, then

the derivations σ
ϕ

=⇒ σi and ρ
ϕ

=⇒ ρn may be zipped, thus obtaining an infinite
computation σ | ρ =⇒ σi | ρn −→ · · · that contradicts σ vmust ρ. Otherwise,
for every 1 ≤ i ≤ m, σi↓. From (I :

⊕
1≤i≤m σi, I : τn) ∈ R we obtain that

for every r such that τn ⇓ r there exists r′ ⊆ r such that
⊕

1≤i≤m σi ⇓ r′. In
other words, there exists i such that σi =⇒ σ′i X−→ and init(σ′i) ⊆ r. Hence,
σ | ρ =⇒ σ′i | τn X−→, which again contradicts σ must ρ.

In case (b), we distinguish two subcases:

b1. there exists n such that τn↑ or ρn↑. Then using an argument similar to case
(a), it is possible to show a contradiction to σ vmust ρ.

b2. The behaviors τ and ρ communicate infinitely often, that is the computation
may be unzipped into τ

ϕ
=⇒ and ρ

ϕ
=⇒, where ϕ is infinite. It is easy to prove

that, for every finite prefix ϕ′ of ϕ there is σ′ such that σ
ϕ′

=⇒ σ′. Therefore
there exists an infinite computation of σ | ρ that transits in the same terms
ρ0, ρ1, . . . as the ones of τ | ρ. This contradicts that σ must ρ.

(“If” part). We prove that

R = {(I : τ1, I : τ2) | names(τ1) ⊆ I and τ1 vmust τ2} .

is a coinductive subcontract. Let (I : τ1, I : τ2) ∈ R. If τ1↑ there is nothing to
prove. Let τ1↓; the proofs of the three conditions of Definition 3 are in order.
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1. By contradiction, let τ2↑. Then τ1 must e ⊕ e whereas τ2 must/ e ⊕ e which
is absurd, hence τ2↓.

2. Let r1, . . . ,rn be the ready sets of τ1. Assume by contradiction that there
exists r such that τ2 ⇓ r and ri 6⊆ r for every 1 ≤ i ≤ n. That is, every
ri is nonempty and, for every 1 ≤ i ≤ n, there exists αi ∈ ri such that
αi 6∈ r. From τ2↓ and the definition of ready set, there exists τ ′2 such that
τ2 =⇒ τ ′2 X−→ and init(τ ′2) ⊆ r. Now τ1 must

∑
1≤i≤n αi.e but τ2 must/∑

1≤i≤n αi.e, which is absurd.

3. Let τ2
α=⇒ τ ′2. Then also τ1

α=⇒. In fact, if this were not the case, then
τ1 must (e⊕ e) + α but τ2 must/ (e⊕ e) + α, which is absurd. Let ρ1, . . . , ρn
be all the derivatives of τ1 after α, namely τ1 =⇒ α−→ ρi for every 1 ≤ i ≤ n.
(This set is finite because τ1↓.) We show that (I :

⊕
1≤i≤n ρi, I : τ ′2) ∈ R,

that is
⊕

1≤i≤n ρi vmust τ
′
2. By contradiction, let

⊕
1≤i≤n ρi 6vmust τ

′
2, then

there exists ρ such that
⊕

1≤i≤n ρi must ρ but τ ′2 must/ ρ. In particular
ρi must ρ for every 1 ≤ i ≤ n. In this case τ1 must (e⊕ e) + α.ρ but τ2 must/
(e⊕e)+α.ρ, which is absurd. We conclude that (I :

⊕
1≤i≤n ρi, I : τ ′2) ∈ R.

ut

4 Dual contracts

We now turn our attention to the problem of querying a database of Web services
contracts. The basic idea is that given a client I : ρ we wish to find all the service
contracts J : σ such that I ⊆ J and ρ a σ. We can partly simplify the problem by
computing one particular service contract J0 : σ0 such that I ⊆ J0 and ρ a σ0

and then by taking all the services in the registry that are larger than this
one. Actually, in order to maximize the number of service contracts returned as
answer to the query, the dual operator of a (client) contract I : ρ should compute
a behavior ρ⊥, so that I : ρ⊥ is smallest service contract that satisfies the client
contract I : ρ. We call such contract the principal dual contract of I : ρ.

