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Abstract

A synchronization is a mechanism allowing two or more
processes to perform actions at the same time. We study the
expressive power of synchronizations gathering more and
more processes simultaneously. We demonstrate the non-
existence of a uniform, fully distributed translation of Mil-
ner’s CCS with synchronizations of n + 1 processes into
CCS with synchronizations of n processes that retains a
“reasonable” semantics. We then extend our study to CCS
with symmetric synchronizations allowing a process to per-
form both inputs and outputs at the same time. We demon-
strate that synchronizations containing more than three in-
put/output items are encodable in those with three items,
while there is an expressivity gap between three and two.

1. Introduction

Process calculi propose several different synchronization
mechanisms. In CCS and pi calculus, the synchronization
is between two processes, one sending a message and the
other receiving it [15, 16]. In CSP, the synchronization
is among all the processes that share a common channel
name [4]. In join calculus there is a programmable syn-
chronization mechanism – the joint inputs – that allows one
to define the channels whose messages must be handled
simultaneously [8]. Other calculi use joint input mecha-
nisms, such as smooth orchestrators [12] – an extension of
asynchronous pi calculus to program web services orches-
trations – and strand algebras – a recent formalism proposed
for DNA computing [6].

In [8], Fournet and Gonthier translated the generic syn-
chronization pattern of join calculus to a basic one consist-
ing of binary synchronizations. Their encoding manifests
two problems. First, it introduces divergence and, in fact, it
has been proved correct with respect to bisimulation, which
is unsensible to divergent computations. Second, the encod-
ing cannot be considered “truly distributed” because it relies
on the locality principle that constrains co-defined channels

to be co-located at the same node.
It is folklore in the Concurrency Theory community that

some expressivity gap between the different forms of syn-
chronization must exists. For example, in a calculus à la
CCS without mixed choice it is not possible to elect one
leader in a (symmetric) network of processes without in-
troducing divergence [19]. On the contrary, if one extends
CCS with a prefix [a1, a2].P that enables P if there are two
outputs on a1 and a2, then leader election in a network con-
sisting of two processes P1 and P2 has the following simple
solution:

P1 = a1 | [a1, a2].out1 P2 = a2 | [a2, a1].out2

(this solution may be elaborated a little bit to let the two
processes declare the same leader).

Our study takes inspiration from the above example. We
extend CCS with the input prefix [a1, · · · , an].P that gets
simultaneously the outputs on a1, · · · , an and transits to P .
This allows us to define a family of process calculi, called
CCSn, that retains input prefixes up-to n names. In order to
demonstrate the presence of an expressivity gap between
CCSn and CCSn−1, we consider a well-known problem
of resource condivision: the dining philosophers problem.
In fact, we study a variant of it – the dining philosophers
problem in the n-hypercube – where the philosophers sit at
the vertices of an hypercube of dimension n, forks are at
the edges, and philosophers can grab forks at their adjacent
edges only. We demonstrate that the problem has solutions
in CCSn but not in CCSn−1 as long as philosophers have
identical codes and initially retain a same number of forks.
Technically we prove that CCSn−1 codes may get to a dead-
lock where all the philosophers are blocked on the attempt
of grabbing forks. The proof uses a well-known result in
discrete mathematics due to Alspach, Bermond and Sotteau:
there are bn/2c edge-disjoint Hamiltonian cycles in the n-
hypercube [1]. (An Hamiltonian cycle is a path traversing
all the vertices of the hypercube without repetition of edges;
two paths are edge-disjoint if they have no edge in com-
mon.) In our setting this means that each philosopher may
grab up-to bn/2c forks without hindering the progress of



the adjacent philosophers. As a result, once all the philoso-
phers have got their forks, the system will eventually either
deadlock, because no one can collect all his adjacent forks,
or backtrack. In the other cases, i.e. a philosopher initially
grabs more than bn/2c forks (and less than n forks), it is
possible to define a reachable deadlock configuration.

The synchronization pattern of CCSn is many-to-one:
there are many outputting processes and exactly one recep-
tor. This is inadequate when more flexibility is required. For
example, consider the mixed-guarded choice

∑
i∈I αi.Pi,

where αi may be either input or output and where the
progress of at most one addend process αi.Pi is allowed.
An implementation of mixed-guarded choice in a choice-
free calculus would require a symmetric management of the
addends, regardless the fact they are inputting or outputting.
We are not aware of any such translation in CCSn. (The
input-guarded choice

∑
i∈I ai.Pi may be easily translated

in CCS2.) This problem paves the way for a slightly differ-
ent calculus: CCS with n-joint prefixes, called CCSn+, that
has only one prefix [α1, · · · , αn].P (again, with αi either
input or output). In CCS2+ there is a simple encoding of
mixed choice:

(`)(
∏
i∈I

[αi, `].[[Pi ]] | `) .

In opposition to what happens with joint inputs, we
demonstrate that 3-joint prefixes are expressive enough for
encoding any n-joint prefix, with n > 3, whilst 2-joint
prefixes are less expressive than 3-joint ones. These con-
clusions follow by the remark that joint-prefixes permit the
synchronization of an arbitrary number of processes. Still,
for 2-joint prefixes the overall effect of synchronizations is
to exhibit at most two labels, which is too restrictive when
more than two resources must be grabbed at once.

Related Works. The question about the expressive power
of synchronization mechanisms dates back (at least) to the
eighties when Francez and Rodeh proposed a distributed,
deterministic solution to the dining philosophers problem
in CSP [9] and Lehmann and Rabin demonstrated that such
a solution does not exist in a language with a synchroniza-
tion à la CCS [14]. After these results, our problem slept for
about two decades, till a contribution by Nestmann on the
expressive power of joint inputs in pi calculus [17]. Nest-
mann demonstrated that it is possible to encode the pi cal-
culus with mixed choice into a pi calculus with joint in-
puts; however he only conjectured the absence of an encod-
ing from pi-calculus with joint inputs into one with 2-ary
joins. Almost contemporary to Nestmann’s paper, there is
a study of concurrent primitives in ML by Panangaden and
Reppy [21] where they claim that it is not possible to imple-
ment an n + 1-way synchronous communication using an
n-way synchronous communication. However they pointed

to a forthcoming paper for the proof of this result that we
have not been able to find.

The techniques in this paper follow the style of [19],
where synchronous pi calculus has been proved more ex-
pressive than the asynchronous one, and of [5, 10], where
synchronizations between two processes using structured
channel names have been studied.

Apart from these contributions in process calculi, there
are close results in formalisms for biology. Actually, our
initial motivation for studying the expressive power of syn-
chronizations has been the implementation of biologically
inspired languages in pi calculus. In [13], we demonstrated
that it is not possible to implement the κ-calculus into one
admitting at most two reactants. In that paper, the expres-
sive power was demonstrated by analyzing the models of a
biologically relevant reaction (the homeo-trimerization).

