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Abstract

A languagef formal proteinsthe x-calculus is introduced.Interactions
aremodeledat the domainlevel, bondsarerepresentetty meansof shared
namesandreactionsarerequiredto satisfya causalityrequiremenbf mono-
tonicity.

An exampleof a simplified signallingpathway is introducedto illustrate
how standardiological eventscanbe expressedn our proteinlanguage A
morecomprehensieexample thelactoseoperonjs alsodeveloped pringing
someconfidencen theformalismconsideredisa modelinglanguage.

Thena finer-grainedconcurrentmodel, the mk-calculus is considered,
whereinteractionshave to be at mosthbinary. We shav how to embedthe
coarsefgrainedanguagen thelatter, apropertywhichwe call self-assembly

Finally we shav how thefiner-grainedanguagecanitself be encodedn
m-calculus,a standardoundationalanguagdor concurreng theory

1 Intr oduction

Following independenproposaldrom Fontang[11] andRegev [25], it is becom-
ing commonplaceo think of formalismsderived from processalgebrasandcon-
curreny asbeingpotentiallyusefulin theformal layoutandanalysisof biological
networksatthe molecularevel. We will first restatehe goalsof this relatively re-
centmovementof ideasbeforeexplainingthe contritution of this particularpaper

Thecellis abillion moving piecesimplementinglife. Sugatris collected,pro-
cessedand usedas a power supplyto gatherinformation. The betterthe cell is
fed, thebetterit computesSignalsaredetectedcollectedandcomparechandsome
decisionsaretaken. Thebetterthecell computesthebetterit feedsontheerviron-
ment.Life needssugarto processnformationandalsodirely needdnformationto
processsugar Onecould be left wonderingif thisis perhapghe meaningof life,
but meanwhiletheremustbe a programmingessonto be understoodere,

To begin with, computationin a cell is concurrentand asynchronous.Syn-
chronizationwhenit is needed—for instanceto detectthe presencef significant
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amountsof two signalsat the sametime— hasto be implemented.Second the
systemssemanticglepend®n probabilisticresponsendyet often remainsdeter

ministic at the macroscopidevel. Valuesmanipulatedare mostly continuousyet
discretestatesand choicescan be implementedat variouslevels; behaiours are
obtainedthroughheary useof feedbackmechanismsDelaysareinvolved, some
computatiorstepsarepartly reversible,ratesof reactionsareinfluencedby global
parameterand perhapsasa consequencdpcal ervironmentscan be createdby

meansf compartments.

Bio-computingis in radical departurefrom ordinary computationaimodels,
wherea sequencef actionsis choseronceandfor all, datais discrete controlis
eithercentralizedor at mostcoarselydistributed, following designprinciplesthat
seekto optimizeefficiengy atfairly simpleandwell-definedtasks.

Consideringhe recentbreakthrough@ experimentabiology, we may be for
thefirst time in positionto understandvhat computationaimodelsare embedded
in the cell andto develop a symbolic biology that would be at the sametime a
manageabléheoreticalobjectanda plausibleidealization.

Someof this excitementhasalreadytranspiredn the domainof Concurreng.
New processalgebradirectedat biological systemsare now mushroomingeach
meantto treatoneaspecof the specificitiesof bio-computing.Onehasreversible
CCSJ6] giving meansto directly expressreversibility, stochasticr-calculus[22,
23] equippedwith a quantitatve contextual semanticendthereforegiving access
to simulations,bio-ambientsand membrane-calculj24, 3] for dealingwith the
dynamicsof variouscellular compartmentsWe ourselesproposeda first version
of the k-calculuswith the specificpurposeof representingroteininteractiond8].
The presenpaperworksarefinedversionof this samedanguage.

1.1 A calculusfor proteins

Our languagddealizesprotein-proteininteractions gssentiallyas a particularre-
strictedkind of graph-revriting operatingon graph-with-sitesiot unlike Lafont’s
interactionnets[19]. Bindingsareexplicit: aformal proteinis a nodewith afixed
numberof sites,a comple is aconnectedyraphbuilt over suchnodes.

Biological reactionsare modeledby two kinds of rewriting rules: monotonic
andantimonotonic.Theformerkind representsompleations,thatis to sayreac-
tionswherelow enegy bondsareformedbetweernvariouscompoundsThe latter
kind is symmetricto the first and representslecompl&ation. From this respect,
reactionformatsaremorerestrictive thanthey werein the precedingversionof the
languagd8]. Yet,they arealsomoreexpressie, in thatthey allow non-linearre-
actionsandthusmale it possibleto representheimportantreactionsof synthesis
anddggradation. This is a significantrise in expressie power at a low syntactic
price.

We illustratethis gainin expressiity with atypical signaltransductiorpath-
way. A more comprehense formalizationeffort was donepreviously. Usinga
simplified and more abstractrelative of «-calculus,the vastnetwork of reactions



controlling the mammaliancell cycle was formalized[5] after Kohn's compila-
tion [18]. Take notethat, in signaltransductionsystems synthesiscanbe taken

asanoutputanddoesnt needto be modeledin itself. In the cell cycle thingsare
different. Synthesigplaysa major role becauséhe chief regulatorsof the cell cy-

cle, calledthe cyclins, areinfluencingtheir own synthesighrougha complicated
cascadef interactions.Onereally hasto describeit insidethe model. In princi-

ple, this formalizationcould be recastin our presenianguageprovided one has
enoughdetail aboutdomain-leel interactions. We choosehere,as a secondex-

ample,asimplerandwell documentedystemnamelythe lactoseoperon. While

remainingtractablethe setof reactionsnvolved offers a selectionof mostof the
eventsonefindsin the biggermammaliarcell cycle control.

Both examplessene well asa practicalproof of the expressiity of our new
versionof k-calculusandthe secondoutsto useits additionalexpressiity power.
Another differencewith the previous versionis that we work now with an alge-
braicnotationinsteadof keepingwith agraph-revriting presentationThis process
algebraimotationis closerto amultiset-basedalculuswhich we proposeckarlier
[7] andallows for amoreflexible andprecisesyntaxfor reactions.

As for ary processalgebraoncethe basicreactionsarein place,onecande-
rive the behaiour of ary systemby meansof contectual rules. The possibility
of applying pattern-basethasicreactionsin differentcontexts bringsan element
of predictionin thelanguage.In this respectz-calculusis not equivalentto a flat
andreaction-centriocview of biological systems.Bringing a notion of contectual
guantitatve operationalsemanticsa la Gillespie[13] asPriamidid for stochastic
mw-calculug[22, 23] couldmake thisevenmoreevidentsinceunexpectedevolutions
of the systemwould be obsered. But for nov we dont have sucha quantitatve
semanticandthis interestingssueremainsto be explored.

1.2 Self-assembly

As pleasinglysimpleandcloseto biologicalinteractionsasour languagemay be,
eventherestrictedreactionst consider€annofplausiblybetakenasatomicevents.
Be thatin biology, or in ary otherdecentralizeccomputationakcenariofor that
matter non-localgraph-revriting takestime andmoreaccuratelyit takesconsen-
sus.To implementthis consensuss a problem,which afterKlavins [17], we name
the self-assemblyproblem. In our specificcase,the informal questionbecomes
whethergiven a higher level descriptionin k-calculus,one can synthesizepro-
cessespnefor eachof the interactingproteins,so thatin a purely decentralized
way and with binary synchronizatioras the only meansof communication the
proteinsaregoingto behae accordingto the original higherlevel description.
The secondcontritution of this paperis to make rigorous senseof the self-
assemblyguestionand solwe it to the positive for our language. Thoughthe -
calculusis aprocessanguagehatis well suitedto aformalizationof self-assembly
we introducean intermediatdanguage the m«-calculus,that allows for a more
readabldormulationandsolutionof our problem. The finergrainedview of pro-



tein interactionthat m«-calculusintroducess interestingin its own right andone
might arguethatit is biologically moreplausible.Basicentitiesarecalledagents,
they have a state,may createnamesandcommunicatenly by binaryinteractions.
To encodea given higherlevel reaction,one usesa family of binary interactions
indexed by the edgesf adirectedagyclic graphspanningall thereactantsSucha

graphis guaranteetb exist by themonotonicitycondition. Correctnesss obtained
throughthe definition of a simulationwhich follows this geometricconstruction.
Again, thenew rule formatcomparesvell with the previousformat[8] in termsof

the simplicity of the simulation.

Now mk-calculusis not far from a graphic notationfor 7-calculusand we
provide an embeddingwitnessingthis in the concludingsection. By composing
the two encodings,one getsa distributed and non-deterministiamplementation
of k-calculusinto ary currentimplementatiorof 7-calculus for instanceNomadic
Pictor JoCami[28, 10]. Soit is notonly thatthemodelwe proposés supportedy
a precisenotationandhasgooddescriptve capabilities but it is alsoreducibleto
aprotein-centricandpurelylocal languageof interactionssuchasthe w-calculus.
Thesearereferenceropertiesagainstwhich furthermodelsshouldbe evaluated.

1.3 Structure of the paper

The openingsectionis aninformal presentatiorof our languageandthe next sec-
tion defineghecalculusproperlyandzoomsin ontheparticularformatof reactions
oneisinterestedn. Thenext sectiondevelopsasmallexampleof asignaltransduc-
tion pathway thatillustratesthe syntax,andthe biggerandwell-knowvn exampleof
thelactoseoperon.Thenthe paperturnsto the matterof self-assemblyA section
is devotedto the presentatiomf thelower level languageausedto statethe problem
andthe next sectionpresentghe actualembedding.The last sectionproposesan
embeddingf thelower level languagento w-calculus.

2 A visual notation for &

We bagin with a pictorial introductionto our formal calculus. This presentation
could be madea formal modelin its own right but we choosenot to do so, since
our working notation,presentedn the next section,will be differentandactually
basedn w-calculusratherthanon graphs.

Sowhatis it that we wantto expressin our language?The shortansweris
the combinatoricsof the interaction betweerproteins Proteinsareinvolvedin a
network of reactiondmplementingvarioushigh-level taskssuchasthesugarchain
repletingenegy stocks thedetectiorof externalsignals(stressgrowth, death, . .)
andthe triggering of the appropriatebehaioural modifications,the coordination
of internalsignalscontrollingthe variousphasef the cell cycle, andsoon. The
mainpurposenf moleculamiologyis to identify thesetasksandrelatethemto their
implementatiorat the molecularevel.



Going down in the detailsof proteininteraction,one finds sub-components
commonlycalleddomains that determinewhich otherproteinsthey canbind and
subsequentlynteractwith. Suchinteractionamayresultin changesn thefolding
of theparticipatingoroteinsandsuchchangesansometimedememorized.There
arevariouswaysthisis biochemicallyimplementedthe mostcommonbeingphos-
phorylation A well-studiedproteincalledP53 is known to have no lessthan11
phosphorylatiorsitesandto be ableto bind with 12 otherproteinsto form various
binary compleesresultingin anevenmoredauntingcombinatoriakpacd18].

Dependingpntheway proteinsarefoldedin spacethesedomainsanbeactive
or not,andthebehaiour of theproteinwill bedifferent. Thereforenotonly its free
domainsbut alsoits globalfolding determinesvhata given proteinassemblages
capableof.

To abstracbothover domainsandfolding stateswe usesites Thesesitesmay
be boundor free, and free onesmay be visible or hidden Thus,in our model,
bindingsare explicit andinternal statesare expressedust by sayingwhich free
sitesarevisible or not.

Proteins and Complexes. We draw proteinsasboxes, with sitesbeingwritten
on the boundary andidentified by distinct naturalnumbers,1, 2, 3, ..., written
within thebox. SeeFigurel(a)for a pictureof a protein.
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Figurel: A proteinandacomple

Proteinanaybeassemblethto proteincomplees or simply complees.Com-
plexesaredravn by connectingwo-by-two boundsitesof proteins,thushbuilding
connectedgraphssuchasin Figure 1(b), which representa compoundmadeof
A, B, andC, where A is connectedvith B andC. Biologically, a comple is a
bundleof proteinsconnectedogethety low enegy bounds.

Otherexamplesof compleesareshavn in Figure?2.

Biological reactions. Collectionsof proteinsandcompleesarecalledsolutions.
Solutionsevolve by meansof reactions which occurwhena sub-solutionhasa
specialshapecalledareactant Whenthis happensthereactante€hangeandyield
anew sub-solutionHereareexamplesof reactions:



a self-complexation a ring—complex a double contac

Figure2: Complees

complexation

Not every rewriting rule is biologically plausible. We will stipulatein the next
sectionwhich exact setof reactionswe areinterestedn, but we canalreadydis-
cussthisinformally. The compleationreactionabove will certainlybein this set,
but activationwon't. The rationalebehindour choiceis thatactivation obviously
needssomephysicalcontactto be madeto take place.Sothereactionabove is not
anatomicevent—we arenottold thewhole story By the way, whensuchactiva-
tions arefoundin biological systemsusuallyonly oneof the product,calledthe
substate will be modifiedby the reaction,while the otheronecalledthe enzyme,
or thekinase,or the catalyst,will beleft unchangedThekinetic analysisof such
reactionsembodiedn theMichaelis-Menterformula[27], explicitly mentionghe
intermediatestatewherethe substrateandthe catalystare boundtogether All in
all, it seemsrery reasonabl@ot to take thatkind of reactionasa primitive.

