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Abstract. We present a framework for statically detecting deadlocks in a
concurrent object language with asynchronous invocations and operations
for getting values and releasing the control. Our approach is based on the
integration of two static analysis techniques: (i) an inference algorithm to
extract abstract descriptions of methods in the form of behavioral types,
called contracts, and (ii) an evaluator that computes a fixpoint semantics
returning a finite state model of contracts. A potential deadlock is detected
when a circular dependency is found in some state of the model. We discuss
the theory and the prototype implementation of our framework. Our tool
is validated on an industrial case study based on the Fredhopper Access
Server (FAS) developed by SDL Fredhoppper. In particular we verify one
of the core concurrent components of FAS to be deadlock-free.

1 Introduction

Modern systems are designed to support a high degree of parallelism by ensuring
that as many system components as possible are operating concurrently. Deadlock
represents an insidious and recurring threat when such systems also exhibit a
high degree of resource and data sharing. In these systems, deadlocks arise as a
consequence of exclusive resource access and circular wait for accessing resources. A
standard example is when two processes are exclusively holding a different resource
and are requesting access to the resource held by the other. That is, the correct
termination of each of the two process activities depends on the termination of the
other. The presence of a circular dependency makes termination impossible.

Deadlocks may be particularly hard to detect in systems where the basic com-
munication operation is asynchronous and where a synchronization would explic-
itly occur when the value is strictly needed. Further difficulties arise in the pres-
ence of unbounded (mutual) recursion. A paradigm case is an adaptive system
that creates an unbounded number of processes such as server applications. In
such systems, process interaction becomes complex and difficult to predict.

ABS [2] is an abstract, executable, object-oriented modeling language with a
formal semantics, targeting distributed systems. The concurrency model of ABS
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is two-tiered. At the lower level it is similar to that of JCoBox [20], which in
turn generalizes the concurrency model of Creol [15] from single concurrent ob-
jects to concurrent object groups (COGs). COGs encapsulate synchronous, multi-
threaded, shared state computation on a single processor. On top of this level, there
is an actor-based model with asynchronous calls, message passing, active waiting,
and future types. An essential difference to thread-based concurrency is that task
scheduling is cooperative, i.e., control switching between tasks of the same object
group happens only at specific scheduling points during the execution, which are
explicit in the source code and can be syntactically identified. This allows one to
write concurrent programs in a much less error-prone way than in a thread-based
model and makes ABS models suitable for static analysis.

We developed a theoretical framework for statically detecting deadlocks in
core ABS [14] (a subset of ABS) programs, exploiting and combining results and
techniques coming from different well-known theories:

Type theory. We designed an inference system to automatically extract abstract
behavioral descriptions pertinent to deadlock analysis from core ABS code.
These descriptions are called contracts. This is necessary as analyzing the
whole program would be hard and time-consuming, while most part of the
code would be irrelevant for deadlock and synchronization behavior, such as
the local data and computations. The inference system is constraint-based
and uses a standard semiunification technique for solving the set of generated
constraints.

Abstract behavioral language. Contracts are defined by a basic behavioral lan-
guage, that is similar to those ranging from languages for session types to cal-
culi of processes as Milner’s CCS or pi-calculus. There are a wide number of
theories and tools for verifying their properties. However, unlike most tech-
niques on deadlock analysis, our behavioral language handles dynamic name
creation and does not require a predefined partial order.

Fixpoint Theory. The semantics of contracts is denotational. However, in pres-
ence of recursion in the code, a fixpoint may not exist because the underlying
model would have infinitely many states (due to the creation of new objects in
recursive methods). To circumvent this issue, we use a fixpoint technique on
models with a limited capacity of name creation. This entails fixpoint existence
and finiteness of models. While we lose precision, our technique is sound (in
some cases, our technique may signal false positives).

We prototyped an implementation of our framework, called the SDA tool and
validated it via an industrial case study. The case study is based on the Fredhopper
Access Server (FAS) developed by SDL Fredhopper4. In particular we were able
to verify one of the core concurrent components of FAS to be deadlock-free.

The structure of the paper is as follows. In Section 2, we introduce the core ABS
language, emphasizing its concurrency model, which is most relevant to this paper.
In Section 3, we present the behavioral language for specifying contracts and the
inference system for extracting contracts from core ABS programs. In Section 4,

4 http://sdl.com/products/fredhopper/
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P ::= D F I C {T x ; s } program

T ::= V | D〈T 〉 | I type

D ::= data D〈V 〉 = Co [ (T ) ] data type

F ::= def T f [〈T 〉](T x) = e function

I ::= interface I {S ; } interface

S ::= T m(T x) method signature

C ::= class C(T x) [implements I] {T x ; M } class

M ::= S{T x ; s } method definition
s ::= skip | s ; s | x = z | await g statement
| if e { s } else { s } | while e { s } | return e

z ::= e | new [cog] C (e) | e.m(e) | e!m(e) | e.get expression with side effects
e ::= v | x | this | fun(e) | case e {p⇒ e} expression
v ::= null | Co[(v)] value
p ::= | x | null | Co[(p)] pattern
g ::= e | x? | g ∧ g guard

Fig. 1. The language core ABS

we overview the algorithm for computing the contracts into their associated ab-
stract models. In Section 5 we present the implementation of the tool, and its
validation against the case study. Related works are discussed in Section 6 and
final remarks are collected in Section 7. Due to space limitations, some technical
parts are informally discussed and proofs are omitted; they can be found in the
full paper.

2 The language core ABS

We begin with a brief presentation of the syntax of core ABS (See Figure 1). Full
details of the language, its semantics and its type system, can be found in [14].