Structure of the paper. In Section 2 we define CCS with
joint inputs. In Section 3 we define the dining philosophers
problem in the n-hypercube and we study basic properties.
In Section 4 we introduce the notions of edge assignments
and define edge assignments that saturate the forks of the
n-hypercube. In Section 5 the expressive power of CCSn

is analyzed. In Section 6, CCS is extended with joint pre-
fixes and its expressive power is studied. We conclude in
Section 7.

2. CCS with joint inputs

The syntax of CCSn, called n-join CCS, uses a countable
set of names N , ranged over by a, b, c, · · ·, a countable set
of co-names N , ranged over by a, b, c, · · ·, and a countable
set of variables V , ranged over by x, y, z, · · ·.

CCSn processes P , Q, · · · are defined by the grammar:

P ::= 0 inaction
| a.P output
| [a1, · · · , am].P joint input (1 ≤ m ≤ n)
| (a)P restriction
| P | P parallel
| x variable
| recx. P recursion

The term 0 defines the terminated process; a.P defines a
process that sends a message on a and continues as P ; the
joint input [a1, · · · , am].P defines a process that receives si-
multaneously messages on a1, · · · , am and continues as P .
The parallel allows processes to interact. We often abbre-
viate the parallel composition of Pi for i ∈ I , where I is
a finite set, with

∏
i∈I Pi. The restriction (a)P limits the

scope of a to P ; the name a is said to be bound in (a)P .
This is the only binding operator of names in CCSn. When
A is a set {a1, · · · , , am}, we write (A)P for (a1) · · · (an)P
(the order of restrictions is irrelevant – see the structural
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congruence below). The free names in P , denoted fn(P ),
are the names in P with a non-bound occurrence either in
a joint-input or in an output. The term recx.P defines a
recursive process: a (free) occurrence of the variable x in P
stands for the whole recx.P . We assume that variables are
always bound in processes. Ending 0 will be omitted.

The calculus CCS1 is Milner’s CCS without relabelling
and choice [15]. Inputs in CCSn have at most n items.
One might be stricter on this point, by admitting inputs
of CCSn with exactly n messages. This constraint is in
fact unimportant, since it is easy to encode inputs with
less than n elements into a calculus using only n-joint in-
puts. For example [a1, · · · , an−1].P may be encoded as
(`)(` | [a1, · · · , an−1, `].P ), with ` fresh.

CCSn retains an operational semantics defined by a la-
belled transition system. Let µ, µ′, · · · range over either se-
quences of co-names or sequences of names or the special
symbol τ . The predicate a ∈ µ is true if either a or a occurs
in the sequence µ, otherwise it is false. Let a1, · · · , am \ a
be the function returning

− τ , if a1, · · · , am = a,

− a2, · · · , am, if a1 = a and m ≥ 2,

− a1, (a2, · · · , am \ a), if a1 6= a and a ∈ a2, · · · , am.

The function a1, · · · , am \ a is partial: it is not defined
if a /∈ a1, · · · , am. This function is lifted to argu-
ments that are both sequences: a1, · · · , am \ b1, · · · , b` =
(· · · (a1, · · · , am \ b1) \ · · ·) \ b`. Similarly ∈ is lifted
to sequences: a1, · · · , am ∈ b1, · · · , b` if, for every i,
ai ∈ (b1, · · · , b` \ a1, · · · , ai−1) (this is multiset contain-
ment).

The transition relation of CCSn is defined by the follow-
ing rules (plus the symmetric ones for |).

a.P
a−→ P [a1, · · · , am].P

a1,···,am−→ P

P
µ−→ Q a 6∈ µ

(a)P
µ−→ (a)Q

P{recx.P/x}
µ−→ Q

recx.P
µ−→ Q

P
µ−→ P ′

P | Q µ−→ P ′ | Q

P
a1,···,a`−→ P ′ Q

b1,···,bm−→ Q′

`+m ≤ n

P | Q a1,···,a`,b1,···,bm−→ P ′ | Q′

P
a1,···,am−→ Q P ′

b1,···,b`−→ Q′ b1, · · · , b` ∈ a1, · · · , am

P | P ′ a1,···,am\b1,···,b`−→ Q | Q′

The rules are standard except the last two. Processes per-
forming outputs are collected till a joint input containing
a larger sequence is found. Then the label is updated ac-
cording to the output processes that have been recruited.

If the sequences of outputs and inputs match then the syn-
chronization process terminates and a τ -labelled transition
is yielded. For example, (a)([a, b].P | a.Q) | b.R τ−→
(a)(P | Q) | R because (a)([a, b].P | a.Q) b−→ (a)(P |
Q) and b.R b−→ R. Also (a)([a, b].P | (a.Q | b.R)) τ−→

(a)(P | Q) | R because [a, b].P
a,b−→ P and a.Q | b.R a,b−→

Q | R. It is worth to remark that, in this last exam-
ple, the synchronization between [a, b].P and a.Q | b.R
should have not been possible without a label as a, b. As
usual, we use the following abbreviations of computations:
P

τ−→
∗ µ−→ τ−→

∗
Q is abbreviated with P

µ
=⇒ Q and

P
µ1=⇒ · · · µn=⇒ Q is abbreviated with P

µ1···µn=⇒ Q; we omit
the final process Q when it is not relevant. A computation
that cannot be further extended is called maximal. In par-
ticular, infinite computations are maximal. A computation

P
eµ

=⇒ Q is of type A if labels in µ̃ use names in A ∪ {τ}.
In process calculi it is usual to equate processes that dif-

fer for alpha equivalence, the abelian monoid law of | (as-
sociativity, commutativity and 0 as identity), and the scope
laws

(a)0 ≡ 0, (a)(b)P ≡ (b)(a)P,
P | (a)Q ≡ (a)(P | Q), if a 6∈ fn(P )

Let structural congruence, noted≡, be the least congruence
containing the above laws.

Let ρ be a renaming, that is a map N → N , and let
ρ(a) = ρ(a). Then ρ(P ) is the process where ρ has been
applied homomorphically to every CCSn operator in P . Re-
namings are ranged over by ρ, σ, · · ·.

3. The dining philosophers problem in the hy-
percube

The usual description of Dijkstra’s dining philosophers
problem is the following [7]. There are m philosophers sit-
ting around a table with exactly one fork in between each
adjacent pair of them. Philosophers go indefinitely through
the following cycle: thinking, trying to eat, and eating. In
order to eat, a philosopher needs both the forks on his left
and right sides; when the two forks at his sides are free,
the philosopher grabs them – one after the other –, eats,
and releases them (and starts thinking). The difficulty of
the problem is when every philosopher grabs the fork at his
left. Then, to escape the deadlock, someone has to release
the fork. This fact, assuming that philosophers are identical,
may get back to the initial state, thus yielding a cycle.

The dining philosophers problem has been studied for a
long time. Solutions have been proposed that totally order
either forks or philosophers [3] or that use powerful oper-
ators, such as the CSP synchronization [9], or probabilistic
algorithms [14]. It is worth to observe that the presence of,

3



even simple, solutions of the problem does not invalidate
Lehmann and Rabin’s theorem in [14] (there is no deter-
ministic, deadlock-free, truly distributed and symmetric so-
lution to the dining philosophers problem). But, rather, as
they already pointed out for the CSP solution in [9], that
there is no truly distributed implementation of the synchro-
nization operators we are studying.