It is convenient to restrict the definition of dual to those behaviors ρ that
never lead to 0 without emitting e. For example, the behavior a.e+b.0 describes a
client that succeeds if the service proposes a, but that fails if the service proposes
b. As far as querying is concerned, such behavior is completely equivalent to a.e.
As another example, the degenerate client behavior 0 is such that no service will
ever satisfy it. In general, if a client is unable to handle a particular action, like
b in the first example, it should simply omit that action from its behavior. We
say that a (client) contract I : ρ is canonical if, whenever ρ

ϕ
=⇒ ρ′ is maximal,

then ϕ = ϕ′e and e /∈ names(ϕ′). For example {a} : a.e, {a} : rec x.a.x, and
∅ : Ω are canonical; {a, b} : a.e + b.0 and {a} : rec x.a+ x are not canonical.

To ease the definition of the dual we introduce a countable set of behavior
names, called dual(I, ρ), which are defined by equations dual(I, ρ) def= σ, where
I is finite and σ is a behavior containing behavior names dual(I ′, ρ′) instead
of variables. In order for the definition to be well founded, we need to prove a
preliminary finiteness result.
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Proposition 3. Continuations of prefixes in behaviors are finite. Namely, for
every σ the set {σ′ | there exist ϕ, α such that σ

ϕ
=⇒ α−→ σ′} is finite.

Proof. Let σ be a behavior. Then there exists nσ such that for every σ
ϕ

=⇒ σ′,
the different subterms α.ρ of σ′ that are not underneath a prefix, or an internal
choice, or a recursion are less than nσ. To compute this nσ, count all the prefixes
α.ρ (for every α and ρ) in σ. It is possible to show that in σ′ every α.ρ not
underneath a prefix or an internal choice or a recursion may be traced back
to one of those counted in nσ. A standard technique for demonstrating this
statement uses labels [16]. ut

Notice that the set {σ′ | σ =⇒ σ′} may be infinite. This is the case when
σ = rec x.a + x. However, the set {σ′ | rec x.a + x =⇒ a−→ σ′} is finite and it
is {0}. An immediate consequence of Proposition 3 is that behaviors are image
finite. Namely, for every σ and α, the set {σ′ | σ =⇒ α−→ σ′} is finite.

Definition 5 (Dual contract). Let I : ρ be a canonical contract. Let co(I) def=
{a | a ∈ I}. The dual of ρ with respect to I, written dual(I, ρ), is defined as
follows:

dual(I, ρ) def=



Ω, if init(ρ) = {e}

∑
ρ⇓r,r\{e}6=∅

(
0⊕︸︷︷︸

if e ∈ r

⊕
ρ=⇒α∈r\{e}−→ ρ′

α.dual(I, ρ′)
)

+
(
0⊕

⊕
α∈(I∪co(I))\init(ρ) α.Ω

)
︸ ︷︷ ︸

if (I ∪ co(I)) \ init(ρ) 6= ∅

, otherwise

The behavior dual(I, ρ) is well defined because the summands are always finite:
the external summand is finite because behaviors manifest finitely many different
ready sets; the internal summand is finite because of Proposition 3. It follows
that from every equation dual(I, ρ) def= σ it is possible to reach a finite set
of behavior constants. It is folklore to transform such equations into recursive
behaviors, thus conforming with the syntax of Section 2.

Few comments about dual(I, ρ), when init(ρ) 6= {e}, follow. In this case, the
behavior ρ may autonomously transit to different states, each one offering a par-
ticular ready set. Thus the dual behavior leaves the choice to the client: this is the
reason for the external choice in the second line. Once the state has been chosen,
the client offers to the service a spectrum of possible actions: this is the reason
for the internal choice in the first line (of the “otherwise” clause). The second line
covers all the cases of actions that are allowed by the interface and that are not
offered by the client. The point is that the dual operator must compute the prin-
cipal (read, the smallest) service contract that satisfies the client, and the small-
est convergent behavior with respect to a (finite) interface I is

⊕
α∈I∪co(I) α.

The external choice in the second line distributes the proper dual contract over
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the internal choice of all the actions not allowed by the interface. The 0 sum-
mand accounts for the possibility that none of the actions not allowed by the
interface is present. For example, dual({a}, a.e) = a.Ω + (0 ⊕ a.Ω). The dual
of a divergent (canonical) client is also well defined: dual({a}, rec x.a.e + x) =
a.Ω + (0 ⊕ a.Ω). We notice that the definition also covers duals of nontermi-
nating clients: dual({a}, rec x.a.x) = a.dual({a}, rec x.a.x)+ (0⊕ a.Ω), namely
dual({a}, rec x.a.x) ' rec x.(a.x+ (0⊕ a.Ω)).