Roughly our languagewill be a languageof complationsand decompl&-
ations,whereby decomplgation we meanthe reactioninverseto complecation
whena comple is dissociatednto smallerparts. But therearetwo subtleissues
here. First, assaidin the introduction,it would be too restrictive to only allow
linearreactionsthatis to sayreactionsvherebasiccomponentsarepresered. To
expressthe importantreactionsof synthesisanddegradationwe will allow some
limited form of duplicationanderasingandrelax somavhatwhatwould be a too
strict preseration principle.



Secondsomereactionssuchasthe edge-flippingreactionbelowv, seemto be
compleations,but really they arenot, becausehey lack monotonicity

edge—flipping reaction

Whatdo we meanby this? If onelooks at the picture,oneseeghatalthough
both the reactantand productof the reactionare connectedsomeedgehasto be
erasedn the reactantbeforeone canreachthe product. Evenif the total num-
ber of edgesis constanttheremustbe an intermediateunconnectedtateof the
compoundsvhereanedgeis erasede.g.:

Thisphenomenois aconsequencef thefactthatour modelhassitesasfirst-class
citizensin thesyntax.Sitesrepresentesource$or bindings thereforebindingsare
constrainedy the availability of sites,andthis constrainiplaysanimportantrole
in biological causalityaswe will seein the examplepathvay.

Speakingabout causality monotonicity (that edgesare createdand noneis
erasedduring areaction)embodies causalityconstraint.For anything to happen
thingshave to bein contact.lt is strongetthanthevirtual connectednessondition
thatwe wereimposingin the earlierversionof x-calculus. Therewe wereasking
thatatemporarysupercomple could be formedbetweerthe reactants Our new
choice makes thesetemporarycompleces explicit, thereare eitherthe left hand
sidefor a decompla&ation or the right handside for a complexation. To seethat
thenew conditionis strictly strongeiit is enoughto look atthe activationexample
above. It is virtually connectedsincethe left handsideis connectiblehroughthe
pairsof visible sites(A, i; B, h) and(A, j; C, k), but assaid,it doesnt satisfyour
new requirement.

This new conditionis alsonaturalwhenit comesto the micro-implementation
of k-calculusin mk-calculus,in thatthe complex will beactuallywalked uponby
binary interactionsto eithercheckfor its existence(caseof a decompl&ation) or
to build it (caseof acompleation).

We finally obsere thatin the above reactionswe have only representedhe
activesitesin theleft-handsides,namelythosesiteswhich aretestedandperhaps
modifiedby therule. The meaningof this is thatall the othersitesarekeptintact
by the reaction. This corvenientnotationis introducingsomeelementof pattern
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matchingor evaluationcontet in our operationasemanticsWhile it seemsiota
big dealfor thecomputerscientistto ourknowledge,nodirectbiologicalmodeling
languagés usingeventhis simpleform of contectual operationakemantics.

3 The k-calculus

We now develop an algebraicnotationasa workablesyntaxfor our graphs-with-
sitesintroducedn theprevioussection.Onemightwonderwhy suchanalternatve
notationis neededr evenuseful.

Onepointin favor of this nen notationis thatit givesa precisedescriptionin
the classicalstyle of w-calculus[20] andthis could be a beginningleadingto nice
reasoningprinciples. Having the namecreator “new”, in the syntaxallows for
a cleansyntactictreatmentof edgecreationsin the right handsidesof reactions.
Onedoesnt have to botherwith freshnessonditionswhendefiningtheoperational
semanticsnamecreationandstructuralcongruencelo it themseles.

A side obseration perhapsonly of interestfor Concurreng theoristsis that
of the ordinarymaterialof processalgebraswe just usehereparallelcomposition
and namecreation,a pretty minimal algebraicsubset. Communicationis done
ala Join [12], by meansof reactions,but with an additionaledgestructureon
messagewhichis imposedoy reactions A minoradwantagethatcomeswith such
a traditional notationis that there are tools specifically meantto manipulater-
like syntacticstructuresasin alanguageecentlyproposedoy Cardelli, Gardner
andGhelli [4], which would provide naturalervironmentsfor the developmentof
modelsin «.

A secondhointis thathaving bothourtargetintermediatéanguagenk, laterto
becompiledin 7-calculus,andthe sourcdanguagealisplayedn thesamesyntactic
styleseaseshework of translatingonein the other

A lastpointis thatoncethis new notationis in place,onemay considemmore
advancednotions of rewriting, such as hypegraph rewriting or interactionnet
rewriting [19], andexplore this further For instance py askingwhethersuchad-
vancedrewritings aretranslatablen m«, or in otherwordswhich of themmaybe
implementedoy meansof binaryinteractions.Thoughwe don't do this here,this
seemsworth pursuing.

Of coursethereis a point againsthis syntax,namelythatit is not asintuitive
asthevisualonewe startedwith andthis is why we introducedthe visualnotation
first.

3.1 Thesyntaxof

Thesyntaxof k-calculusrelieson:
e acountablesetof proteinnamesP, rangedoverby A, B, C, ...

e acountablesetof edge namest, rangedoverby z, y, z, . ..



e asignatue map,written s, from P to naturalnumbersN.

For eachproteinnameA, s(A) is the numberof sitesof A, andforary 1 < i <
s(A), thepair (A4, 7) will accordinglybecalledasiteof A.

Interfaces. An interfaceis a partialmapfrom N to £ + {h,v} usuallyranged
over by p, o andsimilar symbols.The domainandrangeof aninterfacep will be
respectiely denotedby dom(p) andran(p), andthesetof namesdreein p, written
fn(p), is obtainedasran(p) N €. We will only ever dealwith interfaceswith finite
domain.Theemptyinterfacewill bedenotedz.

A site (A, ) of A is saidto bevisiblein aninterfacep if p(i) = v, hiddenif
p(i) = h, freeif it is visible or hiddenandboundif p(i) € £. Any interfacep
uniquelydecomposeasa disjoint sump; + ps whereran(p;) C &, ran(pa) C
{h,v}, p2 will becalledthefreeinterfaceof p. Interfacesareusedto depictpartial
statesof A’s sites. The statedepictedby p maybeonly partial sincedom(p) may
not containthewholeof s(A).

We could have called p a stateinsteadof aninterface. This choiceof termi-
nology is meantto insist on the fact that the interfaceis going to determinethe
interactioncapabilitiesof the proteinit is aninterfaceof.

Let ushave anexample.If A is suchthats(A) = 3 thenp(1) = v, p(2) = h,
p(3) = z is awell-definedinterfacemapfor A, thatdeclaressite 1 to be visible,
site 2 to be hiddenandsite 3 to be boundto somenamez. We will write simply
p = 1+ 2 + 3%, Take notethatin this way of writing things,the operation®+”
representa disjoint sumandindeedall termsin the sumhave disjoint domains.

Proteinsand Solutions. The syntaxgivenin Table 1 definesa solution which
canbeeitherthe emptysolution,or a protein A(p) with A € P andp aninterface
with domains(A), or a group of solutionsS, S/, or a solutionprefixed by a new
nameconstructor(z)(S) with = € £.

S = solution
0 emptysolution
A(p) protein
S,S group
(x)(S) new

Tablel: Thesyntaxof x-calculus

A corvenientabbreiation will be to write (x; - - - x,,)(S) or even sometimes
(z)(S) insteadof (z1) - - - (x,)(S).
The“new” operatoiis abinder:in (z)(S), S is thescopeof thebinder(z). One



inductively definesthesetfn(S) of freenamesn asolutionS:

) = @
f(A(p)) = fu(p)

) = Mm(S)uMm(s)

) = m(S)\ {z}

An occurrencedf x in S is boundif it occursin a sub-solutiorwhichis in the
scopeof a binder (x); a solutionS is closedif all occurrence®f namesin S are
boundor equivalentlyif fn(S) = @.

Forinstancejn

S = C(1*+2),(2)(A(1* +2+3), B(1 +2%))

bothoccurrencesf z in A and B arebound,while theoccurrencen C' is outside
the scopeof (z) andhenceis notboundin S. In particular fn(S) = {z}, andS is
notclosed.

3.2 Structural congruence

While our notationis certainly precise,it is alsovery rigid becauseét separates
solutionsthatwe don't wantto distinguishfor ary semantiadeason.Thereforewe
introducean equivalencerelationbetweenrsolutions,calledthe structusmal congru-
ence

Definition 1 Structual congruence written =, is the least equivalenceclosed
under syntactic constructions,containing a-equivalence(injective renamingof

boundvariables),taking“,” to be associativgasthe choice of symbolsugests)
and commutativewith 0 asneutal elementandsatisfyingthe scopdaws:

(@)(y)(S) () (2)(S),
(x)(S) S whenz ¢ fn(S),
(z)(S), & (z)(S, &) whenz ¢ fn(S').

Comingbackto the exampleabore, thereademight wantto checkthat:

S = (WCOA*+2),A1Y+2+3),B(1+2¥)) = T,

andonecanobsenre thatfn(S) = fn(T). This propertyholdsin general,namely
free namesare invariant understructuralequivalence. This becauseintuitively,
eguivalentsolutionsdescribehe sameunderlyingobject.

3.3 Graph-lik eness

Sofarwe have alanguagahatcandescribemoregenerabbjectsthanjust graphs-
with-sites.For instanceonemaywrite:

(z)(A(17)) or (z)(A(1"), A(1?), B(1%)).
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Thesemight be interestingto study and, as said, have a natural interpretation
as hypegraphs. Reactionsdefinedon suchtermswould encodesomesort of
hypegraph-revriting. But we are not primarily interestedn themin this papey
sinceour concerris to homein onasimplenotationthatwill beexpressie enough
for representindpiologicalinteraction but no more.

Definition 2 (graph-lik eness)A solutionS is saidto be graph-like if:
—freenamesoccur at mosttwicein S;
—bindess in S bind eitherzeio or two occurences.

If in addition free namesoccurs exactly twicein S, we saythat S is strongly
graph-like.

Boundnamesaresupposedo represenedgesandan edgehastwo endpointsso
the secondconditionspeakdor itself. Thefirst conditionis just whatoneneedso
copewith solutionswith freenames.

We take notethatwe mustcheckat somepoint laterthatreactionswhich have
yetto bedefinedproperly presere graph-likeness.

It is worth pointing out the relationshipbetweenour graph-with-sitesof the
precedingsectionandthe algebraicnotationdevelopedhere. The following trans-
lation uses,as intermediateconstructs,graphswhere somesitesare labeledby
names.

Definition 3 Let[[-]]g bethefollowingfunctionfromgraph-like solutionsto graphs
with sites:

1. [A(p)], is the graphwith a singlenodelabeled 4, sitesin {1,...,s(A4)},
boundsitesk beinglabeledby p(k), and free sitesbeingin the state pre-
scribedby p;

2. [S. 5], istheuniongraphof [S] , and[S'],, with siteslabeledwith thesame
namebeingconnectedy an edge, andtheir commomameerased;

3. [(2)(S)], i [S],-

It is easyto seethatif two solutionsS, S’ areclosedandgraph-lile, thenS = &'
if andonly if [S], = [S'],. Sothatthe meaningof the structuralequivalenceon
graph-like solutionsis clear:it is equivalentto denotingthe samegraph-with-sites.

Onecanalsoturn a graphinto a closedgraph-like solution. Informally, each
nodebecomesa proteinin the solutionandfor eachedgea freshnameis put at
the edgeendson the appropriatesites,thenthe whole expressionis closedby as
mary “new” operatorsasthereareedges.Againit is easyto seethatthis second
constructioris inverse,up to =, to theoneabove on closedgraph-like solutions.

Thus, our term calculusis really a textual notationfor graphsin the caseof
graph-like solutions.For instanceusingstructuralcongruencenecandefinecon-
nectednesandcomplees:
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e A(p) is connected,;

e if Sisconnectedois (z)(S);

e if S andS’ areconnectedndin(S) N fn(S') # @ thenS, S’ is connected;
e if SisconnectecndS = T thenT is connected.

A compl is thena closedconnectedgraph-like solutionandit can be readily
provedthatS is a comple if andonly if [Sﬂg is. Thiscanbe seenin theexamples
of Figure2, which correspondo the following terms:

() (A(1* + 2% + 3 + 4)),
(wzyz)(A(1" +2Y +3), B(17 + 2+ 3Y),C(1 + 2 + 3* + 4¥), D(1* + 2%)),
(zy) (A1 + 2 + 3% + 4Y), B(1 + 2 + 3¥ + 4%)).

3.4 Biological reactions

To keeptrack of interfaces,we now constructhe growth relation on partialinter
faces. This relationis parameterizedby a setof nameswritten z below, which
representa supersebf) edgesgronn out of a reaction. It is written < andis de-
finedinductively by theclausegjivenin Table2.

create — L ETL
Th<®
hv—switch —— ——— vh-switch
ThH71<1 rhH1<7
zNn(p) =@ Thkp<o Tk p <o
reflex — — 7 ; sum
zHEp<p chEp+p <o+o

Table2: Thegrowth relation

Supposeonecanderive z  p < o, thenaccordingto the (switch) clausesg
maytogglefreesitesfrom visible to hidden while accordingo the (create)lause,
o may only bind sitesthat were formerly visible in p. This makes formal the
intuition thathiddensitesarenotaccessibléor bindingandhave to bemadevisible
in oneway or anotherto becomeavailable. It is thereforeimportantthat < is not
a transitve relation,despitethe notation! Else,fromz < 2 and: < +* onewould
deduceheunintended < »* andgetaccesdgo hiddensites.