Dining philosophers in a hypercube network. We consider
a generalization of the dining philosophers problem where
the philosophers sit at the vertices of an n-hypercube and
forks are at the edges. Thus every philosopher has n neigh-
bour philosophers and n adjacent forks. In this general
problem, a philosopher eats if he grabs all the n adjacent
forks. The Figure 1 illustrates the 3-hypercube and the
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Figure 1. The (3-hyper)cube and the forks

forks; philosophers, represented by 3 bits, label the vertices
and forks label the edges. In the case of the n-hypercube,
the philosophers are represented by n bits – they are 2n –
and the forks are represented by unordered pairs of neigh-
bour philosophers representations – they are n× 2n−1. It is
worth to notice that two philosophers are neighbours if their
representations differ for exactly one bit.

A few preliminary notions follow. We use b, b′, · · · to
range over {0, 1} and b̃, b̃′, · · · to range over {0, 1}n (n bits).
Let 0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1 and 1 ⊕ 1 = 0
and let b1 · · · bn ⊕ 1, the set of neighbours of b1 · · · bn, be
{(b1⊕1)b2 · · · bn, b1(b2⊕1)b3 · · · bn, · · · , b1b2b3 · · · (bn⊕
1)}. Let also Fn, the set of forks of the n-hypercube,
be {f{eb,eb′} | b̃ ∈ {0, 1}n and b̃′ ∈ b̃ ⊕ 1} and Feb,
the set of forks that are adjacent to the philosopher b̃, be
{f{eb,eb′} | b̃′ ∈ b̃ ⊕ 1}, For example, when n = 3, the set
F000 is {f{000,001}, f{000,010}, f{000,100}}; the set notation
as index of a fork allows us to equate the forks f{000,001}
and f{001,000}. Finally, let En = {eateb | b̃ ∈ {0, 1}n}.

A network N is a term [P (0)
1 | · · · | P (0)

m ]. The compu-

tations of the network N have the form:

[P (0)
1 | · · · | P (0)

m ]
µ1−→ [P (1)

1 | · · · | P (1)
m ]

µ2−→ [P (2)
1 | · · · | P (2)

m ]
· · ·
µh−→ [P (h)

1 | · · · | P (h)
m ] .

Given a computation ζ = N
eµ

=⇒ N′, it is possible to define

the projection to the i-th component, written proji(N
eµ

=⇒
N′) to be the computation P

(0)
i

ν1−→ · · · νk−→ P
(k)
i that

consists of the transitions performed by the i-th component
in ζ.

When components are philosophers (and forks) of the n-
hypercube, the computations of philosophers have the fol-
lowing properties: (i) a fork is released only if it is retained,
(ii) a fork is grabbed only if it is not retained. In order
to formalize these two constraints, we define the notion of
(F, F ′)-properness of computations of the philosopher at b̃,
with F, F ′ ⊆ Feb. The sets F and F ′ represent the forks
retained in the initial and final states of the computation,
respectively:

• the empty computation is (F, F )-proper;

• if P
eµ

=⇒ P ′ is (F, F ′)-proper and P ′ τ−→ P ′′ is a
synchronization whose transitions have labels not oc-

curring in Feb \ F ′ then P
eµ

=⇒ P ′
τ−→ P ′′ is (F, F ′)-

proper – internal transitions cannot concern forks that
are not retained;

• if P
eµ

=⇒ P ′ is (F, F ′)-proper and f1, · · · , fk ∈ F ′

then P
eµ

=⇒ P ′
f1,···,fk−→ P ′′ is (F, F ′ \ {f1, · · · , fk})-

proper – a fork is released only if it is retained;

• if P
eµ

=⇒ P ′ is (F, F ′)-proper and f1, · · · , fk ∈ Feb\F ′
then P

eµ
=⇒ P ′

f1,···,fk−→ P ′′ is (F, F ′ ∪ {f1, · · · , fk})-
proper – a fork is grabbed only if it is not retained.

A computation P
eµ

=⇒ P ′ of the philosopher at b̃ of type
Feb ∪ Feb, is F -proper (F ⊆ Feb) if there exists an F ′ such

that it is (F, F ′)-proper; P
eµ

=⇒ P ′
eateb−→ P ′′

eµ
=⇒ P ′′′ is

F -proper if P
eµ

=⇒ P ′ is (F, Feb)-proper and P ′′
eµ

=⇒ P ′′′

is Feb-proper. We observe that, according to this notion of
properness, computations releasing forks that have been just
grabbed are considered proper. Such behaviours are dis-
played by codes [f1, f2, f3].(f1 | f3 | P ) or [f1, f2].(f2 |
[f2].(f1 | P )) that in fact are undistinguishable from
[f2].P (since the communication through the forks is asyn-
chronous [2]). We also observe that F -properness does
not imply that a philosopher will eventually perform a
eateb-transition. This feature will follow by the foregoing
deadlock-freeness condition.
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Definition 3.1 A philosopher system of size n is a pair
(N, (Ge0, · · · , Ge1)), where N is a network [Pe0 | · · · | Pe1 |∏
f∈F⊆Fn Pf ] with fn(Peb) ⊆ Feb∪{eateb} and Ge0, · · · , Ge1

is a partition of Fn \ F such that:

1. for every N
eµ

=⇒ N′ of type En and every b̃,

projeb(N eµ
=⇒ N′) is Geb-proper;

2. every maximal computation of Pf only manifests the
label f .

A philosopher system explicitly represents the distribution
in the system of its components and the fact that forks may
be accessed only by adjacent philosophers.

Proposition 3.2 1. Let (N, (Ge0, · · · , Ge1)) be a philoso-

pher system of size n and let N
eµ

=⇒ N′ of type En.

Let G′e0, · · · , G′e1 be such that projeb(N eµ
=⇒ N′) is

(Geb, G′eb)-proper. Then G′e0, · · · , G′e1 are disjoint sub-
sets of Fn.

2. Let Pe0, · · · , Pe1 be processes such that fn(Peb) ⊆ Feb ∪
{eateb} and let

L G M = (
∏

f∈Feb\G
recx.f.f.x) | (

∏
f∈G

recx.f.f .x) .

Let Ge0, · · · , Ge1 be a partition of Fn \ F such that,
for every b̃ and every ζ = [Peb | L Geb M] µ

=⇒ N of
type {eateb}, the computation proj1(ζ) is Geb-proper.
Then ([Pe0 | · · · | Pe1 | ∏

f∈F f ], (Ge0, · · · , Ge1)) is a
philosopher system of size n.