Theorem 3. Let I : ρ be a canonical contract. Then:

1. ρ a dual(I, ρ);
2. if ρ a σ and names(σ) ⊆ I, then I : dual(I, ρ) � I : σ.

Proof. Regarding item 1, we remark that, by definition of dual, every derivation
ρ | dual(I, ρ) =⇒ ρ′′ | σ may be decomposed into ρ | dual(I, ρ) =⇒ ρ′ |
dual(I, ρ′) =⇒ ρ′′ | τ , where ρ′ =⇒ ρ′′ and dual(I, ρ′) =⇒ τ .

If τ↑ then dual(I, ρ′) = Ω, which means that {e} = init(ρ′). In this case, the
conditions in Definition 1 are satisfied. If ρ′′ | τ X−→ then assume by contradiction
that e 6∈ init(ρ′′). By definition of canonical client, init(ρ′′) 6= ∅. Therefore,
by definition of dual, dual(I, ρ′) ⇓ r implies r 6= ∅ because dual(I, ρ′) has an
empty ready set provided every ready set of ρ′ contains e, which is not the case
by hypothesis. Hence we conclude init(τ) 6= ∅ and co(init(ρ′′)) ∩ init(τ) 6= ∅
by definition of dual, which is absurd.

Regarding item 2, let R be the least relation such that:

– (I : dual(I, ρ), I : σ) ∈ R;
– if σ

ϕ
=⇒, ρ

ϕ
=⇒, σ ↓ ϕ, and ρ ↓ ϕ, then (I :

⊕
ρ

ϕ
=⇒ρ′

dual(I, ρ′), I : σ′) ∈ R

for every σ
ϕ

=⇒ σ′;
– if σ

ϕ
=⇒ and either ρ Y ϕ=⇒ or σ ↑ ϕ or ρ ↑ ϕ, then (I : Ω, I : σ′) ∈ R for every

σ
ϕ

=⇒ σ′.

We prove that R is a coinductive subcontract. Let (I : τ1, I : τ2) ∈ R. If τ1↑
there is nothing to prove; therefore let τ1↓. The conditions of Definition 3 are
proved in order:

1. By definition of R, there exists ϕ such that σ
ϕ

=⇒ τ2 and σ ↓ ϕ. This allows
us to conclude τ2↓.

2. By definition ofR, there exist ρ1, . . . , ρm such that τ1 =
⊕

1≤j≤m dual(I, ρj)

and ρ
ϕ

=⇒ ρj . Let r1, . . . ,rn be the ready sets of τ1. Assume by contradiction
that τ2 ⇓ r and ri 6⊆ r for every 1 ≤ i ≤ n. In other words, for every 1 ≤
i ≤ n there exists αi ∈ ri such that αi 6∈ r. By definition of dual(I, ρj) this

means that for every 1 ≤ j ≤ m and for every ρ′ such that ρ
ϕ

=⇒ ρj =⇒
ρ′ X−→ we have co(init(ρ′)) ∩ r = ∅ because dual(I, ρj) ⇓ {α} for every
α ∈ init(ρ′) \ {e}. Furthermore, it cannot be that e ∈ init(ρ′) for every
ρ′, for otherwise we would have τ1 ⇓ ∅ again by definition of dual(I, ρj).

Hence, there exists at least one ρ′ such that ρ
ϕ

=⇒ ρ′ X−→ and e 6∈ init(ρ′).
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Since τ2↓ we can find τ ′2 such that τ2 =⇒ τ ′2 X−→ and init(τ ′2) ⊆ r. By

zipping the derivations ρ
ϕ

=⇒ ρ′ and σ
ϕ

=⇒ τ ′2 we obtain ρ | σ =⇒ ρ′ | τ ′2. We
derive ρ′ | τ ′2 X−→ because ρ′ X−→ and τ ′2 X−→ and co(init(ρ′)) ∩ init(τ ′2) ⊆
co(init(ρ′))∩r = ∅. Furthermore, e 6∈ init(ρ′), but this is absurd from the
hypothesis ρ a σ.