In the syntax, an overlined element corresponds to any finite sequence of such
element; as usual, an element between square brackets is optional. When we write
T (or V or T x or e or v) we mean a (possibly empty) sequence T1, · · · , Tn (or,
respectively, V1, · · · , Vn or T1 x1, · · · , Tn xn or e1, · · · , en or v1, · · · , vn).

A program P is a list of declarations followed by a main function {T x ; s }.
Declarations include data-types D and functions F , which constitute the functional
part of the language, and interfaces I and classes C, which constitute the object-
oriented part of the language. A type T is the name of either a type variable V used
for polymorphism, a datatype with parameters D〈T 〉 (to type structured data), or
an interface I (to type objects). A data type D has a name D and a sequence of
parameters V , and is constructed as a nonempty sequence of type constructors Co
with possible parameters T . Note that data types include primitive types such as
Int, Bool, String, as well as complex types such as list of integers List〈Int〉. The
complex type Fut〈T 〉 is called future type and its values are futures. The future
type is relevant in core ABS because it is used to type method invocations (that
return values of type T ). A function F has a return type T , a name f, an optional
sequence of type parameters T (for polymorphism), a sequence of parameters T x,
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and returns the value of the expression e. An interface I has a name I and a body
declaring a sequence of method headers S. A class C has a name C, may implement
several interfaces, and declares its fields Fl and its methods M .

A statement s may be either one of the standard operations of a core imperative
language or one of the operations for scheduling. Scheduling operations include
await g, which suspends the method’s execution until the argument, called a guard,
becomes true. Guards may be a Boolean expression e that must be true in order
to continue the method’s execution, and a future lookup x? that requires the value
of x to be resolved before resuming the method’s execution, or a conjunction of
guards g ∧ g.

An expression z may have side effects (may change the state of the system)
and is either an object creation new C (e) in the same group of the creator or an
object creation new cog C (e) in a new group, a method call e.m(e) or e!m(e), or a
get on a expression returning a future value.On the other hand, a pure expression
e is free of side effects and is either a value v, a variable x, a function application
fun(e), or a pattern matching case e {p⇒ e}. Values include the null object,
and structured data Co[(v)], while patterns p extend these values with variables x
and anonymous variables .

2.1 The concurrency model of core ABS

We describe informally the concurrency model of core ABS and provide an illus-
tration in the form of a small example. In core ABS, objects belong to a group;
a task executing an object method belongs to the object’s group. At each point
in time there is at most one task per group that is active. The active task must
explicitly release control in order for another task of the same group to progress.
Tasks are created by method invocations: the caller activity continues after the
invocation while the called code runs as a new task. Caller and callee synchronize
when the returned value of the method is strictly necessary. In order to decouple
method call and returned value, core ABS uses futures, i.e., pointers to returned
values that may not yet be available. Accesses to the future values may require
waiting for the values to be returned.

The code in Figure 2 gives three different implementations of the factorial func-
tion in an hypothetical class Math. The function fact_g is the standard definition of
factorial: the recursive invocation this!fact_g(n-1) is followed by a get operation
that retrieves the value returned by the invocation. Yet, get does not allow the
task to release the group lock; therefore the task evaluating this!fact_g(n-1) is
fated to be delayed forever because its object (and, therefore, the corresponding
group) is the same as that of the caller. The function fact_ag solves this problem
by permitting the caller to release the lock with an explicit await operation, be-
fore getting the actual value with x.get. An alternative solution is defined by the
function fact_nc, whose code is similar to that of fact_g, except for that fact nc

invokes z!fact_nc(n-1) recursively, where z is an object in a new group. This
means the task of z!fact_nc(n-1) may start without waiting for the release of any
lock by the caller.
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class Math {

Int fact_g(Int n){

if (n==0) { return 1; }

else { Fut<Int> x = this!fact_g(n-1); Int m = x.get; return n*m; } }

Int fact_ag(Int n){

if (n==0) { return 1; }

else { Fut<Int> x = this!fact_ag(n-1); await x?; Int m = x.get;

return n*m; } }

Int fact_nc(Int n){

if (n==0) { return 1 ; }

else { Math z = new cog Math(); Fut<Int> x = z!fact_nc(n-1);

Int m = x.get; return n*m; } } }

Fig. 2. The class Math
2.2 Restrictions of core ABS of the current release of SDA

In order to verify the feasibility of our techniques, in the first release of our proto-
type we considered a subset of core ABS features. Note that these restrictions have
been considered in order to ease the initial development of the SDA tool. These
restrictions do not jeopardize the tool’s extension to the full language. Below we
discuss the restrictions and, for each of them, we detail the techniques that will
be used to remove them in the next release of SDA. We also notice that, notwith-
standing the following restrictions, we were able to verify large commercial codes,
such as a core component of FAS discussed in this paper.

Split synchronizations. core ABS allows synchronization primitives (await and get)
to be performed long after the method invocation. Recording the associated invocation-
synchronization primitives is problematic because it requires the analysis of aliases.
To avoid such complexity, we constrain codes to perform the synchronization, when
needed, right after the method invocation. Clearly, the extension of the SDA tool
with a standard alias analysis will permit the removal of this constraint.

Synchronization on booleans. In addition to synchronization on method invoca-
tions, core ABS permits synchronizations on Booleans, with the statement await

g. When g is False, the execution of the method is suspended, and when it be-
comes True, the await terminates and the execution of the method may proceed. It
is possible that the expression g refers to a field of an object that can be modified
by another method. In this case, the await becomes synchronized with any method
that may set the field to true. This subtle synchronization pattern is difficult to
verify statically. We therefore require await statements to be annotated with the
dependencies they create. For example, consider the annotated code:

class ClientJob(...) {

Schedules schedules = EmptySet; ConnectionThread thread; ...