The first statement of Proposition 3.2 guarantees a relevant
invariant of philosopher systems: two adjacent philosophers
never hold the same fork. The second statement defines a
sufficient condition for processes to take part in a philoso-
pher system. This condition may be verified on a process
basis by analyzing interactions with a “fasting” philospher
that grabs forks (one at a time) and releases them immedi-
ately after. A process P that meets the conditions of Propo-
sition 3.2(2) with the set G ⊆ Feb – namely fn(Peb) ⊆
Feb ∪ {eateb} and, for every ζ = [P | L G M] µ

=⇒ N of
type {eateb}, the computation proj1(ζ) is G-proper – will
be called a philosopher process at b̃ with set of forks G.

Philosopher systems that we will study satisfy the (nat-
ural) constraint that philosophers have all identical code.
This is formalized by assuming that philosophers’ codes
are equal up-to bijective renamings. (In this paper, the
bijective renamings between philosopher processes always
map forks to forks and eat names to eat names.) A sys-
tem with this property will be called symmetric. We no-
tice that, in general, symmetries are broken by transitions,

which may yield configurations where philosophers are in
different states (i.e. philosophers retain different numbers of
forks). We also notice that, in a symmetric system, philoso-
phers not necessarily retain an empty set of forks. For ex-
ample they may all retain one fork and, in general, more
than one (see below).

Deadlocks and protocols. The definition of philosopher
system admits computations without eat-transitions. These
computations are consequences of philosophers releasing
forks before eating or philosophers starving for forks that
are taken by others. The following definition aims at ex-
cluding such (mis)behaviours.

Definition 3.3 A philosopher system of size n is deadlock-
free if every maximal computation of type En has infinitely
many transitions with labels in En.

(Deadlock-freeness is less demanding than livelock freedom
where every philosopher is guaranteed to eventually eat.)

It is possible that symmetric philosopher systems of size
2 (for example) never manifest a deadlock even if philoso-
phers’ codes are written in CCS1. This is the case when
philosophers use different protocols for gathering forks.
Such as those at even positions grab their right fork before
the left one and those at odd positions grab forks in the other
way around. While philosophers are all identical up-to (bi-
jective) renamings to

recx.[f ].[f ′].eat .(x | f | f ′) ,

the competition between those at 00 and 01 and between
those at 11 and 10 already allows the progress of only two
philosophers. The two “winning” philosophers either will
progress grabbing the remaining forks or will compete on a
free fork. In any case, the overall system progresses.

Understanding whether philosophers use a same pro-
tocol or not is difficult because it requires a thorough
analysis of renamings in philosopher systems. How-
ever, we argue that such analysis is not necessary. In
fact, what makes the difference between CCS1 and CCS2

is that every CCS1 philosopher code may be renamed
in a way that the resulting philosopher system is not
deadlock-free. On the contrary, there are CCS2 codes, as
recx.[f, f ′].eat .(x | f | f ′), such that every philoso-
pher system yielded by bijective renamings is deadlock free
(because all the adjacent forks are grabbed at once, there-
fore the renamings have all the same effect). In general,
a deadlock-free philosopher system of size n in CCSn is
([Ph e0, · · · ,Ph e1,∏ f∈Fn f ], (∅, · · · , ∅)), where

Ph eb = recx.[Feb].eat eb.(x | ∏
f∈F eb

f) .

Said in a more speculative way, the formulation of the
dining philosophers problem suggests a high degree of lo-
cality: the behaviour of one philosopher should influence
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in no way the behaviour of his colleagues. Given that the
philosopher codes are identical, this means that a code is
a good solution as long as one may blindly install it in the
other vertices of the hypercube and still obtain a deadlock-
free philosopher system. In the above argument, these blind
installations are formalized by imposing the non existence
of renamings that break the deadlock-freeness.

4 Edge assignments in the n-hypercube

An Hamiltonian cycle in the n-hypercube is a path
traversing all the vertices of the hypercube without repeti-
tion of edges. Two cycles are edge-disjoint if they do not
share any edge. The following result is due to Alspach,
Bermond and Sotteau.

Theorem 4.1 ([1]) In the n-hypercube there exist bn/2c
edge-disjoint Hamiltonian cycles.

This theorem guarantees the progress of every philosopher
in the n-hypercube when everyone initially grabs m forks,
with m ≤ bn/2c, in m edge-disjoint Hamiltonian cycles.
Since nobody can complete the grabbing and since all have
identical code, the philosophers are bound to either dead-
lock or backtrack (to an initial configuration).

When philosophers initially grab m forks, with m >
bn/2c, Theorem 4.1 cannot be used. In this case, we ex-
plicitly define a grabbing that causes a deadlock (to be
escaped, in case, by backtracking). The notion below of
edge assignment represents philosophers’ grabbings in the
n-hypercube.

Definition 4.2 An m-edge assignment in the n-hypercube
(m ≤ n) is a map χ from nodes to edges such that χ(̃b) ⊆
Feb and

• χ(̃b) is either empty or has cardinality m;

• for every pairs of neighbours b̃, b̃′, χ(̃b) ∩ χ(b̃′) = ∅
(an edge is assigned to at most one node).

An m-edge assignment χ in the n-hypercube

• is maximal if, for every m-edge assignment χ′ such
that, for every b̃, χ(̃b) ⊆ χ′(̃b), then χ = χ′ (no further
m-edge assignment can be done);

• (when m < n) is saturated if it is maximal and, for
every χ(̃b) 6= ∅, there exist b̃′ ∈ b̃ ⊕ 1 such that Feb \
χ(̃b)∩F eb′ 6= ∅ (some missing edge has been assigned
to an adjacent node).

The following statements guarantee the existence of edge
assignments in a constructive way (the edge assignments
are explicitly defined). Since the arguments are inductive,

the difficulty is to find basic edge assignements whose com-
position in the inductive step satisfies the constraints of
the corrisponding statement. One basic edge assignment is
the maximal n-edge assignment in the n-hypercube. Let
S be a set of edges, we define S↑

eb as the set {b̃b̃′ ↔
b̃b̃′′ | b̃′ ↔ b̃′′ ∈ S}. For example {00 ↔ 01, 01 ↔ 11}↑1
is {100 ↔ 101, 101 ↔ 111}, which is a set of edges in the
cube.

Lemma 4.3 There exists a maximal n-edge assignment in
the n-hypercube.