3. Let τ2
α=⇒ τ ′2. We must prove that there exist τ ′′1 , . . . , τ

′′
n such that τ1

α=⇒ τ ′′i

and (I :
⊕

1≤i≤n τ
′′
i , I : τ ′2) ∈ R. If ρ Yϕα=⇒ or ρ

ϕα
=⇒ and ρ ↑ϕα, then τ1

α=⇒ Ω

by definition of dual(I, ρ) and (I : Ω, I : τ ′2) ∈ R by definition of R. If ρ
ϕα
=⇒

and σ ↑ϕα, then from ρ a σ we obtain that ρ
ϕα
=⇒ ρ′ implies {e} = init(ρ′),

so again τ1
α=⇒ Ω by definition of dual(I, ρ) and (I : Ω, I : τ ′2) ∈ R by

definition of R. The last case is when σ ↓ϕα and ρ
ϕα
=⇒ and ρ↓ϕα. From the

definition of R we obtain that (I :
⊕

ρ
ϕα
=⇒ρ′′

dual(I, ρ′′), I : τ ′2) ∈ R and we

conclude by observing that {dual(I, ρ′′) | ρ ϕα
=⇒ ρ′′} = {τ ′′ | τ1

α=⇒ τ ′′}. ut

5 Choreographies

A choreography is meant to describe the parallel composition of n services (called
participants) that communicate with each other by means of private names
and with the external world by means of public names. Standard languages for
describing choreographies, such as the Web Service Choreography Description
Language (ws-cdl [15]), describe choreography activities, communications, and
their mutual dependencies from a global perspective. From such descriptions it
is possible to synthesize the so-called end-point projections, namely the behav-
ioral specifications of the single participants, provided that the global description
respects some fundamental constraints (see for example [5] and [4]).

In this work, we identify a choreography with the composition of its end-
point projections, which are represented as contracts. Formally, a choreography
is a term

Σ ::= (I1 : σ1 | · · · | In : σn) \ L

where L is a finite subset of names representing the private names of the chore-
ography. We write Σ[i 7→ J : ρ] for the choreography that is the same as Σ
except that (the contract of) the i-th participant has been replaced by J : ρ. We
also write ΣL whenever we want to recall the private ports of the choreography.

The transition relation of choreographies is defined using that of behaviors
by the following rules:

σ
α−→ σ′ names(α) /∈ L

ΣL[i 7→ I : σ] α−→ ΣL[i 7→ I : σ′]

σ −→ σ′

ΣL[i 7→ I : σ] −→ ΣL[i 7→ I : σ′]

i 6= j σ
α−→ σ′ ρ

α−→ ρ′ names(α) ∈ L
ΣL[i 7→ I : σ][j 7→ J : ρ] −→ ΣL[i 7→ I : σ′][j 7→ J : ρ′]
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Having provided choreographies with a transition relation, the notions of
convergence, divergence, and ready set can be immediately extended to chore-
ographies from their previous definitions. Similarly, the notion of behavioral
compliance may be extended in order to relate the behavior of a client with (the
behavior of) a choreography, which we denote by ρ a Σ. That is, a choreogra-
phy Σ = (I1 : σ1 | · · · | In : σn) \ L is a (complex) service whose interface is
int(Σ) def=

⋃
1≤i≤n Ii \L and whose behavior is the combination of the behaviors

of the participants running in parallel. In this setting, a (client) contract J : ρ
is compliant with the choreography Σ if J ⊆ int(Σ) and ρ a Σ.

Definition 6 (Choreography refinement). Let Σ = (I1 : σ1 | · · · | In :
σn) \ L and Σ′ = (I ′1 : σ1 | · · · | I ′n : σn) \ L′. The choreography Σ′ is a
refinement of Σ if and only if the following conditions hold:

1. int(Σ) = int(Σ′);
2. for every 1 ≤ i ≤ n we have Ii : σi � I ′i : σ′i;
3. for every 1 ≤ i, j ≤ n with i 6= j we have that L′ ∩ (names(σ′i) \ names(σi))∩

(names(σ′j) \ names(σj)) = ∅.

Refinement defines a “safe” replacement of activities in a choreography with
more detailed ones (such as their implementations) still preserving the overall
interface of the choreography (condition 1). The replacing activities may have
more capabilities than those offered by the replaced ones (condition 2) and it
must not be the case that the new activities communicate with each other by
means of names that do not occur in the original choreography (condition 3) for
otherwise the original choreography specification would be violated.

We now prove a soundness result for the notion of refinement which represents
a restricted form of precongruence of � with respect to the parallel composition.
The result is not based on any particular property (e.g. deadlock freedom) of
the choreography itself. We merely show that, from the point of view of a client
interacting with a choreography as a whole, the refinement of the choreography
does not jeopardize the completion of the client.