Unit executeJob() {

thread = ...; thread!command(ListSchedule);

[thread] await schedules != EmptySet; ... }}

The statement await compels the task to wait for schedules to be set to some-
thing different from the empty set. Since schedules is a field of the object, any
concurrent thread (on that object) may update it. It is not evident how to extract
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this implicit dependency relation from the guard of await. Therefore we constrain
the programmer to provide an annotation making explicit the dependency. In the
above case, the object that will modify the boolean guard is stored in the variable
thread. Thus the annotation [thread] is needed.

Data types and while loops. In core ABS, data types are used to define primitive
types (e.g. Booleans) and dynamic structures, such as lists or maps. In particular,
dynamic structures can store an unbounded number of objects and, using a while

loop, it is possible to invoke methods on these objects according to some ad-
hoc protocol. This is problematic as our technique concerns static analysis. As
a result we require that: (i) data types are simply used to store objects of the
same class; (ii) at each iteration, these objects are manipulated independently
(no synchronization with objects in the context is performed), and in an identical
manner. A core ABS program with these properties may be analyzed for deadlocks
using representatives. Namely, a data type value is abstracted by one of its objects
and a while loop is abstracted by its body. Note that both conditions hold in many
usages of dynamic data types and iteration, particularly in the case study. The
next release of SDA will permit ad-hoc annotations for while loops (invariants)
that affect contracts generated by the inference system.

Assignments and local variables. Assignments in core ABS (as usual in object-
oriented languages) may update the fields of objects that are accessed concur-
rently by other threads, thus could lead to indeterminate behavior. In order to
simplify the analysis, we constrain field assignments to keep field’s record struc-
ture unchanged. For instance, if a field contains an object of group a, then that
field may be only updated with objects belonging to a (and this correspondence
must hold recursively with respect to the fields of objects referenced by a). When
the field is of a primitive type (Int, Bool, etc.) this constraint is equivalent to the
standard type-correctness. This restriction does not cover local variables of meth-
ods, as they can only be accessed by the method in which they are declared. In
fact it is easy to track local changes in the inference algorithm. It is possible to
be more liberal as regards fields assignments. In [12] an initial study for covering
full-fledged field assignments was undertaken using so-called union types (that is,
by extending the syntax of future records with a + operator, as for contracts, see
below) and collecting all records in the inference rule of the field assignment (and
the conditional).

Interfaces. In core ABS objects are typed with interfaces, which may have several
implementations. As a consequence, when a method is invoked, it is in general
not possible to statically determine which method will be executed at runtime
(dynamic dispatch). This is problematic for our technique because it breaks the
association of a unique abstract behavior with a method invocation. In the current
release of SDA we avoid this issue by constraining codes to have interfaces imple-
mented by at most one class. This restriction will be relaxed by admitting that
methods have multiple contracts, one for every possible class implementation of
the arguments, and return values of methods are unions of records. In turn, method
invocations yield unions of contracts, according to the possible instantiations of
their arguments.
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Recursive object structures. In core ABS, like in any other object-oriented language,
it is possible to define circular object structures, such as an object storing a pointer
to itself in one of its fields. Currently, the SDA tool cannot deal with recursive
structures, because the semi-unification process associates each object with a finite
tree structure. In this way, it is not possible to capture circular definitions, such as
the recursive ones. This restriction will be removed in the next release of SDA by
admitting the association of regular terms [5] with objects in the semi-unification
process.

3 Contracts and the contract inference system

In order to analyze core ABS codes, we use abstract descriptions called contracts.
The syntax of these descriptions uses record names X, Y , Z, . . ., and group names
a, b, . . .. The rules are

r ::= -- | X | a[f : r] | a  r future record
c ::= 0 | (a, a ′) | (a, a ′)w | C.m r(r)→ r

′ | C!m r(r)→ r
′ contract

| C!m r(r)→ r
′.(a, a ′) | C!m r(r)→ r

′.(a, a ′)w | c # c | c+ c

Future records r encode the values of expressions in contracts. A record may be
one of the following: an empty record --, which corresponds to primitive types; a
record name X, which represents a place-holder for a value and can be instantiated
by substitutions; a[f : r] that defines an object with its group name a, and a  r

which specifies that accessing r requires control of the group a (and that the control
is to be released once the method has been evaluated). Note that the future record
a  r is associated with method invocations: a is the group of the object on which
the method is invoked.

Contracts c collect the method invocations and the group dependencies in-
side statements. Apart from 0, (a, a ′), and (a, a ′)w that respectively represent the
empty behavior, the dependency pairs due to a get and an await operation, the
other basic contracts deal with method invocations. The contract C.m r(r) → r

′

models synchronous method invocations, while C!m r(r)→ r
′ models asynchronous

invocations. This latter contract may be followed by a get – the suffix “.(a, a ′)”
–, or followed by an await – the suffix “.(a, a ′)w”. Composite contracts define the
sequential composition c # c′ and conditionals c + c

′.
Finally, our tool uses constraints U that are defined by the following syntax

U ::= true | r = r
′ | r(r)→ s � r

′(r′)→ s
′ | U ∧ U constraint

where true is the constraint that is always true; r = r
′ is a classic unification

constraint between terms; r(r) → s � r
′(r′) → s

′ is a semiunification constraint;
the constraint U ∧ U ′ is the conjunction of U and U ′.