Proof. The cases of the square and the cube are left as an
exercise. We demonstrate that,

(4.3)(a) for every n ≥ 4, there are two canonical
maximal assignments in the n-hypercube, called
χn[0] and χn[3], such that, for every b̃:

χn[0](̃b) 6= ∅ implies χn[3](̃b) = ∅
χn[3](̃b) 6= ∅ implies χn[0](̃b) = ∅

Let χ4
[0] and χ4

[3] be

χ4
[0] assigns all the adjacent edges to 0000, 0110, 1011, and

1101; – see Figure ??;

1101  takes       edges

0000

0010 0110

0011

0001 0101

0100

0111

1000

1010 1110

1011

1001 1101

1100

1111

0000  takes        edges 0110  takes       edges

1011  takes        edges

Figure 2. The edge assignment χ4
[0]

χ4
[3] assigns all the adjacent edges to 0011, 0101, 1000, and

1110 – see Figure ??.
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1110  takes       edges

0000

0010 0110

0011

0001 0101

0100

0111

1000

1010 1110

1011

1001 1101

1100

1111

0011  takes        edges 0101  takes       edges

1000  takes        edges

Figure 3. The edge assignment χ4
[3]

It is easy to verify that both χ4
[0] and χ4

[3] satisfy (4.3)(a).
Assuming χn[0] and χn[3] satisfy (4.3)(a), let χn+1

[0] and χn+1
[3]

be the following assignments:

χn+1
[0] (̃b) =



χn[0](̃b
′)↑0 ∪ {0b̃′ ↔ 1b̃′} if b̃ = 0b̃′ and

χn[0](̃b
′) 6= ∅

∅ if b̃ = 0b̃′ and
χn[0](̃b

′) = ∅
χn[3](̃b

′)↑1 ∪ {0b̃′ ↔ 1b̃′} if b̃ = 1b̃′ and
χn[3](̃b

′) 6= ∅
∅ if b̃ = 1b̃′ and

χn[3](̃b
′) = ∅

χn+1
[3] (̃b) =



χn[3](̃b
′)↑0 ∪ {0b̃′ ↔ 1b̃′} if b̃ = 0b̃′ and

χn[3](̃b
′) 6= ∅

∅ if b̃ = 0b̃′ and
χn[3](̃b

′) = ∅
χn[0](̃b

′)↑1 ∪ {0b̃′ ↔ 1b̃′} if b̃ = 1b̃′ and
χn[0](̃b

′) 6= ∅
∅ if b̃ = 1b̃′ and

χn[0](̃b
′) = ∅

The proof that χn+1
[0] and χn+1

[3] satisfy the constraints in
(4.3)(a) follow directly by induction and by definition. �

Lemmas 4.4 and 4.5 guarantee the existence of saturated
m-edge assignments in the n-hypercube when m = n − 1
and bn/2c+ 1 ≤ m ≤ n− 2, respectively.

Lemma 4.4 There exists a saturated (n − 1)-edge assign-
ment in the n-hypercube.

Proof. By induction on n.
Case n = 2. The 2-hypercube is a square. A maximal

1-edge assignment is obtained by giving to every node its
right edge.

Case n = 3. The 3-hypercube is a cube, namely the
cartesian product of two squares at level 0 and 1, respec-
tively. A maximal 2-edge assignment is obtained by taking
the 1-edge assignment of the case n = 2 for the square of
level 0 – the vertices 000, 001, 010, 011 – and lifting it to a
2-edge assignment by assigning the edge between the two
levels to the corresponding vertices of level 0. Additionally,
the assignment allocates 100 ↔ 110, 100 ↔ 101 to 100
and 110↔ 111, 101↔ 111 to 111.

Case n = 4. The 4-hypercube is the cartesian product
of two cubes at level 0 and 1, respectively. A maximal 3-
edge assignment is obtained by taking the 2-edge assign-
ment of the case n = 3 for the cube of level 0 – the ver-
tices 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 – and
lifting it to a 3-edge assignment by assigning the forks
between the two levels to the corresponding vertices of
level 0. Additionally, the assignment allocates the edges
1010 ↔ 1110, 1010 ↔ 1011, 1010 ↔ 1000 to 1010,
1001 ↔ 1011, 1001 ↔ 1000, 1001 ↔ 1101 to 1001,
1111 ↔ 1011, 1111 ↔ 1110, 1111 ↔ 1101 to 1111,
1100↔ 1101, 1100↔ 1110, 1100↔ 1000 to 1100.

Case n ≥ 5. The n-hypercube is the cartesian product
of two (n − 1)-hypercubes at level 0 and 1, respectively.
Let χn−1

[0] be the maximal (n − 1)-edge assignment for the
(n − 1)-hypercube defined in Lemma 4.3. We define χ, a
maximal (n − 1)-edge assignment for the n-hypercube, as
follows:

• χ(0b̃) = χn−1
[0] (̃b)↑0;

• whenever χn−1
[0] (̃b0000) 6= ∅:

– χ(1b̃0000) = (χn−1
[0] (̃b0000)↑1 \ {1b̃0000 ↔

1b̃0010}) ∪ {0b̃0000↔ 1b̃0000};

– χ(1b̃0110) = (χn−1
[0] (̃b0110)↑1 \ {1b̃0110 ↔

1b̃0100}) ∪ {0b̃0110↔ 1b̃0110};

– χ(1b̃1011) = (χn−1
[0] (̃b1011)↑1 \ {1b̃1011 ↔

1b̃1001}) ∪ {0b̃1011↔ 1b̃1011};

– χ(1b̃1101) = (χn−1
[0] (̃b1101)↑1 \ {1b̃1101 ↔

1b̃1111}) ∪ {0b̃1101↔ 1b̃1101};

– χ(1b̃0010) = F1eb0010 \ {1b̃0010↔ 1b̃0110};

– χ(1b̃0100) = F1eb0100 \ {1b̃0100↔ 1b̃0000};

– χ(1b̃1001) = F1eb1001 \ {1b̃1001↔ 1b̃1101};
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– χ(1b̃1111) = F1eb1111 \ {1b̃1111↔ 1b̃1011};

• whenever χn−1
[0] (̃b0011) 6= ∅:

– χ(1b̃0011) = (χn−1
[0] (̃b0011)↑1 \ {1b̃0011 ↔

1b̃0111}) ∪ {0b̃0011↔ 1b̃0011};

– χ(1b̃0101) = (χn−1
[0] (̃b0101)↑1 \ {1b̃0001 ↔

1b̃0101}) ∪ {0b̃0101↔ 1b̃0101};

– χ(1b̃1000) = (χn−1
[0] (̃b1000)↑1 \ {1b̃1000 ↔

1b̃1100}) ∪ {0b̃1000↔ 1b̃1000};

– χ(1b̃1110) = (χn−1
[0] (̃b1110)↑1 \ {1b̃1110 ↔

1b̃1010}) ∪ {0b̃1110↔ 1b̃1110};

– χ(1b̃0001) = F1eb0001 \ {1b̃0001↔ 1b̃0011};

– χ(1b̃0111) = F1eb0111 \ {1b̃0101↔ 1b̃0111};

– χ(1b̃1010) = F1eb1010 \ {1b̃1010↔ 1b̃1000};

– χ(1b̃1100) = F1eb1100 \ {1b̃1100↔ 1b̃1110};

• otherwise: χ(1b̃) = ∅.

Informally, χ lifts the maximal (n − 1) edge assignment
χn−1

[0] to the (n− 1)-hypercube at level 0, and uses a modi-
fied version of χn−1

[0] for the (n−1)-hypercube at level 1. In
particular, the edges in between the two levels are assigned
to vertices at level 1, whilst the same vertices leave exactly
one edge in favour of new vertices that are adjacent to two
of them. We leave the reader to verify that either χ(̃b) = ∅
or χ(̃b) is a set of n − 1 forks. The fact that χ is saturated
follows directly by definition. �

Lemma 4.5 Let 1 ≤ m ≤ n − 2. There exists a saturated
m-edge assignment in the n-hypercube.