We alsoremarkthat:

— dom(o) = dom(p), thatis botho andp musthave the samedomain,

— sitesboundby p cant befreedby o,

— andcreatededgeshave to belongto = andbe separatedrom namesusedby p
asspecifiedby the (reflex) clause.Typically, onehasy + 1% + 2 < 1% + 2¥ but
THIT4+2<1% 427,
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A partial interface with rangein {k,v}, will be relatedto ary other partial
interfacewith the samedomain.

Whenwriting down biological reactionsit is of greatconvenienceto address
only thepartof proteinghatarechangear checledduringthereactionratherthan
specifyingthewholeinterface.Sowe define A(p) to beapre-poteinif o is apar
tial interfaceof A, namelydom(o) C s(A). Similarly we definepre-solutionsas
combination®f pre-proteinspbtainedasin Tablel. Thatsaid,we canextendthe
growth relationto groupsof pre-proteinsasshavn in Table3. Take notethatthis

TES<T zkp<o dom(o) C s(A)

nl ———— group
FF0<0 FHS.A(p) < T.A(0)

TES<T fu(c) Cz  dom(o) =s(A)
TS <T,A(0)

synth

Table3: Extendedgrowth relation

definitiononly appliesto pre-solutionswithoutary “new”. Growing meanscreat-
ing edgesandpossiblycreatingproteinsaswell, asin the (synth)clause.Obsere
thatthis clauserequiresthe newly createdprotein A to have a completenterface,
thatis aninterfaceo suchthatdom(o) = s(A) andalsoasksthatall edgesin A
arenen, andhencehave theirnamesn z.

Lemmal LetL, R betwo pre-solutionssuct that z - L < R, thenfn(L) =
fm(R) \ z andfn(R) C fn(L) + z.

Proof: A first easyinductionon the growth relation showvs the analogstatement
for interfacesthatis if z - p < o, thenfu(p) = fu(o) \ z, andfurtherfn(o) C

fn(p) + = andthena secondinduction shavs that this is presered by the pre-

solutionextension.O

Thepurposeof the (synth)clauseaswe will seebelaw, is to expresssynthesis
mechanismandby usingthe dualrelation>, to expressdegradationaswell.

Definition 4 LetL, R betwo pre-solutions,

e L — (7)R is saidto bea monotonicreactionif:
—zFL<R,
—bothL and(z)R are graph-like,
—andR is connected.

¢ ()L — R is saidto bean anti-monotoniaeactionif:
—itsdualR — ()L is monotonic.
A reactionwhich is eithermonotonicor antimonotonids calleda biologicalreac-
tion andL andR are referredto respectivelhasits reactant@and products
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A direct consequencef the lemmaabove is that free namesare presered,
i.e,, fn(L) = fn((z)R), in biologicalreactions.Soit makessensdo referto these
commonfree namesasthe free namesof the reactiont, denotedby fu(r). Actu-
ally, the growth conditionalone,xz - L < R, makessurethatthesecommonfree
namesareusedto connectthe samesitesin the reactantsandthe productst As a
consequencesdgeswhich are createdin a monotonicreaction,or deletedin an
antimonotonimne,have to be syntacticallybound.

Justto recapthis basicprinciple:

— boundnamescorrespondo createdresp.deleted)edges,
— freenamescorrespondo edgedeft intact.

Reactionsaresyntacticallyreversiblesothatonecould defineonly monotonic
reactionsand embedreversibility in the definition of the transitionsystembelow.
But it seemsnoreintuitive to have bothkindsof reactiondirectly in the syntax.

The choiceof a monotonicformatfor reactionsembodiesour postulateabout
proteininteraction. This is in accordancevith the detaileddescriptionghatbiol-
ogistsgive of their systemsandit alsomeshesvith whatis takento be anatomic
stepin the kinetic analysisof biochemicalreactions.Of course,onecould ague
thateventhesereactionsarestill not atomicenoughandthat, at a lower level, bi-
ology is blind andreactionshave to be decomposea@s binary interactions. And
indeedthis is the problemwhich we addressn section6. By the way, we could
have constrainedhereactiondurtherby askingthatthereactantandproductsare
strongly graph-like. Actually noneof the examplesdevelopedin the next section,
devotedto biological systemsis seriouslyusingthe additionalexpressiity which
our choiceallows. Yet, whenwe explorethe matterof self-assemblythis will turn
outto betheright choice.

Relaxing the format. We couldalsohave consideredessconstrainedeactions
suchasthefollowing:

(x)(A(1" 4+ 2), B(1" + 2),C(1)) — (2)(A(1 + 2),B(1 + 2%),C(1%))

which is mixing monotonicfeaturesthe edgez betweenB and(' is createdand
antimonotonicnes,the edgexr betweenAd and B is deleted.At a higherlevel of

granularity suchreactionscould be taken asbasicaswell, asthey canbe decom-
posedasa monotonicreactionfollowed by anantimonotonicone:

A(1* 4+ 2), B(1* +2),C(1) — (2)(A(1* +2), B(1* 4+ 27%),C(17))
(x)(A(1" +2), B(1* 4+ 27%),C(1%)) — A(1 + 2), B(1 + 27),C(17)

! The notion of samemay dependon the derivation of L < R in the presencef synthesis.If
thereareenoughsymmetriesn L andR, therecouldbe mary derivations.Hereis anexample:
ry - A(1+2) < A1* +2), A(1Y 4 2), B(1%),C(1Y)

which might be derivedin two ways,dependingon which of the As ontheright is synthesizedThe
correspondingnonotonicreactionwhenappliedto A(1 + 2) will give differentresults.Thus,to be
completelyaccurateand getrid of this ambiguity aswould bein orderfor animplementatiorfor
instancepnewouldincorporatehederivationof L < R in thedefinitionof thereaction.
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Becausedhe intermediateproductwhich this decompositioris making explicit is
connectedit seemgeasonabléo considerthe sequencasa synchronougsompo-
sition. Thecaseof thefollowing “edge-flipping”reactionaswe know from section
2, is different:

(y)(A(1* +2Y),B(1" + 2),C(1Y)) — (2)(A(1* + 2), B(1* + 2%),C(17))

Sincethereisn't afreesitefor C' to bind with B, onecannotperforma similar de-
composition.This reactioncanonly be decomposedsanantimonotoniaeaction
andamonotonicone:

(y)(A(1* +2Y), B(1* +2),C(1Y)) — A(1*+2),B(1* +2),C(1)
A(1" 4+2),B(1* +2),C(1) — (2)(A(1* +2), B(1* +2%),C(1%))

Now, thereis no intermediateconnectegroduct,andthusno guarante¢hatthese
two reactionswill actuallybeappliedin asequenceSucha synchronisatiomeeds
aspecificcontrolmechanism.

3.5 Biological transition systems

A renamingr is a finite partial injectionon £ + {h, v}, which is the identity on
{h,v} andmaps€ into £.

Definition 5 (matching) Givena monotoniceactionL — (z)R, with:

—L= Al(pl)7 .. 7An(pn)

—andR = Al(O'l), ce ,Am(O'm),

onesaysthat a pair of solutionsS, T matched. — (Z)R, writtenS, T = L —
()R, if there existsa renamingr andpartial interface<t, ..., &, sud that:

1. forall i, r(z) N n(§;) = 2,

2. S=A1(7‘Op1+§1),---:An(7‘opn+£n>
andT = (r(z))(Ai(roor +&1), ..., Ap(r 0 0m + &m))-

Matchingis definedoy symmetryor antimonotonicules,thatisS, T = (z)L — R
if andonlyif T, S =R — (z)L.

The first condition makes surethat noneof the creatednamesis usedby the in-
terfacesextensions;s? The secondconditionis merely sayingthat undersuch
renamingandextensionsL andR instantiateo S andT.

It is worthmentioningthat,sinceS, T aresolutionsall theinterfacesro p; +&;,
r o o; + & have to becompleteones,andtherefore:

dom(r) 2 U;fn(o;) 2 U;fn(p;)

2This would result otherwisein a non graph-like T since creatednamesare boundand (z)R
beinggraph-like they mustappearexactly twice, soif &; usesoneof ther(z) therewill be atleast
threeoccurrence®f a samenamein T. Soonedoesnt really have to askthis whendealingonly
with graph-like solutions but it seemslearerto do soandprove just below thatour formatgivenin
definition4 respectgraph-likeness.
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with the secondnclusiongiven by monotonicity

A moreabstraciandequialentview of matchingis possible.Derivations,as
definedin Tables2 and3, canthemselesbe renamedy injective renamingand
extendedby picking largerinterfacesin (reflex) clauses.This definesan “instan-
ciation” preorderbetweenderivationsandS, (y)T canthenbe definedto match
(z)L — Rif bothy - S < T andz I L < R canbederivedin suchaway thatthe
derivation of theformeris below thatof the latter, accordingto this preorder The
first conditionin the definitionabove is taken careof by the (reflex) clause while
the secondneis automaticallysatisfied becausef the preorder

Lemma?2 LetL — (z)R bea monotonicreactionandS, T a pair of matding
solutions,then1) occurencesof freenamesare in bijectionbetweert and T; 2)
S is graph-like if andonlyif T is.

Proof: Supposdfirst S is graph-like and considera namex occurringin T. If
x ¢ fn(T), thenz € r(z), andby thefirst condition: =z ¢ U;n(¢;), sothatits only
occurrencegomefrom R alongthe partial injection r, andsince (z)R is graph-
like, this meanSr*—l(z) hasexactly two occurrencesn R, andthereforealsotwo
occurrencedn T, asit should. If elsex € fu(T), thennoneof its occurrencess
created,.e., introducedby the (create)clauseor the (synth) clause(becausehis
clauseasksthatall namesintroducedarein z), in thedervationof z - L < R,
thereforeall mustbeinheritedfrom the (reflex) clauseor provided by aninterface
extension¢;, andin bothcaseghe sameoccurrencesxist in S andnotmore,since
namesannotbe deletedn a monotonicreaction.

Supposecorverselythat T is graph-like andz occursin S. Thenz € fn(S),
sinceno nameis boundin S, andoccurrencesf x areeitherprovidedby a (reflex)
clauseor an interface extension¢;, in both casesthe sameoccurrencesxist in
T andnot more,sinceotheroccurrencesvould have to be createdandary name
createdn a monotonicreactionis bound.O

We obsene thattheagumentdoesnt usethe connectednessssumptioronR,
whichis therefor completelydifferentreasongxplainedatlengthin thepreceding
section.

Examplesof matching. Hereis a matchon a monotonicreactionwith r(z) =
u, §1 = 3Z, 52 = 2:
A1 +2), B(1) — (z)(A(1" +2), B(1"))
A(14+2+3%),B(1+2) — (u)(A(1" + 2+ 3%), B(1" + 2))
A somavhatsubtlerexample,wherer mustdealwith boththe freeandthebound
variable,r(u) = z, r(z) =y, & = 3, & = @
AL +2%), B(1+2%) — (z)(A(1* +2%), B(1* 4 2%))
A(1+2% +3), B(1 +2%) — (y)(A(1Y + 2% + 3), B(1Y + 27)))
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Notice alsothatwhile & andr may not overlapon boundnamesthey maydo so
on freenamesasin thefollowing match:
A(1” +2), B(1) — (2)(A(1" + 27), B(1%))
A(1" +2+3%),B(1) — (2)(A(1" 4 27 4 3%), B(17))

wherer(z) = z = £ (3).

Definition 6 LetfR bea setof biological reactionstheassociatedi-systemis the
pair (6, —), whee & is the setof solutionsand —, calledthetransitionrelation,
is theleastbinaryrelationover S sud that:

STEL— (XR R STEXL—R € _
mon S — _I_ S . _I_ antimon
S—T S—-T
new ——  group
()(S) — (@)(T) S,8' - T,5

S=S 9T T=T
S—T

struct

Contectual rules allow to focus on the reactingparts of the system. With this
definition, we may give an example of what goeswrong when one violatesthe
side-conditiorin the (create)clause:

mon

A(1Y 4 2) — A(1Y + 2Y)

group
A(1V +2), B(1Y) — A(1¥ + 2¥), B(lY)

resultingin a non graph-like right handside. If everythingwasdoneproperlyin
thedefinitionof reactionsoneshouldbe ableto extendlemma2 andshav thatthe
exampleabove never happensith properreactions.

Proposition3 Supposé& — T thenl) occurencesof freenamesare in bijection
betweerb andT; 2) S is graph-like if andonlyif T is.

Proof. The basic casecorrespondgo lemma?2 so it remainsto prove that the
three contextual rules presere our property The (new) rule clearly does,since
(z)S is graph-lile iff S is andz occurstwice or notatall in S. The (struct)rule
alsodoessinceboth the propertiesof beinggraph-like and of beinga free name
occurrencareinvariantsof structuralequivalence asnoticedearlier Finally there
is the (group)rule, which obviously preseresbothconditions.O

So our reactionsand the accompaning transition systemspresere graph-

likenessandit makes senseo restrictto graph-like solutionswhich is what we
aregoingto do from now on.
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4 Formal biological systems

With a well-definedlanguageof idealizedproteininteractionsthe next thing one
needdss someexampleso measurdow well thelanguageperformsin thedescrip-
tion of typical biologicalsystems.