Contracts are extracted from core ABS programs by means of an inference
algorithm. Figures 3 and 4 illustrate a (relevant) subset of the rules; the other
ones are omitted to lighten our presentation. The following auxiliary operators are
used: fields(C) and param(C) return the sequence of fields and parameters of a class
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Var
x ∈ dom(Γ )

Γ `a x : Γ (x)

Field
x 6∈ dom(Γ ) Γ (this) = a[f

′
: r; f : r]

Γ `a f
′
: r

Get
Γ `a e : r X, b fresh

Γ `a e.get : X, (a, b)B r = b  X

NewCog
Γ `a e : r a

′
fresh

fields(C) = f param(C) = f
′

X fresh

Γ `a new cog C(e) : a
′
[f : X; f

′
: r], 0B true

New
Γ `a e : r X fresh

fields(C) = f param(C) = f
′

Γ `a new C(e) : a[f : X; f
′
: r], 0B true

AInvk
Γ `a e : r Γ `a e : s class(types(e)) = C b, Y, Y fresh

Γ `a e!m(e) : b  Y, C!m r(s)→ Y B b[f : Y ] = r ∧ C.m � r(s)→ Y

Return
Γ `a e : r Γ (destiny) = s

Γ `a return e : 0B r = s |Γ

SInvk
Γ `a e : r Γ `a e : s

class(types(e)) = C Y fresh

Γ `a e.m(e) : a  Y, C.m r(s)→ Y B C.m � r(s)→ Y

Await
Γ `a x : r X, b fresh

Γ `a await x? : (a, b)
w B r = b  X |Γ

Await-b
Γ `a x : r X, b fresh

class(types(x)) = C fields(C) = f

Γ `a [x] await y : (a, b)
w
\ B r = b[f : X] |Γ

AssignVar
x ∈ dom(Γ ) Γ `a z : r, cB U
Γ `a x = z : cB U |Γ [x = r]

AssignField
Γ `a z : r, cB U f

′ 6∈ dom(Γ )
Γ (this) = a[f

′
: r

′
; f : r]

Γ `a f
′
= z : cB U ∧ r = r

′ |Γ

If
Γ `a e : r Γ `a s1 : c1 B U1 |Γ1

Γ `a s2 : c2 B U2 |Γ2 Γ1|dom(Γ ) = Γ2|dom(Γ )

Γ `a if e { s1 } else { s2 } : c1 + c2 B U1 ∧ U2 |Γ1|dom(Γ )

Seq
Γ `a s1 : c1 B U1 |Γ1

Γ1 `a s2 : c2 B U2 |Γ2

Γ `a s1; s2 : c1 G c2 B U1 ∧ U2 |Γ2

Fig. 3. Contract inference for expressions and statements

C respectively; types(e) returns the type of an expression e, which is an interface;
if e is an object, class(I) returns the unique (see the restriction Interfaces in
Section 2.2) class implementing I; and mname(M) returns the sequence of method
names in the sequence M of method declarations.

Inference statements for pure expressions e have the form Γ `a e : r, where
Γ is a typing context mapping variables to their records, and methods to their
signatures; a is the group name of the object executing the expression; and r is
the inferred record. Constraints and contracts are not generated at this stage.

Inference statements for expressions z have the form Γ `a z : r, c B U where
Γ , a, and r are as for expressions e. The term c is the contract for z created by
the inference rules and U is the generated constraint. The rule NewCOG creates
a new group name that is returned in the record of the expression, while New
uses the name of the group of this. It is worth to recall that, in core ABS, the
creation of an object, either with a new or with a new cog, amounts to executing
the method init of the corresponding class, whenever defined (the new performs
a synchronous invocation, the new cog performs an asynchronous one). In turn,
the termination of init triggers the execution of the method run, if present. The
method run is asynchronously invoked when init is absent. Since init may be
regarded as a method in core ABS, the inference system in our tool explicitly
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(Method)

fields(C) = f param(C) = f
′

a, X, Y , Z fresh

Γ + this : a[ff
′

: X] + x : Y + destiny : Z `a s : cB U |Γ ′

Γ ` T m (T x){s} : a[ff
′

: X](Y ){ĉ} Z B U ∧ a[ff
′

: X](Y )→ Z = C.m in C

(Class)

X fresh Γ + ff
′

: X `M : C . U in C

Γ ` class C(T f) {T′ f′; M} : {mname(M) 7→ C} B U

Fig. 4. Contract rules of method and class declarations

introduces a synchronous invocation to init in case of new and an asynchronous
one in case of new cog. However, for simplicity, we overlook this (simple) issue in
the rules New and NewCog, acting as if init and run are always absent.

Rules for statements s have the form Γ `a s : cBU |Γ ′ where Γ , a, s, c and U
are as before, and Γ ′ is the environment of the method after the execution of the
statement. The environment may change because of local variable updates. Rule
Await deals with the await synchronization when applied to a simple future lookup
x?, returning a dependency (a, b)w. In order to correctly associate dependencies
with each synchronization, we assume statements of the form await (?x1∧?x2) to
be decomposed into await ?x1 ; await ?x2. Rule AssignVar manages assignments
to local variables of methods and is the only rule that changes the environment.
This rule must be compared with AssignField, which deals with assignment to
fields. In this case, as we said before, since we do not admit field updates, the
rule enforces that the future record of the right-hand-side expression to be the
same as that of the field. Rule Return constrains the record of destiny, which
is an identifier introduced by Method, shown in Figure 4, for storing the return
record. Rule Seq defines the sequential composition of contracts. This rule uses an
auxiliary binary operator G on contracts to manage accumulations of dependencies
in sequence. The operator G is defined case-by-case. For example

c # C!m r(s)→ r
′ G c′ =


c # C!m r(s)→ r

′.(a, b) # c′′ if c′ = (a, b) # c′′

c # C!m r(s)→ r
′.(a, b)w # c′′ if c′ = (a, b)w # c′′

c # C!m r(s)→ r
′ # c′ otherwise

The rules for method and class declarations are defined in Figure 4. In Method,
in order to derive the method contract of T m (T x){s}, we infer the type of s in an
environment extended with this, destiny (that will be set by return statements),
and the arguments x. The resulting contract c will be used in the method contract.
The rule Class yields an abstract class table that associates a method contract
with every method name. It is this abstract class table that is used by our analyzer
in Section 4.