Proof. There are two cases: 1 ≤ m ≤ bn/2c and bn/2c +
1 ≤ m ≤ n− 2.

1 ≤ m ≤ bn/2c : By Theorem 4.1 there are bn/2c Hamil-
tonian cycles in the n-hypercube. We consider m of
them and we fix a direction for every cycle. The m-
edge assignment χ associates to every vertex its out-
going m edges. In this case χ(̃b) 6= ∅, for every b̃, and
it is easy to verify that it is saturated.

bn/2c+ 1 ≤ m ≤ n− 2 : Let Hm+1 be an (m + 1)-
hypercube. The n-hypercube is

Hm+1 × · · · ×Hm+1︸ ︷︷ ︸
2n−(m+1)times

By Lemma 4.4, there exists a saturatedm-edge assign-
ment in Hm+1 and let it be χ[m+1]. In the following,

let b̃ range over {0, 1}n−(m+1). We define an edge as-
signment χ′ of the n hypercube as follows:

χ′(̃bb̃′) = χ[m+1](b̃′)↑eb .
By construction, χ′ is such that, for every b̃′′ there exist
b̃′′′ ∈ b̃′′⊕1 with Ffb′′ ∩χ′(b̃′′) 6= ∅. However χ′ is not
maximal because there are vertices b̃′′ with χ′(b̃′′) = ∅
and, yet, m unassigned edges in Ffb′′ . These vertices
had not enough adjacent unassigned edges in Hm+1,
but have enough edges in the n-hypercube due to the
presence of n − (m + 1) further edges. Clearly, it is
possible to extend χ′ by performing a sequence of edge
assignments. When no other edge assignment is pos-
sible, one gets a χ that is maximal. It is also saturated
because of the corresponding property for χ′. �

5 The expressivity gap between CCSn−1 and
CCSn

Every preliminary is set for demonstrating our main re-
sult: the non existence of a philosopher process that may be
freely installed in the vertices of a hypercube without hin-
dering deadlock-freeness.

Theorem 5.1 Let P be a CCSn−1 philosopher process
at b̃ with set of forks ∅. Let also Pf (f ∈ Fn) be
a CCSn−1 code with maximal computations that only
manifest the label f and that have finitely many tran-
sitions. There exists a symmetric philosopher system
([Pe0, · · · , P, · · · , Pe1,∏f∈Fn Pf ], (∅, · · · , ∅)) having P at

position b̃ that is not deadlock-free.

Proof : Without loss of generality, we assume P to be the
process at vertex 0̃.

It is easy to prove that P is a philosopher process at 0̃
with set of forks ∅. As a consequence of this fact, if ρeb is
a bijection mapping Fe0 to Feb and eate0 to eateb, ρeb(P ) is a
philosopher process at b̃ with set of forks ∅.

As a consequence of Proposition 3.2(2), the proof re-
duces to defining a set {ρeb | b̃ ∈ {0, 1}n} of bijec-
tive renamings of P such that the resulting philosopher
system ([ρe0(P ), · · · , ρe1(P ),

∏
f∈Fn Pf ], (∅, · · · , ∅)) is not

deadlock-free (ρe0 being the identity, i.e. P = ρe0(P )). Let
Γ be the set of computations ζ such that:

– ζ = proj1([P, L ∅ M] τ=⇒) is infinite;

– ζ = proj1([P, L ∅ M] τ=⇒ [P ′, Q]) is finite and P ′ 6−→;

– ζ = proj1([P, L ∅ M] τ=⇒ [P ′, Q]) is finite and P ′
eate0−→

is the unique possible transition.
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If Γ has an infinite computation then every symmetric sys-
tem containing P is not deadlock free. In fact, in this case,
there is a divergent computation of P . If Γ has a finite
computation where, in the last state P ′, the philosopher is
blocked then let {fe0

1 , · · · , f
e0
m} be the forks retained by P ′.

The argument is similar to the one below (and depends on
the value of m).

Otherwise, ζ may be decomposed into P
eµ

=⇒

P ′
f

e0
m+1,···,f

e0
n−→ P ′′

τ=⇒ P ′′′ with P
eµ

=⇒ P ′ being
(∅, {fe0

1 , · · · , f
e0
m})-proper.

Take the computation ζ in Γ with longest prefix P
eµ

=⇒
P ′.

A few remarks are in order:

i. The computation P
eµ

=⇒ P ′ is leading the philoso-
pher at 0̃ to the state precedent to the one where his
grabbing is complete. This state must exist because
the computation ζ is (∅, Fe0)-proper.

ii. The transitions of the computation P ′′ τ=⇒ P ′′′ cannot

use labels in Feb∪Feb, otherwise the computation P
eµ

=⇒
P ′ is not the longest one.

iii. There may be several possible computations of the
same length. We are considering one of them.

We reason by cases on m.

1 ≤ m ≤ n− 2 : By Lemma 4.5, there exists a satu-
rated m-edge assignment χ in the n-hypercube. Let
{fe0

1 , · · · , f
e0
m} = χ(0̃) and let ρeb be a bijective renam-

ing such that

whenever χ(̃b) 6= ∅, {ρeb(fe0
1 ), · · · , ρeb(fe0

m)} = χ(̃b)
and {ρeb(fe0

m+1), · · · , ρeb(fe0
n)} = Feb \ χ(̃b);

otherwise {ρeb(fe0
1 ), · · · , ρeb(fe0

n)} = Feb.
Let N = [ρe0(P ) | · · · | ρe1(P ) |

∏
f∈Fn Pf ].

Since χ is saturated and because of the hypothesis on
Pf , there exists a computation N =⇒ N′, where the

philosopher at b̃ is either in the state ρeb(P ′) or in a state
reachable from ρeb(P ) where a (strict) subset of forks
in Feb has been grabbed. (This second scenario is not
possible when 1 ≤ m ≤ bn/2c because, in this case,
for every b̃, χ(̃b) 6= ∅.) In both cases, ρeb(P ) blocks

either on the transition
ρeb(ge0

1),···,ρeb(ge0
m′ )−→ or on another

input-labelled transition (because he cannot grab more
than m− 1 forks). So the network N′ is deadlocked.

m = n− 1 : Let χ be the saturated (n−1)-fork assignment
of Lemma 4.4. We define the renaming ρeb from P in
such a way that {ρeb(fe0

1 ), · · · , ρeb(fe0
n−1)} = χ(̃b). The

proof is similar to the previous case. �

Theorem 5.1 is the main ingredient of the proof that
CCSn is not encodable into CCSn−1. Still, before this
proof, we need to set the requirements for the notion of
encoding. Following Palamidessi [22], let [[ · ]] be uniform
if

– it is compositional;

– it is name invariant, namely for every injective renam-
ing θ on names of P there exists an injective renaming
θ′ such that [[ (θ)(P ) ]] = (θ′)([[P ]])

Compositionality ensures that the encoding of a compound
process must be expressed in terms of the encoding of its
components. However, in a distributed context (as the one
of philosophers systems), the requirement of composition-
ality is usually strengthened by requiring the homomor-
phism with respect to “ |”, namely

[[P | Q ]] = [[P ]] | [[Q ]] .