The first exampleis all aboutprotein-proteininteractionand our language
passeghat expressiity testwith no problem. The secondexampleis richerand
the simple modelwe obtainedis meantasan assessmerdf what our languagen
the presenstagecando andhow well it candoit. Furthermodelingpracticewill
refinethe pictureandgive a bettersenseof which extensionsarethe mostneeded.

4.1 Signals

Thefirst stepsof thesignalcascadériggeredby thegrowth factorEGF aredetailed
enoughthatwe cangive a minutedescriptionof whatis goingon: a dimericform
EGF; of thegrowth factorEGF bindstwo receptor€GFR (alsoknown asRTK);
the receptorscross-phosphoryta eachother throughtheir tyrosinekinasesites;
oncethisis doneeachcanactivatea secondbinding site andthenbind anadapter
proteinSHC andactivateit. Thesignalgoesthenfurtherdowvn andpasseshrough
mary otherproteins but we stopour descriptiorhere.

To keepthingsreadablewe will renameour protagonistsas S the signal, R
the receptorand A the adapterand after the biological descriptionchoosethem
of respectie arities2, 3, and2. The particularsite (R, 2) standsfor the receptor
tyrosinekinasesite. Hereis theformal rendering:

Signal-Receptointeraction
o 5(1),5(1) — (2)(S(17),5(17))
rp : S(2),R(1) — (2)(S(27),R(17))

RTK Cascade
T3 S(1% + 2¥),S(1* + 2%),R(1¥),R(1% + 2) —
S(17 4 2v¥),S(17 + 2%), R(1¥),R(1* + 2)
ty R(2+3) = R(2+3)
o R(3),AL) — (2)(R(37), A7)

t6 : R(2+3%),A(1% +2) — R(2 + 3%),A(1* + 2)

Thekey constrainis thatthedormantcapacityof the (R, 2) sitecanonly bewoken
up by reaction3, andonly thenis the4—6 cascadgossible With thereactionsone
canrun a minimal interestingsystemasshavn in Table4, startingin a quiescent
statewhere?2 is hiddenin R, elsethereceptomwould be active right away, and2 is
hiddenaswell in A, elseA would alreadybe active.

Nature could perhapshave chosena simpler designby letting the signal be
itself anactivator (akinase)andnotresortingto thereceptorfor activation. Indeed,
in the solutionabove thereceptothasto bein “suspendedtate”until its activation
capabilityis triggeredby the signal. Whetherthereis an otherconstrainton the

18



S(1+2),5(1+2),R(1+2+3),R(1+2+3),A(1+2)

— (2)(S(1* +2),S(1* + 2)), (1+Q+3) R(1+2+3),A(1 +2) (r1)
— (2y)(S( Z+2) S(1I+2y) R(1Y +2+3)),R(1+2+3),A(1+2) (t2)
— (zy2)(S(1% +2%),5(1% + 2¥),R(1¥ + 2+ 3),R(1* + 2 + 3)),A(1 + 2) (t2)
— (zy2)(S(1* +2%),5(1* + 2¥),R(1¥ + 2+ 3),R(1*7 + 2+ 3)),A(1 + 2) (t3)
— (zy2)(S(1* +2%),5(1% + 2¥),R(1¥ + 2+ 3),R(1*7 + 2+ 3)),A(1 + 2) )
— (zyzu)(S(1® +2%),S(1% + 2¥),R(1Y + 2 + 3%),R(1* + 2 + 3), A(1* + 2)) (r5)
— (zyzu)(S(1% + 27),S(1% +2Y),R(1Y + 2 + 3%),R(1* + 2 + 3), A(1* + 2)) (v6)

Table4: A runof theRTK cascade.

designthatmakesthis solutionreasonabler it is justa matterof chancewe dont
know. Bethatasit may oneseeghatthe calculusexpresseshe causalityinvolved
in thetransductiorin a preciseyet naturalway.

4.2 The lactoseoperon

Let's turn now to a more comprehensie example. EscherichiaColi, one of the
moststudiedorganismshasglucose(Glu) astheinput of animportantmetabolic
pathway, glycolysis leadingto the productionof pyruvic acid and eventually of
ATP whichis themajorenegy curreng in thecell. Sometimeshereisn't enough
glucoseandE. Coli hasto feedon alternatve food. If lactose(Lac) is around,E.
Coli cantriggerthe synthesiof:

e galactosidaséGAL) which canturnlactoseinto glucose,
e andof apermeas€¢PER) thathelpsthebiggerlactoseenterthecell.

Thenlactoseflowsin andthecell is backinto businessYetthereis needto control
whenthis happensaandwhenonemay switch backto the ordinarybehaiour and
feedagaindirectly on glucose.The descriptionof the molecularlevel implemen-
tation of the control wasoneof the major discoveriesof early molecularbiology
[21]. For usthiswill betheoccasiorto review sometypical molecularevents,test
the expressienesof ourlanguageanddiscusssomepossibleextensions.

Molecular Control. But first we have to describethe molecularcontrolin bio-
logical terms. Thoughassaid, this particularsystemhasbeenstudieda lot, some
guestionsarestill openandherewe will be hapy with asomevhatsimplifiedde-
scription. The readercuriousto learnmoremay referto Kimball's Biology Pages
[16].

An opepn is a sequence®f geneswhich aretranscribedcollectiely, together
with a repressoiproteinthat canblock the transcriptionof the genes. The Lac-
opeon containshe genescodingrespectiely for GAL andPER andits repressor
proteinwasaptly namedREP. Thisis thedevice thecell wantsto turnonto handle
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lactoseandoff if thereis enoughglucose.Upstreanof this operontherearethree
smallregionsonthe DNA:

— asitewheresomecomplex CAP-cAMP canbind andhave a positive influence
ontheoperontranscription,

— the promotersite where RNAp the transcriptionmachinerybinds, and then
opensthe DNA helix and proceedsionn one strandbeginning the transcription
process,

— andoverlappingwith the promotey the so-calledoperatorsite,whereREP can
bind andthereforepreventthe recruitmentof RNAp, blockingthetranscriptionof
thewhole operonandthereforethe synthesiof the associategroteins.

In theabsencef Lac, REP bindsto DNA andswitchesoff the operon.Like-
wise,in abundantpresencef Glu, the productionof cCAMP is inhibited, therefore
the complex CAP-cAMP doesnt bind, so againour operonis off. To turnit on,
theremustbealow-level of Glu, sothatCAP-cAMP binds.But thisis notenough,
onealsoneedsa certainamountof Lac andenoughof GAL sothatsomealac is
produced.This isomericform of lactosebindsto REP, changeshe shapeof the
repressoandpriesit out from the DNA, thereforeactivating the operon.Upona
suddenchangefrom glucoseto lactosein the ervironment, E. Coli will produce
GAL until it reache®2% of its mass,which is enormousconsideringthat water
accountsalreadyfor 70% of thetotal mass.Nothingis moreimportantthanfood,
it seems.

Formalization. Sincewe have mentionedall the differentmoleculesinvolved,
we may now turn to the reactions. Theseare presentedn the directionin which
they malke the bestsensewith respecto the overall intendedbehaiour, but they
areall in factreversible.To easaeading sitesaregivenexplicit namesandto keep
thingsshortwe dont write the obvious synthesigeactionfor REP andCAP, nor
the dggradatiorreactionsof all the participatingproducts.

OperonSynthesis
toa : UP(teps+ rmap-§ + cap-¢), RNAp(up-s® + syni+ syn2) —
(zu)(UP(teps+ map-§ + cap-¢), RNAp(up-s* + syn¥ + syn2"),
GAL(lac-s+ s*), PER(lac-s+ s*))
to, : (yz)(RNAp(syn? + synZ), GAL(lac-s+ ), PER(lac-s+ s%)) —
RNAp(syn1+ syn2), GAL(lac-s+ s), PER(lac-s+ s)

The basicswitching mechanisiris expressedn 0a: synthesisbagins only if the
repressois absentandthe auxiliary CAP is present.To shortenthe reaction,we
actuallyonly testthat somethings boundto the cap-ssite (andthereforereaction
0Oa is graph-like but not stronglyso, becausey occursonly onceon eachside). If

therewereotherproductscompetingwith CAP, thenonewould have to bespecific
aboutwhois bindingat cap-s Both reaction®0a—0bcould be composedn asingle
not monotonicreactionof the “good” kind (seethe discussioraboutrelaxingthe
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formatin the precedingsection).

OperonControl
T UP(rmap-s+ rep-9, REP (up-s) — (z)(UP(map-s+ rep-§’), REP(up-¢"))
ta : UP(rap-s+ rep-9, RNAp(up-9) — (z)(UP(rep-s+ map-¢'), RNAp(up-s"))
t3 UP(cap-9, CAP(up-s+ camp-§), cAMP(cap-§') —
(2)(UP(cap-$), CAP(up-§ + camp-§), cAMP(cap-¢))

WhetherCAP bindsor notis independentf the occupang stateof the othersites
of UP. On the otherhand,REP and RNAp are hiding eachothers sitesin 1-2,
andthereforearemutually exclusive.

Regulations
ty : CAP(camp-9,cAMP(cap-9 — (z)(CAP(camp-§), cAMP(cap-¢))
tsa : REP(up-s+ alac-g,alac(rep-9 — (z)(REP(tp-s+ alac-¢), aLac(rep-§))
tsp : UP(rep-§), REP(up-s" + alac-9,alac(rep-9 —
(y)(UP(rep-¢’), REP(up-s® + alac-¢), aLac(rep-¢))
tsc : (z)(UP(rep-¢’), REP(up-s’ + alac-¢), alLac(rep-¢/)) —
UP(rep-9, REP(up-s+ alac-¢), aLac(rep-¢)

In mostdescriptionsalLac is saidto beableto complex with REP, evenafterREP
haslandedon DNA, andthenpry it outfrom theDNA. Thisis expressedy means
of the compleation and subsequentiecomplg&ation 5b—5c. Be it in this way or
directly by reaction5a, REP is madeinert by the hiding of its binding capability
up-s

PERandGAL actity
t¢ : PER(lac-s), Lac(pers+in) — (z)(PER(lac-s"), Lac(pers” + in))
vtz (z)(PER(lac-s"), Lac(pers”)) — PER(lac-s), Lac(pers)
tg : GAL(lac-s), Lac(in + gal-s) — (z)(GAL(lac-s"), Lac(in + gal-s"))
toe : (2)(GAL(lac-s" + loaded, Lac(gal-s")) — GAL(lac-s+ loaded
tgy, : GAL(loaded — GAL(loaded, Glu(s), Gal(rep-9
to. : GAL(loadeg — GAL(loaded, aLac(rep-g

Reaction6 hasthe effect thatLac is now insidethe cell. We encodethis by using
the sitein asa state. With afirst-classnotion of membranewritten m|[. . .] below,
we couldreplace6 and8 with:

PER:amembrane-ariant
t; : m[PER(lac-s)], Lac(pers) — m[(x)(PER(lac-s"), Lac(pers”))]
tg : GAL(lac-g), Lac(gal-s) — (z)(GAL(lac-s"), Lac(gal-s"))

andhave adirectaccountof whatPER is doing. Extendingk-calculuswith mem-
branesseemsgoodidea,andwe arelooking forwardto adaptexisting membrane
calculi[1, 3] to dothis.

Thethreereaction®a—9caredecomposingheactionof thebeta-galactosidase
enzyme. Our monotonicityprinciple forcesa bit of gymnasticshere,aswe have
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to introducetheintermediateandsomeavhatimaginarystateGAL (loaded wherethe
enzymeis loadedwith its metabolitebut hasnot yet decidedwhat to do with it,
eithertwo smallersugarsGlu and Gal® asin 9b or anisomericform asin 9c.
Perhaps moredirectsolutionwould beto write the alternatve reactions:

ty, : (z)(GAL(lac-s"), Lac(pers+ gal-s")) — GAL(lac-s), Glu(s), Gal(s)
ty, : (7)(GAL(lac-s"), Lac(pers + gal-s")) — GAL(lac-s), aLac(rep-g

andconsidetthatsugarsandmetabolitesrenottakeninto accounin monotonicity
constraints. This is a very mild adaptationof our languagesinceit amountsto
addinga new inferencerule for the growth relationwhich appliesonly when M is
ametabolite:

THES<T fn(p) =2 dom(p) = s(M)
TS M) <T

metab

This makesgoodsensean thatthesesmall moleculeshave a very differentsetof
bio-chemicainteractionghanthelarger proteins.

The readermight wonderwhat hasbecomeof the mechanismby which Glu
reduceghe cAMP-level. This mechanisms notknown andit is evena matterof
discussiorwhetherthe whole “cAMP model” is correct[15]. This pointsout a
shortcomingof our languagef onewantsto useit to build actualmodels:unless
oneis giventhe explicit molecularmechanismpneis not ableto incorporatethe
knowledgein themodel.

5 The mk-calculus

We turn to the issueof implementingthe x-calculus,and discussa distributed
implementationbasedon agentsexchangingchannelnamesduring rendez-ous
communications.We first presentm-calculus a finergrainedlanguagewhich
describeslessidealizedformal biology:.