Theorem 4. Let I : ρ be compliant with a choreography Σ1 and Σ2 be a refine-
ment of Σ1. Then I : ρ is also compliant with Σ2.

Proof. Let Σ1 = (I1 : σ1 | · · · | In : ρn) \ L and let Σ2 = (J1 : τ1 | · · · | Jn :
τn) \ L′. Consider a computation ρ | Σ2 =⇒ ρ′ | Σ′

2 where Σ′
2 = (J1 : τ ′1 |

· · · | Jn : τ ′n) \ L. By unzipping this computation we obtain that there exists

a sequence ϕ of actions such that ρ
ϕ

=⇒ ρ′ and Σ2
ϕ

=⇒ Σ′
2. By unzipping the

computation of Σ2 with respect to all of its participants we obtain n sequences
ϕ1, . . . , ϕn of actions such that τi

ϕi=⇒ τ ′i for every 1 ≤ i ≤ n. From condition 1
in the definition of choreography refinement the names in ϕ must be in int(Σ1).
From condition 3 in the definition of choreography refinement we know that
participants in Σ2 cannot communicate if not by means of names that were
already present in Σ1. Hence, for every 1 ≤ i ≤ n, names(ϕi) ⊆ Ii and σi

ϕi=⇒.

By zipping these derivations we obtain that Σ1
ϕ

=⇒ as well.
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Let ρ′ | Σ′
2 X−→. If Σ1 ↑ϕ then, by ρ a Σ1 we derive {e} = init(ρ′). If Σ′

1 ↓ϕ,
then from Σ2 X−→ and condition 2 in the definition of choreography refinement,
we obtain that for every 1 ≤ i ≤ n there exists σ′i such that σi

ϕi=⇒ σ′i X−→ and
init(σ′i) ⊆ init(τ ′i). Take Σ′

1 = (I1 : σ′1 | · · · | In : σ′n) \ L. Then ρ | Σ1 =⇒ ρ′ |
Σ′

1 X−→ and from ρ a Σ1 we conclude {e} ⊆ init(ρ′).
Suppose Σ′

2↑. This may happen either because one (or more) participants
diverge autonomously, or because two (or more) participants interact infinitely
often. By definition of refinement and using the same arguments as above, we
obtain that there exists Σ′

1 such that Σ1
ϕ

=⇒ Σ′
1 and Σ′

1↑. This may happen
either because one (or more) participants diverge autonomously, or because two
(or more) participants interact infinitely often (recall that the refined choreog-
raphy cannot exhibit more synchronizations than the original one). Hence we
conclude {e} = init(ρ′). ut

6 Concluding remarks

In this contribution we have studied a formal theory of Web services contracts.
The subcontract preorder used in the theory arises semantically as in the testing
setting, except that the notion of “passing a test” is essentially different and
reflects more faithfully the interaction of clients and services. We have given two
different characterizations of the subcontract preorder, one directly induced by
the notion of compliance, the other one that is more amenable for an algorithmic
implementation. The subcontract relation is effectively and efficiently applica-
ble in any query-based system for service discovery because it is supported by
a notion of principal dual contract. It is also applicable in choreographies for
replacing contracts with larger ones.

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog
in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

[ValidLogin]

[OutOfStock]

[InvalidLogin]

[InvalidPayment]

[Accepted]

[OutOfStock]
[InvalidPayment]

Fig. 1. Contract of a simple e-commerce service as a wscl diagram.

The theory may be used as a foundation of Web services technologies, such
as wsdl and wscl. In [6] we already discussed how to encode wsdl message-
exchange patterns and acyclic wscl diagrams into the recursion-free fragment
of the contract language. The language in this paper allows us to express also
cyclic wscl conversations by means of recursion. Figure 1 shows a wscl diagram
describing the protocol of a service requiring clients to login before they can issue
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a query. After the query, the service returns a catalog. From this point on, the
client can decide whether to purchase an item from the catalog or to logout
and leave. In case of purchase, the service may either report that the purchase
was successful, or that the item is out-of-stock, or that the client’s payment was
refused. By interpreting names as message types, this e-commerce service can
be encoded in our language by a contract whose behavior is:

rec x.Login.(InvalidLogin.x⊕ ValidLogin.rec y.
Query.Catalog.(y + Logout + rec z.Purchase.
Accepted⊕ InvalidPayment.(z + Logout)⊕ OutOfStock.(y + Logout)))

We notice the correspondence between unlabeled (respectively, labeled) transi-
tions in Figure 1 and external (respectively, internal) choices in the contract.
We also notice how recursion is used for expressing iteration (the cycles in the
figure) so that the client is given another chance whenever an action fails for
some reason.