That is, the encoding must preserve the degree of distribu-
tion of the processes (parallel processes remain in parallel)
and cannot introduce additional processes that might act as
coordinators.

The requirement of name invariance means that the en-
coding does not depend on the identity of free (channel)
names, which is understandable as long as one wants liberal
installations of processes in the network. We assume that
the renamings θ and θ′ map names into names (the encoding
uses a strict renaming policy [10]). In addition, as in [19],
Section 7, the name invariance constraint is strengthened
into θ(a) = θ′(a), for every relevant free name. This fur-
ther restriction aims at substantiating that external resources
must be accessed in the same way by the process and its
encoding. In philosopher systems, the relevant free names
are the forks and names eat. Therefore we will assume
θ(feb,eb′) = θ′(feb,eb′) and θ(eateb) = θ′(eateb).

Finally, let [[ · ]] be semantically reasonable if it pre-
serves the relevant observables and the termination prop-
erties. Observables that are usually relevant in program-
ming languages are defined in terms of tests. In sequen-
tial languages, the tests amount to verify the termination of
programs when they are supplied with arguments (cf. Mor-
ris’ semantics). In concurrent languages, the tests verify the
presence of interactions on given names when the process is
plugged into a parallel context. In our case, we will assume
the encoding [[ · ]] be success-sensitive [10], namely the
tester process O contains a special name X and, for every

P , O, P | O τ=⇒ X−→ if and only if [[P ]] | [[O ]] τ=⇒ X−→.
As regards termination, reasonableness constrains the en-
coding in not introducing divergence.

Corollary 5.2 There exists no uniform, semantically rea-
sonable encoding of CCSn into CCSn−1.

9



Proof : Assume to the contrary that [[ · ]] is a uniform, seman-
tically reasonable encoding of CCSn into CCSn−1. Take
the code in CCSn:

P =[f1, · · · , fn].eat e0.
(
∏
f∈F e0 f | recx.[f1, · · · , fn].eat e0.(∏f∈F e0 f | x))

where f1, · · · , fn are the forks adjacent to the philosopher at
0̃. It is easy to demonstrate that P is a philosopher process
at 0̃ with set of forks ∅.

Consider the CCSn−1 processes [[P ]] and [[ f ]]. We first
demonstrate that [[P ]] is a philosopher process at 0̃ with set
of forks ∅. If this is not the case, let ζ be a computation
of [[[P ]] | L ∅ M] such that proj1(ζ) = P

η1−→ P1
η2−→

P2
η3−→ · · · ηh−→ Ph is not ∅-proper and P

η1−→ P1
η2−→

P2
η3−→ · · · ηh−1−→ Ph−1 is (∅, F )-proper, for some F . Let η̃

be the subsequence of η1 · · · ηh−1 without labels τ and let ν
be ηh, if ηh 6= τ , ν be f if ηh is a synchronization between
transitions with names in Fe0 \ F and f ∈ Fe0 \ F is one
of the names involved in the synchronization. (There is no
other case because of (∅, F )-properness.)

Define O(µ̃) as follows:

O(ε) = X
O(eate0) = eate0

O((f1, · · · , fk) µ̃) = (a)(
∏
i∈1..k fi.a
| a. · · · .a︸ ︷︷ ︸
k times

.O(µ̃))

O((f1, · · · , fk) µ̃) = f1. · · · .fk.O(µ̃)

Notice that O(µ̃) is a term in CCS1.

It turns out that [[P ]] | O(η̃ν) X=⇒ while P |

O(η̃ν) 6 X=⇒. Therefore [[P ]] has to be a philosopher pro-
cess at 0̃ with set of forks ∅. We also remark that every
maximal ∅-proper computation of [[P ]] must have infinitely
many transitions labelled eate0.

As regards the process [[ f ]], since the computations of f
are finite and have label f , then the computations of [[ f ]]
must retain the same properties.

By Theorem 5.1, there exists a family ρeb of bijective re-
namings such that the system

([ρe0([[P ]]), · · · , ρe1([[P ]]),
∏
f∈Fn

[[ f ]]], (∅, · · · , ∅))

(with ρe0 being the identity) is a symmetric philosopher sys-
tem that is not deadlock free. Because the encoding is name
invariant and the domain of ρeb are the relevant free names
Fe0 and eate0, then ρeb([[P ]]) = [[ ρeb(P ) ]] (the two renamings
of the constraint “renaming preserving” are identical). We
may conclude by observing that

[ρe0([[P ]]) | · · · | ρe1([[P ]]) |
∏
f∈Fn [[ f ]]]

= [[ [ρe0(P ) | · · · | ρe1(P ) |
∏
f∈Fn f ] ]]

and that ([ρe0(P ) | · · · | ρe1(P ) |
∏
f∈Fn f ], (∅, · · · , ∅)) is

a deadlock-free symmetric philosopher system. Therefore
[[ · ]] cannot be uniform and semantically reasonable. �

We notice that a similar result may be proved for mobile
calculi à la pi-calculus with joint inputs that are reminiscent
of join calculus [8]. One such language is described in [12,
17].

6. CCS with joint prefixes

The synchronization pattern of CCSn matches many out-
put processes with exactly one receptor. It induces an uni-
directional information flow as soon as the language is en-
riched with messages. This lack of flexibility may be inad-
equate when different multi-party synchronizations are re-
quired. We discuss this issue by analyzing the encodings
of the (guarded) choice in CCS. In the following [a].P is
abbreviated into a.P .

The input guarded choice in CCS, written
∑
i∈I ai.Pi, is

defined by the transition rule
∑
i∈I ai.Pi

aj−→ Pj . There is
a straightforward encoding of this choice in CCS2, which
has been already used in join calculus:

[[
∑
i∈I

ai.Pi ]] = (`)(
∏
i∈I

[ai, `].[[Pi ]] | `)

where ` /∈ fn(
∑
i∈I ai.Pi). (The encoding is uniform and

semantically reasonable: it is possible to demonstrate that
P

α−→ P ′ if and only if [[P ]] α−→≡ [[P ′ ]], with ≡ being
the structural congruence, which is stronger than the cor-
responding statement in [18].) A more expressive opera-
tion then input guarded choice is mixed choice [18], writ-
ten

∑
i∈I αi.Pi, where αi ∈ N ∪ N . In this case, the

synchronization pattern has to coordinate the addends, re-
gardless the fact they are inputs or outputs. This require-
ment of symmetry in the synchronizations makes things go
wrong: in fact we are not aware of any uniform and seman-
tically reasonable translation of mixed choice in CCSn. It
is worth to observe that the extension of CCS2 with output-
guarded choices bears the following simple translation of
mixed choice. Let I = I ′ ∪ I ′′ such that {αi | i ∈ I ′} ⊆ N
and {αi | i ∈ I ′′} ⊆ N . Then

[[
∑
i∈I

αi.Pi ]] = (`)(
∏
i∈I′

[αi, `].[[Pi ]] | (`+
∑
j∈I′′

αj .[[Pj ]]))

(the correctness of the encoding may be proved similarly to
the case of input-guarded choice).