As an example, the methods of Math in Figure 2 have the following contracts,
once the constraints are solved (we always simplify c # 0 into c):
– fact g has contract a[ ](--) {0+Math!fact g a[ ](--)→ --.(a, a)} --. The name a in

the header refers to the group name associated with this in the code, and binds
the occurrences of a in the body. The contract body has a recursive invocation
to fact g, which is performed on an object in the same group a and followed
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by a get operation. This operation introduces a dependency pair (a, a). We
observe that, if we replace the statement Fut<Int> x = this!fact_g(n-1) in
fact g with Math z = new Math() ; Fut<Int> x = z!fact_g(n-1), we obtain the
same contract as above because the new object is in the same group as this.

– fact ag has contract a[ ](--) {0 + Math!fact ag a[ ](--) → --.(a, a)w} --. In this
case, the presence of an await statement in the method body produces a de-
pendency pair (a, a)w. The subsequent get operation does not introduce any
dependency pair: (a, a) is absorbed by (a, a)w by definition of G. Intuitively, in
this case, the success of get is guaranteed, provided the success of the await

synchronization.
– fact nc has contract a[ ](--) {0 + Math!fact nc b[ ](--) → --.(a, b)} --. This

method contract differs from the previous ones in that the receiver of the
recursive invocation is a free name (i.e., it is not bound by a in the header).
This because the recursive invocation is performed on an object of a new group
(which is therefore different from a). As a consequence, the dependency pair
added by the get relates the group a of this with the new group b.

Properties. The inference system for contracts possesses the classic soundness and
completeness properties.

Theorem 1. The inference system for contracts produces a class table (when the
semiunification algorithm terminates) that is sound and complete.

This result is proved in a standard way by (1) defining a type system for
contracts where method contracts are explicitly provided by programmers; then
by (2) demonstrating that this type system is sound with respect to the operational
semantics in [14] (subject reduction); and finally by (3) proving that the class table
obtained by the inference system yields method contracts that are type correct with
respect to (1) (completeness). As regards (1), the type system is very similar to
the inference one, but it does not collect constraints. As regards (3), the rules also
produce a set of semiunification constraints [13] r(r)→ s � r

′(r′)→ s
′ by binding

constraints of the form r(r) → s = C.m (rule Method) with constraints of the
form C.m � r

′(r′) → s
′ (rules AInvk and SInvk). It is well-known that solving

these constraints is undecidable in general [17]. Therefore, it is to be expected that
the algorithm loops indefinitely in some cases, which are defined in very ad-hoc
ways. In our various tests, we never reached this limitation of our approach.

4 The analysis of contracts

Contracts are inputs to our deadlock analysis technique, which returns finite state
models, called lam (an acronym for deadLock Analysis Models [11]), where states
are relations on group names. For example:
– [(a, b)],[(a, b), (b, c)] is a two-states lam where one state contains the relation
{(a, b)} and the other state contains {(a, b), (b, c)};

– [(a, b)w] is a one-state lam containing the relation {(a, b)w}.
The algorithm takes as input an abstract class table and a main contract, both

produced by the inference system; then it applies the standard Knaster-Tarski
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technique. The critical issue of this technique is that it may create pairs on fresh
names at each step, technically speaking, at every approximant, because of free
names in method contracts that correspond to new cogs. As a consequence, the
lam model is not a complete partial order (the ascending chains of lams may have
infinite length and no upper bound). A classical example is the model of the re-
cursive method contract (of Math.fact ng)

Math.fact nc a[ ](--) {0 + Math!fact nc b[ ](--)→ --.(a, b)} --
In order to circumvent this issue and to get a decision on deadlock-freedom in a
finite number of steps, we use another usual method: running the Knaster-Tarski
technique up-to a fixed approximant, let us say n, and then resorting to a saturation
argument. If the n-th approximant is not a fixpoint, then the (n+ 1)-th approxi-
mant is computed by reusing the same group names used by the n-th approximant
(no additional group name is created anymore). Similarly for the (n + 2)-th ap-
proximant till a fixpoint is reached (by straightforward cardinality arguments, the
fixpoint does exist, in this case). This fixpoint is called the saturated state. For
example, in the case of the above contract, the n-th approximant returns the
single state lam [(a1, a2), · · · , (an−1, an)]. If we saturate at this stage, the next ap-
proximant returns the saturated state [(a1, a2), · · · , (an−1, an), (a2, a2)]. This state
contains a circular dependency – the pair (a2, a2) – revealing a potential dead-
lock in the corresponding program. Actually, in this case, this circularity is a false
positive that is introduced by the (over)approximation: the original code never
manifests a deadlock.