Several future research directions stem from this work. On the technical side,
we would like to define and investigate an axiomatic characterization of �. We
expect such axiomatization to closely resemble the one for the vmust preorder [19,
14]. On the linguistic side we would like to explore new process constructions
that could take into account information available with contracts. For instance,
imagine a client that wants to use a service exporting the contract a⊕ b; in the
simple language of Section 2 the client cannot specify that it wants to connect
on b if available, and on a otherwise, for the choice operators are symmetric. It
is unclear to which extent such constructs affect the � preoder over contracts.
The discussion of Proposition 2 suggests that there are interesting connections
between the properties of the � preorder and the boolean operators over sets
of compliant clients. We aim to further explore such set-theoretic interpretation
of contracts and to devise a query language for service discovery that provides
primitive operators for union, intersection, and negation for contracts. The au-
thors of [6] provide a type system to extract the contract out of a recursion-free
fragment of ccs-like process calculus. We aim to extend such type system to
full ccs, although the task is not trivial because ccs processes may exhibit a
non-regular behavior. When the behavior cannot be captured accurately by our
contract language, regular under- and over-estimations must be provided. Fi-
nally, a major task is to move our investigation from a ccs-like formalism to a
π-calculus one for taking into account and generalizing the forthcoming version
of wsdl which enables the possibility to describe higher-order Web services.
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Y. Goland, , A. Gúızar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web Ser-
vices Business Process Execution Language Version 2.0, Jan. 2007. http://docs.
oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html.



18 Cosimo Laneve and Luca Padovani

2. A. Banerji, C. Bartolini, D. Beringer, V. Chopella, et al. Web Services
Conversation Language (wscl) 1.0, Mar. 2002. http://www.w3.org/TR/2002/

NOTE-wscl10-20020314.
3. D. Beringer, H. Kuno, and M. Lemon. Using wscl in a uddi Registry 1.0,

2001. uddi Working Draft Best Practices Document, http://xml.coverpages.
org/HP-UDDI-wscl-5-16-01.pdf.

4. M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography confor-
mance and contract compliance. In Pre-proceedings of 6th Symposium on Software
Composition, 2007.

5. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered pro-
gramming for web services. In Proceedings of 16th European Symposium on Pro-
gramming, LNCS, 2007.

6. S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of
contracts for Web Services. In WS-FM, 3rd Int. Workshop on Web Services and
Formal Methods, number 4184 in LNCS, pages 148–162. Springer, 2006.

7. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for Web Ser-
vices. In Proceedings of 5th ACM SIGPLAN Workshop on Programming Language
Technologies for XML, pages 37–48, 2007.

8. R. Chinnici, H. Haas, A. A. Lewis, J.-J. Moreau, et al. Web Services Description
Language (wsdl) Version 2.0 Part 2: Adjuncts, Mar. 2006. http://www.w3.org/

TR/2006/CR-wsdl20-adjuncts-20060327.
9. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services De-

scription Language (wsdl) Version 2.0 Part 1: Core Language, Mar. 2006. http:
//www.w3.org/TR/2006/CR-wsdl20-20060327.

10. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (wsdl) 1.1, 2001. http://www.w3.org/TR/2001/

NOTE-wsdl-20010315.
11. J. Colgrave and K. Januszewski. Using wsdl in a uddi registry, version 2.0.2. Tech-

nical note, OASIS, 2004. http://www.oasis-open.org/committees/uddi-spec/

doc/tn/uddi-spec-tc-tn-wsdl-v2.htm.
12. S. Gay and M. Hole. Subtyping for session types in the π-calculus. Acta Informat-

ica, 42(2-3):191–225, 2005.
13. M. Hennessy. Acceptance trees. JACM: Journal of the ACM, 32(4):896–928, 1985.
14. M. C. B. Hennessy. Algebraic Theory of Processes. Foundation of Computing.

MIT Press, 1988.
15. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto.

Web Services Choreography Description Language 1.0, 2005. http://www.w3.org/
TR/2005/CR-ws-cdl-10-20051109/.
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