5.1 Agentsand Solutions.

Sinceonewantsto decentralizeéhe x-systemst is naturalto put moreintelligence
in the agents.Indeedthe syntaxof mx-calculusis the sameasfor x-calculusdis-
cussedn Section3, exceptthatour basiccomponentswhich we now call agents
have moreinformationattheirdisposal Eachsiteis givenanadditionalstateto the
effectthattheagentcanlog what's up onthisconnection.To emphasizéheprocess
natureof mx-calculus theirrestrictedform of reactionswill becalledinteractions
As namedor agentsve keepthe samesetof namesnhamelyP, andthe same
definition of signatureaswe hadin . In additionto the edgenames€, we need

30neshouldnot confusethe sugargalactoseGal andthe proteinGAL. As arule, in this exam-
ple, we useuppercasédor proteinsandcapitalizediowercasefor metabolites.This is following the
biologicaltradition.
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acountablesetG of group namesrangedover by r, 7/, ... to be usedlaterasthe
meango build transientcooperatre structuresn our low-level systemsEdgeand
groupnamesaresupposedo be disjoint.

An extendednterface is afinite mapfromN to (€ + G + {h,v}) x N, ranged
over by § andsimilar symbols.Theintegerpartof 6(i) is referredto asalog.

An agentis apairwritten A(6) with A € P andd anextendednterfacedefined
ons(A).

Extendednterfacesare written with the samelightweight notationusedpre-
viously in «, eg., if s(A) = 3, andf(1) = z,1, 6(2) = r,5 andd(3) = h,0,
thenonemay simply write A(1%1 4 27° + 3%). We will alsoindulgesometimes
in notwriting alog whenit is 0, sothatfor instanceC (14 + 2" + 3) will stand
for C(174 + 270 4 39). A convenientconsequencef this notationalaluseis that
k-proteinsbecomea particularcaseof mk-agents.

Solutionsarebuilt asin Section3. The “new” operatoris now binding both
kindsof names¢ andg, andtheaccompawing notionof freenamess extendedo
includegroupnames.Structuralcongruencés unchangeandin particularscope
extrusionS, (z)(S') = (z)(S,S’) appliesboth for z in £ andg, with the usual
side-conditiorthatz ¢ fn(S).

Thelogs,thatis theadditionalinformationon sites,canbeforgottenby means
of thefollowing projectionmap:

(Zx,n)— —_— (Zr,n)— — (Zv,n)— — v (Zh,n)— — Zh
This projectionextendsin the obviousway to interfaces agentsaandsolutions.

5.2 Interactions.

In mk-calculusat mosttwo agentsmayinteractatatime.

Definition 7 LetL, R betwo pre-solutionsL. — R is saidto bean interactionif:
—bothL andR consistof at mosttwo agents,

—fn(L) D fn(R),

—L doesnotcontainany“new” ongroupnames.

No specificconditionis demandedor thegroupnamesegexceptthatfreenames
of the right handsidealsooccurin the left handside,andthatthe left handside
doesnt restrictthem. This lattertechnicalprovisois thereonly to ensurghatinter
actionscanbe translatedn m-calculus. Sincegroupnameshave no specificcon-
straintsuchasgraph-likenessit is very unlikely thatonecanexpressn w-calculus
aninteractionsuchas(r)(A(1")) — A(1) which amountsto testingwhetherone
is the only agentknowing a namein a solution.

Definition 8 Anmk-interactionL — R is saidto be monotonic(resp.antimono-

tonic) if its projection (L)~ — (R)~ is a monotonic(resp.antomonotonic):-
reaction.
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Generalinteractionsasdefinedabove, could alsobe translatedo =. But, oneis
really concernedn this studywith monotonicor antimonotonidnteractionsand
actuallyarestrictedclassof them,which areusedto translates in mx. Sowe sup-
posethereaftetthatall interactionsare monotonicor antimonotonicandconsider
only mk-solutionswhich are graph-like in the specificsensethat they projectto
graph-like k-solutions. Recallfrom section3 that thesegraph-like solutionsare
stableundermonotonicreactionssothattheseassumptionsresensible.
Herearetwo examplesof interactions:

A(1% +2), B(1" + 2%) —  A(1®1 427, B(1" +2%1)
A1 4+27),B(1 +2"4372) — (2)(A(1" 4 27), B(1® + 27! + 372))

The first interactionis both monotonicand antimonotonic,only logs and states
namesarechangedandthereforeit projectsto anidenticalx-reaction.

Sincethe groupnamesin G areforgottenby the projectionin «, reactantsn
monotonicandantimonotonidnteractionshave to be graph-like only with respect
to edgenamesn £. Thesecondeactionis monotonicalthoughr € G occursmore
thantwice ontheright. In thenext sectiongroupnameswill beusedto distinguish
concurreninstance®f areaction sonotfor representingdges.

Renaming$ave to respecthetwo kindsof namesthatis they have to send€
to £ andg to G. Thatsaid,the notionsof matchingandtransitionsystemextend
easily

6 From k-calculusto mx-calculus

To decompose x-reactionin themx-calculus we follow a protocolthatgradually
recruitsreactantsand constructghe productsby meansof only binary andunary
interactionsThis protocolconsistof afirst phaseof recruitmentanda subsequent
phaseof completion

Recruitmentbagins with a signal sentby a specificagentcalledthe initiator.
Thenonesendsandpropagates$wo kinds of signals:downwad signalsto recruit
the necessaryeactantsandupwad signalsto reportsucces$ackto theinitiator.
At the endof this first phasetheinitiator knows thatthe global x-reactioncanbe
completedandin thecompletionphasethisinformationis propagatedo theother
reactants.

To ship the various signalsaround,we needsomestatically predetermined
structurewhich we now definetogetherwith someuseful notation pertainingto
thewaysin which thesesignalsmayor maynot propagate.

6.1 Scenarios

Definition 9 (Micr o-scenario) Lett = L — (z)R be a monotonick-reaction,a
micro-scenaridor t is a triple (F, 7., init) sud that:
— F. is (isomorphicto) an acyclicorientationof [[R]]g, calleda flow graph
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— 7. is atreespanningFy;
—init, alsowritten init (), is thecommorroot of 7, and 7;
—andinit belongsto [L], (upto theisomorphismabove)if L # 0.

We recall thatfor a solutionS, [S] p denoteghe associatedjyraph-with-sitegthe
[.], notationwasdefinedin section3).

Without loss of generality we assumeéhat 7. is an orientedgraph-with-sites
with integers asnodesandthatscenariodor differentx-reactionsarechosersoas
to usedisjoint setof nodes.This way agentswill identify which global x-reaction
they take partin, andwhatrole they have in it, assoonasthey arerecruitedand
handeda nodeof F..

Suchmicro-scenarioglways exist. Any connectedgraphadmitsan agyclic
orientationwhich canbe obtainedfor instancepy choosinganarbitraryroot, con-
structinga depth-firsttree spanningthe graph,anddirectingall remainingedges
accordingto the treeordering[9]. Thus, [[R]]g being connectedy monotonicity
therealwaysis a micro-scenaridor ary given x-reaction:ary nodeof [L] ,can be
choserastheroot andonecouldevenassume/, to be depth-first.

Therecould be loopsin [R],, thatis edgesfrom a nodeto itself. Soto be
completelyprecise oneshouldsaythat 7. is an orientation[R]]g whichis agyclic
exceptfor theseloops. To escapanotationaltrouble,onemayaswell supposehat
[[R]]g doesnt have loops. The techniquegdescribechereadaptvery easilyto this
casegsinceloopsarepurelylocalto anode.

Onecanthink of F, asamapover sitesandwrite accordingly:

Fela,i) =107 if (a,i), (b,j) areconnectedn F,
Fela,i) =L if a,1isfreein F..

Consideredasa map, F is a partial involution, and we write F for its inverse
which, of course,correspondgo the reverseorientationof the underlyingundi-
rectedgraph[[R]]g. ThisinverseF} is ascenariconly in the specialcasewhen 7,
hasonly onesink. The sameconsiderationgpplyto 7, andwe will alsousethe
mapnotationin this case.OnemaydecomposeF, uniquelyas7, + 7.. We'll use
this notationlaterfor the complemenbf 7.

SinceF, is aninvolution, which hasno fixed points(no site canbind to itself),
boundedksitesin [R] g are naturally partitionedbetweeninput andoutputsites. A
siteis anoutputif it belongsto the domainof F, andaninputif it belongsto its
range. In otherwords, a site (a, ) is anoutputif F.(a,7) # L andaninputif
Fra,i) # L.

Definition 10 (signalordering) Definea binary relationover sites,written -, as
thesmallestransitiverelationsud that:

F‘c(avl):(b]) = (al) >_(bv.7)
(a,i) input, (a,j) output = (a,i) > (a,j)
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SinceF; is agyclic, < is a(strict) finite partial orderon sites. The sameordercan
bedefinedfrom 7., andthey coincideif andonly if 7. is depth-first.

Definition 11 (input/output interfaces) Forn € N, a € F, andz atupleindexed
over the setof inputs(resp.outputs)of a andwith valuesin £, we definetheinput
(resp.outpu) interfaces:

INDT = oo e
{i]| Fe(ai)#L}
;M

OUTf’" = Z 7

{i| Fe(ai)# L}

Theseinterfacesdescribestatenf a whereall inputs(resp.outputs)have the same
log; they thereforehave disjointdomainsandtheir unionis alsoa partialinterface
for a.

6.2 The monotonic protocol

A proteinwith nameA is translatedas an agentof the samenamebut with one
moreauxiliary site, written x:

[A(P)],, = Alx + p)-

Thatspecialsite x is usedto log whatlittle additionalinformationoneneedsthat
is therole of A in agivenreaction(thatis which nodeit correspondso in F,) and
a groupnameidentifying uniquelythe currentattemptechigh-level reaction.This
translationextendsto x-solutionsandlikewise, if S is a x-solution,we write [S], |
to denoteits translation.

The purposeof this subsections now to extendthis translationto x-reactions:
givena x-reactiont, onewantsto definean associatedamily, ], ,, of ms-inter-
actionscapableof simulatingt in a sensehatwill be madeprecisebelon. This
family depend=n the choiceof a micro-scenaridor . By no meansis therea
uniguesolutionto the self-assemblyandwe could do with morethanoneinitiator
(asin [8]), without a spanningtree, etc. Even in the restrictedkind of micro-
scenariogshatwe areconsideringthereis roomfor differentchoices.

That said, we supposenow that a choiceof a micro-scenarichasbeenmade
and proceedto the definition of [¢],,. Sucha definitionwill dependon whether
the reactionof interestis monotonicor antimonotonic.We give belov a detailed
accountof the monotoniccase,andonly sketchthe antimonotoniccasewhich is
muchsimpler The next subsectiorwill discussfurther the antimonotoniccase
andvariouspropertiesof the translation while the last one sketchesa correctness
argument.

Interactionsn [¢],, aredividedinto recruitmentshavn in Table5 and6, and
completionsshavn in Table7. To easaeadingwe have systematicallyabbreiated
A(x™* + ) as A™*(#) and also madeuse of the notationfor input and output
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interfacesintroducedabore. On top of the inferencerule the definingconditions
for theinteractionaregiven.

A perfunctoryglanceattheseTablesshawvs thatall interactionsnvolve atmost
two agents,asrecommendedn definition 7, that at mostone edgeis createdat
atime andthatthe option of usingreactantsandproductswhich are not strongly
graph-like is useda lot. We let the readeverify thatthe restof the conditionsare
satisfiedas well, andthat theseinteractions which we are going now to review
closely arein factall monotonicin the senseof definition8.

a = init(Fy)
A(o) = (r)(A™*(d"))

init

Te(a,i) = (b,7), « € fu(r)
ATC(NGT 4+ 7), B(j7 4 o) — APC(NG! o1y, Brb (ol 4 o)

FCi1

Te(a,i) = (b,), z & M(x), be L
APS(NG! 44), B(j + 0) — () (AP (NG 1), BRY (55! + o))

To(a,i) = (b,j), = ¢ fn(x), b L

FC»

— — FCs
ATC(NGT +4) — (2)(AmC (NG 4 1), B (5 + o))
Tableb: Initiation andfirst contacts.
T(a, i) = (b,7), € fn(r) c
— — 1
AT’a(INg’l + iw)’Br,b(]'w) N Ar’a(INZ’l + ,L'x,l)’Br,b(]'w,l)
s 7' = b7 ‘ 9 f
£(a,) = (b,4), @ ¢ f(y) .

APONG! ). BT() = (2) (A (NG i), BT (7))

Fe(a,i) = (b, )

— p- R
Ar,a(ix,1)7Br,b(jx,1 4 OUTgQ) N Ar,a(ix,2)’Br,b(jx,2 _'_OU-I-Zg,Q)

Table6: Latercontactsandresponses.

Initiation (init). Theinitial reactionis possiblefor ary quiescentgentbearing
the correctname,it is the momentwhenthe namer for the currentattemptof a
reactionis created.It is understoodn the notation,taken hereandin the sequel,
thata andb have respectre namesA and B in theflow graph.

Take note that the namemap from nodesto namesin P is not injective. In
the limit case,not unheardof in biology, there could be a complicatedreaction
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a = init(Fy), ,
= =3 shift
Are(ouTy®) — AMe(ouTy™)

a= init(]—}), Fr(aai) - (b,j)
Ar,a(iaz,S)?Br,b(jr,Z) N Ar,a(i:c,ll)’Br,b(j:c,S)

i-ppg

a# init(Fr): Fr((%i) = (b,j)
Ar’a(lNg’B—)—ix’2),Br’b(jI’2) N AT’Q(INg’S +im’3),BT’b(jx’3)

pPY

a = init(F;)
Ama(ouTE ) = A(of)

i-exit

a # init(Fy)

=3 >3 = exit
AmA(ING” + 0oUTy”) — A(dh + 02)

Table7: Completions.

involving only copiesof oneandthe sameprotein. This is indeedwhy rolesare
needed.