A more detailed account of the algorithm follows (a simplified version of the
algorithm may be found in [9], see also Section 6). The model of lams is a partial
order with a bottom element, which is the single state lam with the emptyset
relation. For every syntactic operation on contracts, in particular + and #, we
define a monotone operation on the model (an operation is monotone if, whenever
it is applied to arguments in the order relation, it returns values in the same order
relation). The algorithm analyzing contracts computes an abstract class table that
associates with every method a function from tuples of group names to pairs of
lams. The need for using pairs of lams, let them be 〈W,W ′〉, is illustrated by means
of an example. Consider the contract c = C!m b[ ]( ) → --.(a, b). This contract
adds the dependency pair (a, b) to the current state. If the method m of class C

only performs a method invocation, let it be D!n b[ ]( )→ -- (without any get or
await synchronization), then the invocation C!m b[ ]( ) → -- does not contribute
to the current state with other pairs. However it is possible that D!n b[ ]( ) → --
introduces dependency pairs that affect the future states and that have nothing
to do with (a, b). The same arguments apply in the case where D!n is a set of
states: future dependency pairs are added according to what prescribed by the
model of D!n. Therefore, the dichotomy between present and future states allows
us to augment the precision of our (compositional) abstract semantics. We notice
that this dichotomy is not needed anymore for the main function. In fact, letting
〈Wmain, W ′main〉 be the corresponding model, it is equivalent to the (single) lam
Wmain ∪W ′main – in this case, futures are simply additional states to the current
ones.
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Back to the abstract class table, it is computed starting from the first approxi-
mant, which associates the function λãC,m.〈0, 0〉 with every method C.m. The next
approximant is computed by transforming every entry of the lam class table ac-
cording to the corresponding contract. When the saturated state is reached, the
lam of the main function {T x ; s } is computed. Let 〈Wmain, W ′main〉 be such
lam. The input program is then deadlock-free if for every W ∈ Wmain ∪ W ′main ,
W get has no circularity, where W get is defined below.

Definition 1. Let W be a set of group name dependencies. The get-closure of
W , noted W get, is the least set such that

W ∈W get
(a, b) ∈W get (b, c) ∈W get

(a, c) ∈W get

(a, b) ∈W get (b, c)w ∈W get

(a, c) ∈W get

A set W contains a circularity if the get-closure of its dependencies has a pair
(a, a).

As an example, we compute the abstract class table of the class Math in Figure 2.
The contracts of such methods have been discussed in Section 3. Our analysis
algorithm returns

method first approx. second approx. third approx.

Math.fact_g λa.〈0, 0〉 λa.〈[(a, a)], 0〉 λa.〈[(a, a)], 0〉
Math.fact_ag λa.〈0, 0〉 λa.〈[(a, a)w], 0〉 λa.〈[(a, a)w], 0〉
Math.fact_nc λa.〈0, 0〉 λa.〈[(a, b)], 0〉 λa.〈[(a, c), (c, d)], 0〉

The fixpoints for Math.fact_g and Math.fact_ag are found at the third itera-
tion. According to the above definition of deadlock-freeness, Math.fact_g yields a
deadlock, whilst Math.fact_ag is deadlock-free. As discussed before, there exists no
fixpoint for Math.fact_nc. If we decide to stop at the third iteration and saturate,
we get λa.〈[(a, c), (c, c), (c, d)], 0〉, which contains a circularity. As we said before,
this circularity is a false positive.

Note that saturation might even start at the first approximant (where every
method is λa.〈0, 0〉). In this case, for Math.fact_g and Math.fact_ag, we get the
same answer and the same pair of lams as the above third approximant. For
Math.fact_nc we get λa.〈[(a, b), (b, b)], 0〉, which contains a circularity. In general,
it is possible to augment precision by delaying saturation. Consider the following
abstract class table:

C.m : a[ ](b[ ], c[ ]) {C.n b[ ](c[ ])→ -- # C.n c[ ](b[ ])→ --} --
C.n : a[ ](b[ ]) {C.p w[ ](a[ ])→ -- # C.p b[ ](w′[ ])→ --} --
C.p : a[ ](b[ ]) {C.q b[ ]()→ --.(a, b)} --
C.q : a[ ]( ) {0} --

This class table saturates at the second approximant and uses the same names w
and w′ in the two invocations of C.n inside C.m. This will produce a false positive.
Saturating at the third approximant, instead, produces a precise response (the
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program is deadlock-free). We observe that the above abstract class table has a
fixpoint at the fourth iteration.

Our technique is correct. We in fact demonstrate the following result.

Theorem 2. Let 〈Wmain,W ′main〉 be the lams of the main function of a core ABS

program computed with an abstract class table (saturated at the n-th approximant,
for some n). If no state of W ∪W ′ has a circularity then the program is deadlock-
free.

5 The SDA tool and its application to the case study

ABS (and, therefore, core ABS) comes with a suite [25] that offers a compilation
framework, a set of tools to analyze the code, an Eclipse IDE plugin and Emacs
mode for the language. We extended this suite with an implementation of our static
deadlock analysis tool (SDA tool), available at http://cs.unibo.it/~laneve/

deadlock. The SDA tool is built upon the abstract syntax tree (AST) of the ABS
type checker. We can therefore exploit the type information stored in every node
of the tree. This simplifies the implementation of several contract inference rules.
The SDA tool is structured in three modules.
1. Contract and Constraint Generation. This is performed in three steps: i) the

tool first parses the classes of the program and generates a map between inter-
faces and classes, required for the contract inference of method calls; ii) then
it parses again all classes of the program to generate the initial environment Γ
that maps methods to the corresponding method signatures; and iii) it finally
parses the AST and, at each node, it applies the contract inference rules.

2. Constraint Solving is done by a generic semi-unification solver implemented in
Java, following the algorithm defined in [13]. The implementation of that solver
is available at http://proton.inrialpes.fr/~mlienhar/semi-unification.
When the solver terminates (and no error is found), it produces a substitution
that validates the input constraints. Applying this substitution to the gener-
ated contracts produces the abstract class table and the contract of the main
statement of the program.