The above remarks pave the way for a calculus that is
alternative to CCSn. It turns out there is a solution of the
problem of encoding mixed choice in a choice-free calculus
by replacing joint inputs with joint prefixes.
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Let α, possibly indexed, range overN∪N and let a = a.
The calculus CCSn+, called CCS with n-joint prefixes, is
CCSn where outputs and inputs are replaced by the joint
prefix

[α1, · · · , αm].P

with 1 ≤ m ≤ n. As for CCSn, the term α1, · · · , αm rep-
resents a sequence (now of names and co-names). With an
abuse of notation, let µ, η range over sequences α1, · · · , αn
and τ ; let ν range over sequences α1, · · · , αn or ε (the
empty sequence). Let ν = α1, · · · , αn if ν = α1, · · · , αn
and ν = ε if ν = ε. Let also α ∈ ν if α occurs in ν. When
α ∈ ν, let ν \ α be

– ε if ν = α;

– α2, · · · , αm, if ν = α, α2, · · · , αm;

– α1, (α2, · · · , αm) \ α, otherwise.

The operations ∈ and \ are extended to sequences of pre-
fixes as follows:

– ε ∈ ν and ν \ ε = ν;

– ν \ (α1, · · · , αm) = (· · · (ν \ α1) \ · · · \ αm);

– α1, · · · , αm ∈ ν if, for every i, αi ∈ (ν \
(α1, · · · , αi−1)).

The operational semantics of CCSn+ is defined by the
following rules (plus the symmetric ones for | and where
we are letting ε, ε = τ and ε, ν = ν, ε = ν):

[α1, · · · , αn].P
α1,···,αn−→ P

P
µ−→ Q a 6∈ µ

(a)P
µ−→ (a)Q

P{recx.P/x}
µ−→ Q

recx.P
µ−→ Q

P
µ−→ Q

P | P ′ µ−→ Q | P ′

P
µ−→ Q P ′

η−→ Q′

µ 6= τ 6= η ν ∈ µ ν ∈ η

P | P ′ µ\ν,η\ν−→ Q | Q′

The main difference with the transition relation of CCSn

is that there is no collector of the synchronizing processes
– this role was played by the input process in CCSn – but
they aggregate two by two in a more symmetric way. This
pairwise aggregation may not cause any synchronization,
which is the case when ν = ε – similarly to the aggregation
of outputs in CCSn. The sychronization is complete when
the two processes in parallel show up matching sequences.
For example, the process (a)([a, b].P | [a, c].Q) | [b, c].R
has one τ transition into (a)(P | Q) | R that follows by
collecting first [a, b].P and [a, c].Q and then [b, c].R. The
collection of the first two processes produces a “residual”
label b, c that matches with the label of the third process.

No other process needs to be collected because the result of
the match is ε, ε, which represents a τ move.

Back to the issue of encoding the mixed choice∑
i∈I αi.Pi, there is the following translation in CCS2+:

[[
∑
i∈I

αi.Pi ]] = (`)(
∏
i∈I

[αi, `].[[Pi ]] | `) (1)

Therefore [[ a.P+b.Q ]] is (`)([a, `].[[P ]] | [b, `].[[Q ]] | `).
A relevant difference between CCS2+ and CCS2 is that,

in the former, more than three processes may synchronize.
For example the encoding of (a.P + b.Q) | (a.P ′ + b.Q′)
is

(`)([a, `].[[P ]] | [b, `].[[Q ]] | `)
| (`′)([a, `′].[[P ′ ]] | [b, `′].[[Q′ ]] | `′)

that requires the cooperation of four parallel processes (for
sorting out the right choices). Another difference between
CCSn and CCSn+ is that the hierarchy CCSn+ flattens after
3.

Proposition 6.1 Let n ≥ 3. There exists a uniform, seman-
tically reasonable encoding of CCSn+ into CCS3+.

Proof : The encoding [[ · ]] is homomorphic with respect to
every operation except the prefix [α1, · · · , αn].P whose def-
inition is:

[[ [α1, · · · , αn].P ]] = (`1, · · · , `n)( [`1, α1, `2].0
| [`2, α2, `3].0
· · ·
| [`n, αn, `1].[[P ]] )

where `1, · · · , `n are fresh names. It is easy to prove that
P

µ−→ P ′ if and only if [[P ]]
µ−→≡ [[P ′ ]], where ≡ is the

structural congruence [15]. �

Yet, an expressivity gap remains between two and three.
This gap may be shown by the dining philosophers prob-
lem in the cube. The point is that, while in CCS2+ it is
possible to synchronize as many processes as needed, the
overall effect of synchronizations is to exhibit at most two
labels. This is too restrictive when more than two resources
must be grabbed at once. The proof is omitted because it is
similar to those of Theorem 5.1 and Corollary 5.2.

Proposition 6.2 There exists no uniform, semantically rea-
sonable encoding of CCS3+ into CCS2+.

The relationship between CCS2+ and the hierarchy
CCSn remains an open issue. While it is possible to en-
code the mixed choice into CCS2+ – see (1) –, we have not
been able to define a uniform, semantically reasonable en-
coding of mixed choice in CCSn. On the contrary, there are
solutions of the dining philosophers problem in the cube in
CCS3 and there are not in CCS2+.
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7 Conclusions

We have proved the non-existence of a uniform, fully
distributed translation of synchronizations of n + 1 pro-
cesses into synchronizations of n processes that retains a
“reasonable” semantics. As pointed out by Lehmann and
Rabin [14], this implies that there is no truly distributed
implementation of operators synchronizing more than three
processes.

In [14], the dining philosophers problem is solved by
means of a probabilistic protocol, which is correct as long
as every fork is shared by exactly two philosophers [11].
Since this is the case for philosophers in the n-hypercube,
we conjecture that there is a probabilistic protocol written
in CCSn−1 for the dining philosophers problem in the n-
hypercube. This probabilistic solution, if any, in turns can
bring to a CCSn−1 implementation of CCSn, as proved
in [20].

Our final comment is about the problem of translating
n+ 1 synchronizations in stochastic calculi into n synchro-
nizations. As a consequence of our results, the correspond-
ing protocols should match one transition with a (possible
infinite) sequence of transitions. However, this matching
might hardly preserve the stochastic semantics for two rea-
sons. First it is not clear the rate of transitions in sequences
that are infinite. Second, the stochastic semantics defines an
exponential law controlling the waiting time before a tran-
sition can be fired (the so-called sojourn time). Matching an
exponential distribution with a sum of exponential distribu-
tions is, in general, not possible.
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