During initiation, one also verifies and modifies the initiator free interface.
Specifically ¢ and ¢’ have as commondomainthe free sitesof init in %, and
respectiely maptheseto thevaluesspecifiedoy L andR. Take notethatonly sites
which arefreein R (hencefreein L aswell, by monotonicity)aretestedandper
hapsmodified at this stage. Siteswhich arefreein L andboundin R (henceall
visiblein L) aretaken careof in stepsFC, andLC, (seebelaw).

First contacts(FCq, FCs, FC3). The next threeinteractionsare the first con-
tacts If 7¢(a,i) = (b, ), thentherearethreeforms of first contactwhich we can
list herein increasingorderof creatvity:

— theedge(a, i; b, j) mayalreadyexistin L;

— it mayhave to becreatedwvhile the otherendexistsin L;

— finally boththe edgeandthe otherendmayhave to be created.

In all threecasesthenewly contactechgentnamedB, is handedarole b, whichit
logsonits special site,andthe contactis loggedwith a1 onbothsides®

“This importantfactwas overlooked in the shortversion[8] of the presenipaper resultingin a
self-assemblyvhich was only correctwhenall participantsin the reactionhad statically different
names. Rolesallow to handlethe generalcaseby dynamicallyallocatingdifferent namesfor all
reactantsFirst contactsaare“logged” andthereforearetaken at mostoncefor eachreactionattempt.
As a consequencehe allocationof rolesis injective over the setof agentsparticipatingin a same
attempt.

® Thetree 7. spansF., andthereforeit selectsamongall predecessoref a given b different
from init, its parent thatis the only a suchthat7: (a,i) = (b, 5) for somei andj. This parentis
responsibldnere,in therecruitmeniphasefor contactindfirst (someagentof name)B andhandhim
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As in theinitiation case first contactsarethe occasionto verify and modify
thefreeinterfaceof the newly contactedagent.In thecaseof FC; andFC,, o and
o’ hare ascommondomainthefreesitesof b in F;, andrespectiely maptheseto
thevaluesspecifiedby L andR. The caseof nodecreation FCs, is different. One
takeso to betheinterfacedefinedons(B) \ {j} mappingsitesboundin R to v (to
allow for laterbinding) andsitesfreein R to the valuesspecifiedby R.

Later contacts(LCq, LC,). Thencomethetwo later contactgnotneededvhen
F. is atree). Indeed,if Fi(a,i) = (b,j) and7Z¢(a,i) = L, therecanonly be
two forms of contactssincethe otherendof the edgemusthave beencontacted
already which meandn particularthatit alreadyexists. Upona later contactone
doesnt needto checkthefreeinterfaces neitherdoesoneneedto passoverarole,
becausehis hasbeentaken careof by thefirst contact,andit is enoughto justlog
thecontact,againwith a1 onbothsides.

A notavorthy point is that eachcontact,first or later, is demandingthat the
inputsof the contactingagenthave log 1. This imposesa constrainton the way
signalsmaypropagatavhichwewill discusdater. Let usjustsayfor now thatthis
constraintwould betoo strongif theflow graphwerenotacgyclic.

A remarkof lesserimportanceis thatthis setof contactinteractionsbehaes
correctlyalsoin the casewhere . hasparalleledgeqedgeswith the samesource
andtamget). At mostoneof ary groupof paralleledgeswill belongto thespanning
treeandwill bedealtwith in afirst contactinteractiontheotherswill bedealtwith
by alatercontact.No speciaworkarounds needecdhere.

ResponsgR). Finally thelasttype of interactionin therecruitmentphaseis the
responsavhich pushesa signalupwardsbackto the initiator. This is only when
all successorm F, have alreadyresponded.Sucha stepcanbe freely taken by

leavesof 7, oncethey’re contactedsinceleaveshave no successorandtherefore
the conditionon the logs of their outputinterface,is vacuouslysatisfied.Again it

is importantthatthe flow graphbe agyclic, elseonewould have no chanceto fire

ary of theseresponses.

Phaseshift (shift). Thesecondhasebeginswith the phase-shifinteraction.At
thatvery moment.the initiator knows thateverythinghasgonewell, andtheright
handsideR hasbeencorrectlybuilt.

Propagation and Exit (i-ppg, ppg, i-exit, exit). The global reactionis over
andit is enoughto completethe procesdy sendingdown a successignal, mate-
rialized by thelog 3, which will let all otheragentsecruitedin the reactionknow
thatthe reactionhassucceededSothe signalis sentdownwardsto theleavesand

over therole b. We'll shav later an exampleof whatkind of failure canhappernwhenall contacts
concurfreely.
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whenan agenthasreceved the signalat all inputsandpassedt atall outputs,it

finally may exit asynchronouslgndprojectagainto a quiescenk-like agent.
Becauseof the assymmetrybetweenthe initiator and the other agents,one

needswo differentpropagatiorandexit rules,but they arereally of the samekind.

6.3 Discussion

Antimonotonicreactionshave a connectedeft handside andthereforethe corre-
spondingrecruitmentis muchsimpler It consistsof checkingthatthe neighbor
hoodof the initiator indeedcontainsthe left handside. Sincenothingis created,
nodeor edge,one only needsinit, FC;, LC; andR, beforethe phaseshift, all
of which projectto anidentity reactionin . Dually to monotonicreactionsall
deletionswill be performedafterthe phaseshift, if onereachest. Thisis easily
implementedisingthesameflow graphandwe don't give theexplicit interactions.
Yet,we dotake notethat,in antimonotoniaeactionsno actualchangds donethis
sideof the phaseshift to theunderlyingx-solution.

¢ Fromthis discussionone also seesthat compositereactions,that is to say
the reactionswhich one candecomposes a monotonicreactionfollowed by an
antimonotonioone (which we discusseckarlierat the end of subsectiorB8.4), can
easilybeimplementedaswell. Thissideof the phaseshift onedoesthemonotonic
partof the job, andbeyond onedoestherest. This substantiatethe claim thatone
could take themasbasicaswell: they areaseasyto dealwith in mx asarethe
monotonicandantimonotonimnes.

The spanningtree. We have alreadyobsered thatthe spanningtree senesas
a way of imposinga “parentalpriority” betweenthe contacts. Only the parent
accordingo 7. is allowedto wake a child andrecruitit, while all theotherreactants
have to usea furthercontactinteraction.

If we dont do this, somestrangeself-deadlocksnay happen. For instance,
startingwith thefollowing x-reactionandsolution:

t = A(1*+2),B(1*+2),C(1+2)—
(yz)(A(1* 4+ 2Y), B(1* + 27%),C(1Y + 27))
T = (zy2)(A(1"+2),B(1* +2),C(1+2),C(1+2))

andsupposinghereis no priority betweencontactsthen A and B might recruit
distinct Csin T, andso, in somesense the recruitmentdefeatsitself all alone.
Having thetreeto sortoutwhois doingthefirst contactandwhois not, solvesthe
guestion.

Depth-first. Supposenow the spanningreeis depth-first,andsomeagentA is
contactedor thefirst time, then A’s predecessoiis F, are A's predecessolia 7.,
hencehey arealreadyrecruitedandconnectedo A. Thereforejf wefollow thein-
tuition thatconnecteccommunicatioris instantaneousbecausét is the symbolic
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counterparbf interactionbetweercomponentshatwerealreadybroughtin phys-
ical contact,thenthe only interactionsvheresomewaiting is neededandmaybe
sometimeoutif onethinksaboutatime-consciousmplementationareof the FC,

kind. They correspondiologically to collisionsin the solution,a processwvhich
indeedtakestime.

Collisions. By theway, we take notethatthe only non-determinististepsin our

collection of interactionsare preciselyof the FCy andinit kind. All the others
aredeterministicin the sensehat given the interactionandary one of the react-
ing agents,therecan be at most one other agentsuchthat the pair matchesthe

interaction.Thesearealsotheonly interactionsvheretheblind searchmechanism
embodiedn theinteractionscanfail.

Obsewable interactions. To concludethis seriesof remarkson the decomposi-
tion, we notethatfew interactionsareactuallyobsenablein the higherlanguage:
FC,, FC3, LCs whereall the creatve work is doneandinit andFC; wherefree
interfaceamightbemodified. All otherinteractiongrojecttoidenticalx-reactions,
they areonly modifyingthelogsand,semanticallyonly sene the purposeof prop-
agatinginformation.

6.4 Simulation and correctness

Thereaftermandfor therestof the section,we supposeve dealwith anmx system
obtainedby the translationwe just defined. We will still write —* for both as-
sociatedtransitionsystems.The notionswe manipulatebelov make no sensean
generaln mx andareonly meaningfulfor thoseparticulartranslatedgsystems.

An importantinvariantthat our setof interactionsrespectss that, at any mo-
ment, the setof agentsbearinga given group namer will be connected.These
connectedsub-solutionsare all disjoint, becausenitial reactionsgeneratea nenv
groupnamethat uniguelyidentifiesthe “session’one bggins, and uponfirst con-
tactonecommitsoneselfto only participaten the currentsessior(seeinteractions
FC,., FCy andFCj3) andthereafteronly interactwith agentsin the samesession
(seeall otherbinaryinteractions) We logically call thesedisjoint connectedetof
agentgroups Agentsnotbelongingto any groupwerecalledquiescent

Eachgroupinvolvesagentsurrentlyattemptingsomeinstanceof a x-reaction.
This reactionmay or may not succeedWe saya groupis monotonicor antimono-
tonic, dependingon whetherthe associated-reactiononeis trying to completeis
amonotonicor anantimonotonimne.

Wheneer a high-level reactionhasa matchin a solution,thenthefiring of the
reactioncanbe simulatedn the correspondindow-level solution.

Proposition4 LetS, T bex-solutions:if S —* T then[S],, —* [T],,,.
Proof: (Sketch)lIt is enoughto prove it for a one-steptransition,thatis for the
applicationof somex-reactiont = L — (7)(R). SinceS canmalke a one-step
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transitionto T, theremustbea corresponding:-matching andthereforeRr is, upto

renamingandextensionasub-solutiorin T. By composinghisinclusionwith the

isomorphismbetween? and[R], we find who is theinitiator in the reactionand
fire theinit rule with it. This createsa uniqueidentifierfor the attemptedeaction,
sayr. Now, it is up to usto definethe orderin which to fire all the interactions,
sincethe correctnesstatementiemandsiothingmore.

A possibility is to grov R by using only contactinteractionsto begin with.
Thereareonly two thingsto take careof. First, for a non-deterministiccontact
FC, betweenA and B, onehasto useagainthe embeddingabove to guesswhich
agentB, agentA hasto createan edgeto. Second,one hasto contactsitesnot
justin ary order but in a way consistenwith the constraintson inputsasled for
in the contactinteractions.Theseconstraintamountto askingthatat ary time the
r-groupbeupward-closedvith respecto thesignalordering< (seedefinition10).
Sucha growth constraintis always satisfiablebecausef agyclicity (actuallyit is
satisfiablaf andonly if theflow graphis agyclic). This somavhatsubtlepointcan
be provedeitherdirectly, or by usinga depth-firstZ,. In the latter casewe already
noticedthatall ancestor®f anagentarerecruitedbeforethe agentitself is, sothat
anupward-closedyrowth is obtainedby alwaysperformingall latercontactd C,
LC,, betweenan agentandits ancestorsmmediatelyafter recruitinghim. (One
seesvell thattheseconstraintsonly operatewhentheflow graphis notatree.)

Oncethe contactsareall done,all edgeshave boththeir endswith log 1, and
it remainsto move up the responseback to the initiator by using the response
interaction.Thistime onehasto find adownward-closedvay to proceedwhichis
possiblefor the samereason.

Whenthevarioussignalshave reachedheinitiator, therecruitmenis over, and
onecantriggerthe phaseshift andthe subsequerihteractions o

We obsenre thateachhigh-level stepgenerates numberof small stepswhich
is 3e. + n. + 1, wheree, is thenumberof edgesn theright handsideR of ¢, and
n, thenumberof nodes.Sothesimulationstayslinearin thesizeof R.

This first result saysvery little in termsof correctnessand one would also
want to know that the low-level mk-systemdoesnt generateary solutionsthe
projectionsof which would be unreachablérom the higherlevel solution.

Definition 12 Givenk-solutionsS and T sud that [S],, —* T, onedefinesthe
cleanupof T, written T¢, asthe mx-solutionobtainedby:

— completionof groupswhich are pastthe phaseshift (seeTable 7),

— projectionof antimonotoniayroupswhich are pre-phase-shiffseesection5.1),
— deletionsin the monotonicgroupswhich are pre-phase-shif(seediscussion
below),and

—erasue of all theauxiliary * sites.

Completionsarealwayspossiblebecausgastthe phaseshift, onecant fail. An-
timonotonicgroupsonly have to be projected sinceantimonotoniaecruitmentis
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purecheckingandnothingchangesexceptthe logs. Finally, in monotonicgroups
onehasto deleteary edgesandproteinsthatwereaddedn the creatve steps-C,,
FCs; andLC; (theonly oneswith a“new” ontheproductsside).

Thecorrectnessf our solutionof theself-assemblyguestioncanthenbestated
asfollows.