3. Contract Analysis uses dynamic structures to store states of every method
contract (because states become larger and larger as the analysis progresses).
At each iteration of the analysis, a number of fresh group names is created and
the states are updated according to what is prescribed by the contract. A basic
operation of the analyzer is the renaming, which is used when computing every
approximant. At each iteration, the tool checks whether a fixpoint has been
reached. Saturation starts when the number of iterations reaches a maximum
value (that may be customized by the user). In this case, since the precision
of the algorithm degrades, the tool signals that the answer may be imprecise.

5.1 Simple experiments

The SDA tool has been tested on a number of medium-size programs written for
benchmarking purposes by ABS programmers. The programs may be found on

13



the tool website; some of them (those with suffix Mod) required modifications to
remove recursive object structures. The following table reports our experiments:
for every program we display the number of lines, whether the analysis has reported
a deadlock (D) or not (X), and the time required for the analysis. With regards
to time, we only report the time required by the contract inference system and
the contract analysis when they run on a QuadCore 2.4GHz and Gentoo (Kernel
3.4.9):

program lines result time

PeerToPeer 185 X 0.474 sec

BoundedBuffer 103 X 0.353 sec

PingPongMod 61 X 0.046 sec

MultiPingPongMod 88 D 0.109 sec

5.2 The industrial case study

The Fredhopper Access Server (FAS) is a distributed concurrent object-oriented
system that provides search and merchandising services to eCommerce companies.
FAS consists of a set of live environments and a single staging environment. A
live environment processes queries from client web applications via web services
and aims to provide a constant query capacity to client-side web applications. A
staging environment is responsible for receiving data updates, and distributing the
resulting indices across all live environments according to the Replication Proto-
col. The Replication Protocol has a single SyncServer module and one SyncClient
module for each live environment. In turn, the SyncServer determines the sched-
ule of replications, as well as their content, while a SyncClient receives data and
configuration updates according to the schedule.

The SyncServer communicates to SyncClients by creating Worker objects,
which serve as the interface to the server-side of the Replication Protocol. On the
other hand, SyncClients schedule and create ClientJob objects to handle commu-
nications to the client-side of the Replication Protocol. When transferring data
between the staging and the live environments, it is critical that the data re-
mains immutable. To enforce immutability, without interfering with read/write
accesses to the staging environment’s underlying file system, the SyncServer cre-
ates a Snapshot object that encapsulates a snapshot of the necessary part of the
staging environment’s file system, and periodically refreshes it against the file sys-
tem. This guarantees immutability of data until their update is deemed safe. The
SyncServer uses a Coordinator object to determine the safe state in which the
Snapshot can be refreshed.

5.3 The application of SDA to FAS

As the Replication Protocol is a program with multiple threads interacting con-
currently, there are risks of deadlock. In order to be able to to apply the SDA tool
to the case study, we first made few adaptations.

We modified the core ABS model such that each interface defined in the model
is implemented by at most one class. In particular we have restricted the types of
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replication items supported by the core ABS model to one. This change is adequate
for deadlock analysis as these implementations only perform synchronous method
calls or function calls with no scheduling point (await statements). In total we
removed two implementations of replication item types.

We also removed all circular object structures. For example, in order to keep
track of the number of ClientJob objects active at any given time, the SyncClient

object keeps a list of references to such objects. On the other hand, each ClientJob

object keeps a reference to its SyncClient object such that it can notify the
SyncClient at the end of a replication session. We remove SyncClient’s reference
to ClientJob such that SyncClient only increments an integer counter when a
ClientJob is created and decrements the counter when a ClientJob object finishes
a replication session. In total we modified three circular object structures to be
non recursive.

Finally, we have annotated every await statement on boolean guards with a
reference to the object that would resolve the expression to True. For example,
during the interaction between ClientJob and ConnectionThread, ClientJob asyn-
chronously invokes method command(ListSchedule) on ConnectionThread to ask the
ConnectionThread to send all replication schedules, and then waits with the state-
ment await schedules != EmptySet, where field schedules is subsequently set by
ConnectionThread to transfer replication schedules on to the ClientJob object via
method receiveSchedule(Schedules) (see the code in Section 2.2). In this case we
add the annotation [thread], where thread is a reference to the ConnectionThread

object. We have annotated 13 such await statements in total.

After these adaptations, we were ready to run the SDA tool. We ran it with
number of iterations 1 and, within 40 seconds, we got the answer

### LOCK INFORMATION RESULTED BY THE ANALYSIS ###

Saturation: true

Deadlock in Main: false

In order to test the performance of SDA, we have also run it with other itera-
tion values (which are not necessary for the functional analysis, in this case). The
following table summarizes the results of our experiments:

Replication Protocol time

Iteration 1 39.783 sec

Iteration 2 60.582 sec

Iteration 3 341.10 sec

We conclude with a remark about performance. The constraint inference is
pseudo-linear in most of the cases. On the contrary, the fixpoint algorithm is
exponential in the number of identifiers in a program. This is the reason why,
in the above table, increasing the number of iterations (from 2 to 3) causes the
runtime to increase by a factor of 6. We remark that in most cases, the precision
of the SDA tool does not enhance at iterations higher than 1.
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6 Related works

A preliminary theoretical study was undertaken in [10], where (i) the considered
language is a functional subset of core ABS; (ii) contracts are not inferred, they
are provided by the programmer and type-checked; (iii) the deadlock analysis is
less precise because it is not iterated as in this contribution, but stops at the first
approximant, and (iv), more importantly, models of methods are not pairs of lams,
which led it to discard dependencies (thereby causing the analysis, in some cases,
to yield false negatives).