Theorem5 LetS bea x-solution:if [S],, —* T thenS —* T¢.

Proof: (Sketch) Oneprovesfirst by inductionon all possibleinteractionghatthis

side of the phaseshift, a group hasits siteswith log 1 (resp.2) forming an <-

upward-closedresp.<-dowvnward-closedtonnectedubsebf all thegroupsites.
An immediateconsequences that, whenthe phaseshift happengjust beforeit

happensto beprecise)all thelogsof thegroupboundedsitesaresetat 2, andthe
groupis, up to renamingandextensionsgqualto R. Indeed,the only dovnward-
closedsubsetof sitesof F, that containsall the initiator sites, is the setof all

sites. This is a consequencef the definition of <. Now theresponsenteractions
are pairing the sitestogetherexactly asthey arein F.. And all responsefave

happenedelsesomelogswould still be setstrictly belov 2. Thereforeareaction
attemptsucceedsf andonly if it reacheghe phaseshift, and at that point it is

alwayscompletable.If it doesnot reachthe phaseshift, it canbe cleanedup as
explainedabove. O

We have seenthatthedecompositioris a simulationandnever makesary mis-
takes. It is now time to discussin which sensethe decompositiorcanfail, or in
otherwordswhatkind of furthernotionof correctnesenecouldtry to reachfor.

A first casewhen deadlockmay happenis when k-reactionsare competing
with anotheron the samereactants.In this case the conflicting reactionswhich
canbe occurrencesf the samereaction,canbe initiated concurrentlyin m~ and
run out of resourcesesultingin adeadlock.

A secondcaseof deadlockis whena singledecomposed-reactiongetsstuck
in its searchspacein mk. Imaginefor instancethe following x-solutionand x-
reaction:

S

5

A(1+2), B(142%),C1(171), B(1 +272), C5(1%2)
A(1+2), B(1 +27),C1(171), B(1 + 272), C(172) —
(y1y2) (A(191 + 202), B(1% + 291), C1(171), B(1%2 + 272), Co(172))

Accordingto thetranslationandin essenced hasto guesswith two instanceof
FC,, which B it hasto bindto, onits first site,andwhich onits second Sinceboth
Bslook exactly the sameasfar as A cantell in alocal interaction,our seriesof
interactionscanvery well try to producethe twistedcomplex:

A(1y2 + 2%)’ B(ly] + 2% )701(1x])7 B(1y2 + 2:1:2)’02(1x2)

Supposed wastheinitiator, andit guessedvrongly giving role b, to the B con-
nectedwith C, andb, to theother B, then,fortunately the groupis stucksincethe
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newly recruitedBswill try to fire thefollowing FC; interactions:

Br,bl (13/,1 4 2.70)’ Cl(lT) N Br,bl (1y,1 4 2.10), CI,Cl (1T)
Br,bg(ly,l + 21‘), 02(1z) N Br,bg (1y,1 + 2x), 05762(137)

andnonewill succeedsinceB™" is connectedo C, andcorversely Themistale
doesnt spreadiurther sincebothagentsB canseethey arelocally not connected
with the C; they shouldbe connectedwith, accordingto therole that A hasbe-
staveduponthem.

To summarize,one hastwo sourcesof deadlocks,contentionsand guesses.
Thus,onecanthink of extending[t], , by addingsomepre-phase-shifnteractions
thatwill invertthe contactandresponsénteractionsandgive to agrouptheability
to escapesuchdeadlocksThis seemgeasonablaslongasagentsantestwhether
they cantake a stepbackwardswithout inconsistenciesTheinvariantto presere
hereis downward (resp.upward) closurefor the siteswith log 2 (resp.1).

Considetthesimplerexampleof R, wherethereis nothingto reverseexceptthe
signalitself. Werecallthe plainforwardversionandwrite justbelon thebackward
dualone:

Ar,a(iaz,l)’ Br,b(j:r,l 4 OUT%’Q) N Ar,a(ix,2)’Br,b(jx,2 T OUT%’Q)
A’V“(INZ’I + Z-m,Q)’Br,b(ij) N AT’O’(INg’l 4 Z‘m,l)’Br,b(jm,l)

Insteadof verifying thatall outputsto B aresetat 2, onenow verifiesdually that
noinputof A hasbeensetat2 yet,i.e., thesignalhasnt gonefurther Thiswaythe
key closureinvariantsareclearly presered.

Smarteragentsand smartermanagemenof failures,for instancewith time-
outs,alarmsandalarmpropagationpr morebrutishmanagemenwith checkpoints
and backupsmight be interestingin a richer time-consciougramework, e.g., in
robotics[17], distributed systemdesign,or transactionmodels[2]. Anyway; it
still remaingto be seenif onecanwrite down a correctsetof reversedinteractions
andwe haven't checled all the details. Sucha setwould somehav internalizethe
cleanupproceduralescribedbore, andescapaeadlocksyhile keepingtheagent
reasonablgdumbassuitsa formal biologicalmodel.

7 From mek-calculusto w-calculus

In this final sectionwe begin with a brief introductionto 7-calculus[20], andthen
detail the compilationof mk-calculus. Our compilationis “protein-centric”, that
is to sayproteinsaretranslatecasprocessesvhosebehaiour is obtainedfrom all
theinteractionghey participateto. Thisis in line bothwith Regev’s directrepre-
sentationof variousbiological pathways[23, 26], andwith the secondencoding
providedin aprecedingpaperdealingwith a multiset-basedersionof  [7].
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7.1 The w-calculus

Ther-calculususesthreecountablesets:
e namesN, rangedoverby z, v, z, ...
e agentnamesrangedoverby A, B, ...
e variablesX,Y, 7, ...

As usual we addressupleswith u andwrite {u} for thecorrespondinget.We use
a w-calculusextendedwith naturalnumberswvherewe distinguishthreesyntactic
catayories, valueswritten u, matdeswritten M, and processesvritten P. The
grammaiis detailedbelow.

u =mn | z | X values

M = [u=u] | MM matches

P =0 | 7P | z(X).P | T@W.P | P+P processes
P|P | MP;P | ()P | A(X)

Valuesare naturalnumbershamesandvariables.Variablesrepresenformal pa-
rametersandsometimeswhenthe correspondingarameteis a name we simply
usea nhameratherthana variable. Matchesare sequencesf equalitiesbetween
values. A processcan be the inert processD, a processperformingan internal
move, an input ()?).P, anoutputz (u).P, a choice,a parallelcomposition,a
matchguardingtwo processesa restrictedprocesof theform (x) P where(z) is
the“new” operatorthatlimits the scopeof x to P, or anagentinvocationA (), in
which casewe askfor auniqueequationA(X ) := P definingA. Restrictionsbind
namesthatis (x) in (z) P bindsthenamez whereverit is freein P andlikewise,
inputandagentdefinition bind variablesthatis z (X).P andA(X) := P bindthe
free occurrencesf thevariablesX in P. Namesandvariablesthatarenotbound
arecalledfreeasusualandwe write fn(P) for the setof suchnamesandvariables
in P aswedidin k.

Table8 collectsthe semantic®f r-calculus exceptfor the symmetricformsof
rules(sum) and(rar) which areomitted. The semanticss describedasatransition
systemon syntacticprocessesvith transitionslabelledby certainactions As can
beinferredfrom Table8, actionswritten 41, areof threetypes:internal actionsr,
inputsz (Y) andoutputs(y)z (u). When(y) is notemptyin anoutputaction,one
saysit is a boundedoutput This tuple of namesy representshe boundedchames
thatthe processs exportingto the context. Boundedoutputs,(y)z (u), generated
by thetransitionsabove all satisfy:1) y C w and2) = ¢ 3. Onedefines:

fn(r) = O bn(7) = o

(e (V) = {a} bu(z (V)) = {V}

(@ @) = {gfuWVn{u}n{y}) bo(@zw) = {y}

Rules(Par), (com), (New) and(oren) all have side-conditiongontrollingbounded
outputandinvolving fn(x) andbn(u). Specifically theseconditionsensurethat1)
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(INP) (ouT)

(TAv) no variableoccursin @
PP »(7).p ) p z@.p M p
(NEwW) (OPEN)
P Q zém(p) Pwﬁﬂ)@ z#x zeu\{y}
()P L (2)Q ()P L
(sum) (PAR)
P p PS5 P bu(p)ni(@) =2
P+Q-%H P PIQ-5P|Q
(MATCH) (MISMATCH)
P R5Q u#d
[u=u]P; R Q u=u]P; Rt Q
(com) (aPP)
PO p Mg HomQ -2 PL/X) = Q
P1Q T ()P Q /7)) A@)

Table8: Operationabemantic®f the r-calculus.

the exportedboundedhamesdon't captureary variableswhenthey finally appear
in the right handside of the conclusionof rule (com), 2) onedoesnt sendon a
boundname.

Theserules are standard,except for (ouT) whereagentz (u).P may go to
stateP with areductionlabeledz (u) only if it carriesvaluesthatarenumbersor
channelsOnecannotsendavariable.

7.2 The translation of mx-calculus

Thetranslationin w-calculuswritten[ - | _, is first definedoninterfaces
[[11“ e nun’mn]]ﬂ = Up,msy, kla ceey Un, My, kn

with k; = 0 if u; € {h,v}, k; =1if u; € G, andk; = 21if u; € €.
Interfacesareencodedastuples,the stateof eachsite correspondingo three
elementsn thetuple: thestateof thefirst siteis encodedy thefirst threeelements,
thatof the secondwith the next three,andsoon.
Thereademightwonderwhy oneneedgo encodeatypeinformationk; in the
stateof sites. This technicalityreflectsthe fact that the mx notion of matching
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implicitly checksthetype. For instanceif:

s = (2)(A»%), B(j%)) — A(i), B(j)
S = A®i"),B(j")

andr € G, x € &, thenthereisn't amatchbetweers andthes left handside. To
preventa matchin the translationin w-calculusof this situation,onewill dynam-
ically typecheckthe namescarriedby the correspondingrocesseg, B (inserting
matchesof the form [X3;,0 = k;] and[Y3;4o = k;| at suitableplaces,seethe
encodingbelav) andin orderto do this, one hasto make this type information
availableto theprocesses.

Theencodingextendsnaturallyto solutions

[A0)], = A(l6],)
[5.Tl, = I8l | [T«
[(@)S)], = (@)([S])

whereA(X) is definedas:

AX) = Z tA(0) (X) + Z 7.(sr | AX))

A(B)eLrte Ro Aer0—Re MR

Notation A(9) €. r meansthat A(0) is areactanin the interactiont. Likewise,
A €p t meangthat someproductof + hasnameA. Theleft andright sumsare
indexed by disjoint setsof interactions:Ry is the subsebf interactiondgn JR with
nonemptyleft handsideswhile R, is thecomplemensubsebdf interactionswith
emptyleft handsides.

To completethe definition of the translation,it remainsto definethe parame-

terizedprocesses 4 (X ) andsg. In orderto do this corveniently we first setup
somenew notations.

7.2.1 Filters

Givena partial extendedinterfaced, anda tuple of variablesX, [X = 6] denotes
thefollowing sequencef matchesfor i € dom(6):

X3i+1 = m} [X3i+2 = 2], if 0(2) =x,m, andzx € ¢&;

Xs; = ng], if 9(2) =u,m, 9(]) =u,n,andu € G + £.

Onehasto supposehat X haslengthgreatetthan3 x max {dom(8)} + 2,
Thefilter matchescheckwhetheror not a proteinmay participatein aninter
action.In particular thematcheswill verify thatlogshave theright value,whether
asiteis visible, hidden,carriesa groupname,or carriesan edgename,andlastly
(item 5) whethertwo occurrence®f a samenamein the interfacearethe samein
thetuple.

[
[
— [X3i+1 = m} [X372+2 = 1], if 9(2) =r,m,andr € G;
[
[
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Oneneedslsoa binaryanalogof thisfirst filter operator

(‘iiventwo partial @(tengegnterfacesﬂ andv, andtwo tuplesof variablesff
andY’, of suitablelength,[ X, Y = 6, ] denoteshe sequencef matchegXs;, =
Ys;], for all i € dom(#), j € dom(v), suchthatd(i) = u,m, ¥(j) = u,n, and
ueg+£.

Thebinaryfilter operatoproduces seriesof matcheshatcross-checkhether
nameswhich areidenticalin § andv, arealsoidenticalin X andY'.

7.2.2 Updates

Finally, oneneedgto implementthe effect of aninteractionon an extendedinter
face,asspecifiedby the partialextendednterfacesin its products.

Giventhreepartialextendednterfacesd, 1) and#’, a setof namesr in &, such
that:

—1)n(¢) C (0) Un(y) Uz,

—2)zNfnd) =znN(y) =2,

andtwo tuplesof variablesX, Y of appropriatdengths,one definesa tuple of
values X « ¢, of thesamdengthas X, asfollows:

— Xgi,X3i+1,X37;_|.2, if §Z dom(@),

— €,m,0,if 0'(i) = ¢,m with e € {h,v};

—x,m,2,if 0'(i) = x,m andz € 7;

— X3j,m,7if 0'(i) = u,m, 0(j) = u,n,with 7 =1 (2) if u € G (E);

— Y3, m,7if 0'(i) = u,m, Y(j) = u,n,withT =1 (2) if u € G (£);

Theinterfaced, ¢ represeninterfacesn theleft handsideof someinteraction,
while theinterfacef’ representheinterfaceof someagenton the right handside,
andz standdor createcedges.

This definition is a bit peculiarin that the last two clausesare ambiguous.
Thereisn’t a uniquetuple satisfyingthem, becausefor instance one could have
0'(i) = u,m, 0(j) = u,n andd(k) or y»(k) = u, p. Butit doesnt matterhow one
resolhesthis choice,sincewhenthereis ambiguity all optionsleadto processes
behaing identically The notation X « ¢’ doesntf mentionthe other needed
parameters}, ¢, z, andf/, but thesewill beclearfrom the context.

Note alsothat exactly the sitesthat are referredto in the interface ¢’ of the
productaremodified(seefirst clause).

7.2.3 The processes ) (X) and sg.

Below we assumehatevery binarymonotonicinteractione, thatis any monotonic
interactionwith two reactantshasa uniqueassociatechamev,. This hamerep-
resentghe capacityof the agentgo interactthroughtheir visible sites. We know
thesesitesexist by definitionof monotonicinteractions.

Again for suchbinary mx-interactionswe chooseone agentto be translated
asasenderandoneasarecever. This, of course,s anartefact of the translation
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which hasno counterparin mx andonly comesrom thefactthatthecommunica-
tion modelof w-calculusis asymmetric.ln the specificcasewhereboth reactants
areexactlythe sameagentthenwe give to boththe sumof the sendingandrecev-
ing behaiours.

We now enumerateall casesof interactionsfollowing the total numberof
agentdnvolved, reactantandproducts:thereare4 agentdnvolvedin casel-2,3
in case3—4,andat most2 in case5—8. Eachtime the correspondingontrikutions

t4(9)(X) or sg to thebehaiour of thereactantss given.

Casel: tv= A(9),B(y) — ()(A(¢'), B(¢')), we take A to assumeherole of

the senderon v,. Eachagentverifiesthatits own currentinterfaceis compatible
with theinteraction;thenagentA sendsgwo new nameson thereactionchannel z

for successandz’ for resettogethemwith its own interfacerepresentethy X : the
otheragentB is in chage of verifying whetherA andB areproperlyconnectednd
usesthe matchingoperatorto do this.

tae)(X) = [X =0
(22") (Ve (X, 2, 2'). B
(2(2,Y).A(X «—0) + 2 ().AX)))
g (Y) = [Y=¢]
vt(Z,z,zi).[Z,Xzﬁ,q/)} B B
(@)(Z(@,Y)B(Y «¢'));2 ().B(Y)

If the connectionis asit shouldbein t, thenB createghe nev edgesr andsend
themon the successhannelto A. B alsosendsts own interface,in case(group)
nameghereinareneededo updateheinterfaceof A. Thereforebothagentaupdate
their interfaces. If the connectiondoesnot matchwith ¢, thenB sendsthe reset
signalandbothagentseturnto their precedingstate.

Case2: t = (2)(A(9),B(v)) — A(¢'), B(¢'), by definition of an antimono-
tonic interaction,reactantare connectedandthereforethereexists ¢, j suchthat
0(i) = z,m, ¥(j) = z,n andz € £. We usethis namez asa channelthrough
which the interactionis triggeredandthereforein this casethereis no needof a
nameassociatedo the reactionandit is enoughto sendsomeinteger [t] coding
for thereaction.

tap(X) = [X=0
(22")(Xsi {[*], X, 2,2).
(z(Y).A(X < 0")+ 2 ().A(X)))
o) (¥) = [T =] B
Yy (0, 7,2, ).ln = [)1Z, 7 = 0,4
Z(Y)B(Y < ¢'); &/ ().B(Y)
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We obsere thatthe binders(z)(-) in the left handside of « are not encoded
in w-calculus. By the third clauseof definition 7, thesenamesmay only be edge
namesn &£, andsinceall mx-solutionsaresupposedo be graph-like, thesenames
mayonly occurin theagentsA(#) andB(v). Thereforepy definitionof -], they
only occurin A(X) andB(Y) andonedoesnt needto testwhetherthesenamesare
private.(Whichis fortunatesinceit seemseryunlikely thatthisis possible.)Thus,
the edgesdeletionsperformedby v aremimicked in the processesy the erasings
doneby theupdatesX «+ ¢’ andY « ¢/'. Whatis not mimickedis the erasureof
the binderitself z. Thecorrectnessf [ - | will be establishedip to this garbage
collection.

Case3: t= (7)(A(9), B(v)) — A(¢'), this caseis analogto case2 exceptthat

the successfutontinuatiorB(Y" « ¢') in vy (Y') is replacedwith 0.

Cased: t = A(0) — (Z)(A(¢'), B(v)). Sincethereis only oneagenton the
left, onedoesnt needa synchronisatioranda = move is enough.Recallthat, by
the (synth)clausetheinterface is complete so (thefirst clauseof the definition
of updatesever appliesandthereforenoneof theY; occurin B(Y" « 1), andthe
procesdlefinitionbelow is well-defined:

tao(X) = [X=0r.@AK —0) BT — )
Case5: v = A(0) — (z)(A(¢)), thiscaseis similarto the precedingne:
(X)) = (X =0 @K — )
Case6: t= (7)(A(0")) — A(0), againthis caseis similarto the precedingone:

tae)(X) = [X =0]T.(A(X « 0'))

Case7: t = (z)(L) — 0, this caseis similar to case6 if thereis only one
agentandcase3 if therearetwo of them;in bothcasewnejust hasto replacethe
successfutontinuationA(X « ) with 0.

Case8: t = 0 — R, in this casewe mustdefinethe processig. Therearetwo
subcaseseitherR = (z)(A(#)) or R = (z)(A(6), B(v)), wheref and are
complete Accordingly sr is definedas:

5(z)(A0)) = @AX <0)
5@)(A0),Bw) = (T)(AX —0)[B(Y — 1))
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7.3 Examples

In this subsectionwe review three examplesillustrating various aspectsof the
translationexplainedabove. Let usconsideffirst thefollowing “swap” interaction:

s = A(1"), B(1%) — A(1%), B(1")

with r, s € G, ands(A) = s(B) = 1. Thisinteractionsatisfiedefinition7 but it is
not monotonicor antimonotonidbecauseoneof the sidesis connected We will
modifiy it to be monotonicjustbelow. Asit is, therespectie contrikutionsof s to
thebehaiour of theprocesses andB are:

spr)(Xo, X1, X2) == [X1 = 0][X2 = 1](2021)
U_5<X07X17X27ZO721>‘
(Zl (}/OaYhYQ)'A(}/OaO: 1) + 20 ()'A(XOaleXQ))

53(13)(%,}/17}/2) = [Yl = 0][Y2 = 1]
Vg (X07X17X2720721)-[®]
(Z_l <Y07Y17Y2>'B(X0a07 1)a %OB(}/O:YMYQ))

No cross-checlks neededn this case henceheemptymatch|[2], but eachprocess
needghe namecarriedby the other
As said,by introducinga slight variationon this interaction:

s = A" +2), B(1° +2) — (2)(A(1* +27), B(I" + 27))

with z € &, r,s € G, ands(A) = s(B) = 2, we obtaina monotonicms-
interaction.The correspondingermsin A andB now become:

[X1 = 0][X2 = 1][X3 = v|[X4 = 0][X5 = 0](2021)
Uy (Xo, 20, 21)-
(Zl (l‘, Y()).A(Yb, 0, 1, x, 0, 2) + 20 ().A(Xo, Xl, X2, X3, X4, X5>)

(Y1 = 0][Ya = 1][Y3 = v][Ys = 0][Y5 = 0]
vy (Xo, 20, 21)-[2]
((aj)(z_l <l‘, YE)>B(X07 07 17 z, 0’ 2)) ; 20 <>B(Yba Y17 Y27 Y3a Y47 Y5))

We have slightly shortenedhe translationby only sendingrelevant names:z, Yj
from B to A and X, from A to B, and not the logs andtype indications. This is
somethingwvhich canalwaysbedone.

As a last example, let us illustrate the cross-checkingpart of the encoding.
Considetthefollowing antimonotonic‘unbind” reaction:

v o= (@)(A(17?), B3 — A(1), B(L)
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wherex € &, 5(A) = s(B) = 1. Sendingthe only relevantname hereX,, aswe
did in the precedingexample,we find the correspondingontritutionsin A andB:

[X1 = 3][X2 = 2](2021)
U_r<X0,Z0,Zl>.(Z1 ().A(U,O, 0) + 20 ().A(Xo,Xl,Xg))

[Y1 = 3][Y2 = 2]
e (X0, 20, 21).[Xo = Yo(Z1 ().B(v, 0,0) ; %o ().B(Y0, Y1, Y2))

And here,in contrastvith thetwo precedingexamplespneseeghatB hasto verify
whetherhis x is the sameasA’s z, ataskwhich is performedby the cross-check
[Xo = Yol.

7.4 Obsewvations and Corr ectness

To conclude we statethe correctnesgropertiesof our encoding.

Given a setof mek-interactionsii, let us write A(0) |x v if v is a binary
monotonicinteractionin R, and A(f#) matchesone of the reactantsof . This
obsenrationrelationextendsto arbitrarymx-solutionsasfollows:

S, T |mt ifSlsy‘tOl’Tlgﬁt
(x)(S) I v ifS |nr

Suchobsenrationsareoftencalledbarbs
Let uswrite P — Q to abbreiate P —— @, anddenotethe transitive closure
of — by —*. We alsodefinebarbson the -calculusside:

Plz := 3QP-%5Q

wherey is aninputor an outputactiononanamez.

Finally, let = be the usualleastcongruencever r-calculusclosedunderre-
namingof boundvariables(a-equivalence)making” | ” associatie andcommu-
tative with 0 asneutralelementandsatisfyingthe scopelaws:

(@)(y)P = (y)(2)P,
(x)P = P ifz¢gM(P),
@)P|Q = (@)(P|Q) ifzdm(Q)

Recallthatwv, is thenameassociatedo a binary monotonicinteractiont.
Theorem6 Let (S, —) beanmk-systemandS bea closedmk-solution:

1. if [S].. | = thenz = v, for somebinary monotonidnteractionr;

2. S |grvifandonlyif [S]_ | v

3. if S — Tthen[S], —*=[T],;
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4. if [S],, —* Q, thenthere existsT sud that@) —*= [T]_, andS —* T.

Proof: (Sketch)Onehasto supposéhats is closedin ordernotto obseretheedge
namegseethe X3;, Y3; in case?). Thatsaid,points1, 2 areobvious.

Onealsohasto supposes to be graph-like (which is the default assumption
sincetheendof section5) elseonehasproblemswith “news” ontheleft handside
(seethediscussiorattheendof case?).

Points3 and4 areproved by establishinghatfor ary @ suchthat[S]_—* @,
therearethreepossiblekinds of transitions:eithera pair of processegon a public
channel, or aprivatechannelXs;) goingto an“unstable”statewhereoneof them
cross-checkbothinterfacesor asuccessignal(on a private z channelwherean
interactionis finalized,or a failure signal(on a private z’ channel\wherea pair of
processesolls backto a previous state.O

This theoremis more powerful thanthe correspondingesultfor the encoding
of k-calculusinto mk-calculus. Specifically item 4 ensureghat no deadlockis
introducedby the encodingof therules. Besidesjtem 2 meshesvell with thein-
tuition that one cannotobsere an antimonotonianteractionwhich is aninternal
event. An easyconsequencef all itemstogetheyr is the weak barbedbisimilar
ity [20] of S and[S]. .

8 Conclusion

We have presentedh coarse-grainedalculusof proteinsand worked out a for-
malizationof the lactoseoperonillustrating the easeandthe precisionwith which
our languagecandescribeproteininteractionsand similar basiceventsof biolog-
ical systemssuchassynthesisand even metabolitetransformation.The process-
algebraicnotationwhich we choose with its explicit edgeresidualsand built-in
treatmentof hamegenerationseemselegant enoughif one comparest with a
graph-basedormalismandin particularallows for a cleandefinition of the no-
tion of monotonicreaction.

As adynamicannotatiodanguage: mightbeusefulfor thedifferentpurposes
of archving, playingandcomparingmodels.But beyondits representationalbili-
ties, s alsohasanimportantstructuralpropertywhichwe calledself-assemblyand
we have madethis a theorem.Namelythatthereis a finergrainedcalculuswith
only binary interactionsand very limited additionallocal structurein which one
canencodethe coarseigrainedx-reactions.Herethe notationalinvestmentreally
paysoff andlet the simplicity of theencodingoe seenthroughthe syntax.

Yet, anddespiteits spartansyntax,the finer-grainedcalculusmight still seem
to endav agentswith too much intelligenceto be biologically meaningful,and
onemight well wonderif our effort to explain the high-level reactionsby incor
poratingthemin the proteinshasnot led us contemplatingunrealisticallytalented
proteins. We don't think so. Oneway of understandinghe combinatorialpower
of the agentswhich is not enormousanyway, is to seeit asa digital translation
of the combinatoricghattrue proteinshave, becausd¢hey areembeddedn space.

43



Forward engineeringof biological systemsocuseson the analysisand construc-
tion of the basiccomponentsne can engineerin biological systemg14]. Our
self-assemblyesultseemsa valuablestepin understandingnotheraspecbf bio-

computingthatis how in aworld whereasynchrow is thenorm, by usinglow-level

binary synchronizatioreventsasbuilding blocks,one canengineerarbitrary syn-
chronizations.
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