The proposals in the literature that statically analyze deadlocks are largely
based on types. In [1, 3, 7, 23] a type system is defined that computes a partial
order of the locks in a program and a subject reduction theorem demonstrates
that tasks follow this order. On the contrary, our technique does not compute any
ordering of locks, thus being more flexible: a computation may acquire two locks in
different order at different stages, being correct in our case, but incorrect with the
other techniques. In [18, 21, 22], Kobayashi and his colleagues use a very powerful
technique, since they do not commit to any predefined partial order of locks and
apply to codes with dynamic structures. However their concurrency models are
different from that of ABS and a precise comparison is a matter for future work.
Type-based deadlock analysis has also been studied in [19]. In this contribution,
types define objects’ states and can express acceptability of messages. The ex-
change of messages modifies the state of the objects. In this context, a deadlock is
avoided by setting an ordering on types. With respect to our technique, [19] uses
a deadlock prevention approach, rather than detection, and no inference system
for types is provided. A number of model-theoretic techniques for deadlock anal-
ysis have also been defined.To mention one contribution (another one is [6], see
below), in [4], circular dependencies among processes are detected as erroneous
configurations, but dynamic creation of names is not treated.

Works that specifically tackle the problem of deadlocks for languages with the
same concurrency model as that of core ABS are the following: [24] defines an ap-
proach for deadlock prevention (as opposed to our deadlock detection) in SCOOP,
an Eiffel-based concurrent language. Different from our approach, they annotate
classes with the used processors (the analogue of groups in ABS), while this infor-
mation is inferred by our technique. Moreover each method exposes preconditions
representing required lock ordering of processors (processors obeys an order in
which to take locks), and this information must be provided by the programmer. [6]
studies a Petri net based analysis, reducing deadlock detection to a reachability
problem in Petri nets. This technique is more precise in that it is thread based and
not just object based. Since the model is finite, this contribution does not address
the feature of object creation and it is not clear how to scale the technique. We
plan to extend our analysis in order to consider finer-grained thread dependencies
instead of just object dependencies. [16] offers a design pattern methodology for
CoJava to obtain deadlock-free programs. CoJava, a Java dialect where data-races
and data-based deadlocks are avoided by the type system, prevents threads from
sharing mutable data. Deadlocks are excluded by a programming style based on
ownership types and promise (i.e. future) objects. The main differences with our
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technique are (i) the needed information must be provided by the programmer,
(ii) deadlock freedom is obtained through ordering and timeouts, and (iii) no
guarantee of deadlock freedom is provided by the system.

The work by Flores-Montoya et al. [8] and the corresponding DECO proto-
type deserve a separate discussion. They perform deadlock analysis on (a subset
of) core ABS with a point-to analysis technique that returns a dependency graph.
Then, in a clever way (by means of a may-happen-in-parallel analysis), unfeasible
cycles in the dependency graph are discarded. The technique relies on an abstract
evaluation of the code; therefore no inference system for extracting relevant infor-
mations is used. For this reason, the DECO tool does not manifest limitations of
the current version of SDA, such as recursive object structures. As regards per-
formance, DECO and SDA are comparable on small/mid-size programs (codes
in Section 5.1). In case of the FAS module, DECO provides an answer in a bit
more than 4 seconds. As regards the design, DECO is a monolithic code written
in Prolog. On the contrary, SDA is a highly modular Java code (see Section 5).
Every module may be replaced by another; for instance one may rewrite the in-
ference system for another language and plug it easily in the tool, or one may use
a different/refined contract analysis algorithm (see Conclusions).

7 Conclusions

We have developed a technique for statically detecting deadlocks in core ABS and
discussed an industrial case study. The technique uses (i) an inference algorithm
to extract abstract descriptions of methods, called contracts, and (ii) an evaluator
of contracts, which computes an over-approximated fixpoint semantics.

This study can be extended in several directions. As regards the prototype,
in the next release, we intend to remove most of the restrictions, as discussed in
Section 2.2, since they have been considered only to ease the initial version. The
next release of SDA will also provide indications about how deadlocks have been
produced by pointing out the elements in the code that generated the detected
circular dependencies. This way, the programmer will be able to check whether or
not the detected circularities are actual deadlocks, fix the problem in case it is a
verified deadlock, or be assured that his program is deadlock-free.

The current SDA tool is also able to capture (a form of) livelock, namely when
several processes are continuously releasing and acquiring a set of group locks in
a circular way. However, the theoretical development of this issue is at an early
stage and we will extend the tool when the theory becomes more stable. SDA,
being modular, may be integrated with other analysis techniques. In particular,
we are prototyping the technique discussed in [11], which extends the theory of
permutations to the contracts discussed in this paper. This technique provides a
deadlock analysis that is complementary to the one discussed here. In the sense
that there are programs that are false-positive in one technique and deadlock-free
in the other, and conversely. Once this work is carried out, we will have an SDA
tool with augmented precision.
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14. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and
M. M. Bonsangue, editors, Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010), volume 6957 of LNCS, pages 142–164.
Springer-Verlag, 2011.

15. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and System Modeling, 6(1):35–58, Mar. 2007.

16. E. Kerfoot, S. McKeever, and F. Torshizi. Deadlock freedom through object own-
ership. In T. Wrigstad, editor, 5rd International Workshop on Aliasing, Confine-
ment and Ownership in object-oriented programming (IWACO), in conjunction with
ECOOP 2009, July 2009.

17. A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-unification
problem. Inf. Comput., 102(1):83–101, 1993.

18. N. Kobayashi. A new type system for deadlock-free processes. In Proceedings of the
17th international conference on Concurrency Theory, CONCUR’06, pages 233–247,
Berlin, Heidelberg, 2006. Springer-Verlag.

18



19. F. Puntigam and C. Peter. Types for active objects with static deadlock prevention.
Fundam. Inform., 48(4):315–341, 2001.
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The ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. Journal on Software Tools for Technology Transfer, 14(5):567–588,
2012.

19


