
Deadlock analysis of unbounded process networks

Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

1 Dept. of Computer Science and Egineering, University of Bologna – INRIA FOCUS
2 Dept. of Computer Science, University of Tokyo

Abstract. Deadlock detection in concurrent programs that create networks with
arbitrary numbers of nodes is extremely complex and solutions either give im-
precise answers or do not scale. To enable the analysis of such programs, (1) we
define an algorithm for detecting deadlocks of a basic model featuring recursion
and fresh name generation: the lam programs, and (2) we design a type system for
value passing CCS that returns lam programs. As a byproduct of these two tech-
niques, we have an algorithm that is more powerful than previous ones and that
can be easily integrated in the current release of TyPiCal, a type-based analyser
for pi-calculus.

1 Introduction

Deadlock-freedom of concurrent programs has been largely investigated in the liter-
ature [2, 4, 1, 11, 18, 19]. The proposed algorithms automatically detect deadlocks by
building graphs of dependencies (a, b) between resources, meaning that the release of
a resource referenced by a depends on the release of the resource referenced by b. The
absence of cycles in the graphs entails deadlock freedom. When programs have infinite
states, in order to ensure termination, current algorithms use finite approximate models
that are excerpted from the dependency graphs. The cases that are particularly critical
are those of programs that create networks with an arbitrary number of nodes.

To illustrate the issue, consider the following pi-calculus-like process that computes
the factorial:

Fact(n,r,s) = if n=0 then r?m. s!m
else new t in (r?m. t!(m*n)) | Fact(n-1,t,s)

Here, r?m waits to receive a value for m on r, and s!m sends the value m on s. The
expression new t in P creates a fresh communication channel t and executes P. If the
above code is invoked with r!1 | Fact(n,r,s), then there will be a synchronisation
between r!1 and the input r?m in the body of Fact(n,r,s). In turn, this may delegate
the computation of the factorial to another process in parallel by means of a subsequent
synchronisation on a new channel t. That is, in order to compute the factorial of n,
Fact builds a network of n+1 nodes, where node i takes as input a value m and outputs
m*i. Due to the inability of statically reasoning about unbounded structures, the current
analysers usually return false positives when fed with Fact. For example, this is the
case of TyPiCal [12, 11], a tool developed for pi-calculus. (In particular, TyPiCal
fails to recognise that there is no circularity in the dependencies among r, s, and t.)

2 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

In this paper we develop a technique to enable the deadlock analysis of processes
with arbitrary networks of nodes. Instead of reasoning on finite approximations of such
processes, we associate them with terms of a basic recursive model, called lam – for
deadLock Analysis Model –, which collects dependencies and features recursion and
dynamic name creation [5, 6]. For example, the lam function corresponding to Fact is

fact(a1, a2, a3, a4) = (a2, a3) + (ν a5, a6)
(
(a2, a6) N fact(a5, a6, a3, a4)

)
where (a2, a3) displays the dependency between the actions r?m and s!m and (a2, a5)
the one between r?m and t!(m*n). The function fact is defined operationally by un-
folding the recursive invocations; see Section 3. The unfolding of fact(a1, a2, a3, a4)
yields the following sequence of abstract states (bound names in the definition of fact
are replaced by fresh ones in the unfoldings).
fact(a1, a2, a3, a4) −→ (a2, a3) +

(
(a2, a6) N fact(a5, a6, a3, a4)

)
−→ (a2, a3) + (a2, a6) N (a6, a3) + (a2, a6) N (a6, a8) N fact(a7, a8, a3, a4)
−→ (a2, a3) + (a2, a6) N (a6, a3) + (a2, a6) N (a6, a8) N (a8, a3)

+(a2, a6) N (a6, a8) N (a8, a10) N fact(a9, a10, a3, a4)
−→ · · ·

While the model of fact is not finite-state, in Section 4 we demonstrate that it
is decidable whether the computations of a lam program will ever produce a circular
dependency. In our previous work [5, 6], the decidability was established only for a
restricted subset of lams.

We then define a type system that associates lams to processes. Using the type
system, for example, the lam program fact can be extracted from the factorial pro-
cess Fact. For the sake of simplicity, we address the (asynchronous) value passing
CCS [15], a simpler calculus than pi-calculus, because it is already adequate to demon-
strate the power of our lam-based approach. The syntax, semantics, and examples of
value passing CCS are in Section 5; the type system is defined in Section 6. As a
byproduct of the above techniques, our system is powerful enough to detect deadlocks
of programs that create networks with arbitrary numbers of processes. It is also worth to
notice that our system admits type inference and can be easily extended to pi-calculus.
We discuss the differences of our techniques with respect to the other ones in the liter-
ature in Section 7 where we also deliver some concluding remark.

2 Preliminaries

We use an infinite set A of (level) names, ranged over by a, b, c, · · · . A relation on a set
A of names, denoted R, R′, · · · , is an element of P(A × A), where P(·) is the standard
powerset operator and · × · is the cartesian product. Let
– R+ be the transitive closure of R.
– {R1, · · · , Rm} b {R

′
1, · · · , R

′
n} if and only if, for all Ri, there is R′j such that Ri ⊆ R

′
j
+.

– (a0, a1), · · · , (an−1, an) ∈∈ {R1, · · · , Rm} if and only if there is Ri such that (a0, a1),· · · ,
(an−1, an) ∈ Ri.
– {R1, · · · , Rm}N {R′1, · · · , R

′
n}

def
= {Ri ∪ R

′
j | 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

We use R,R′, · · · to range over {R1, · · · , Rm} and {R′1, · · · , R
′
n}, which are elements

of P(P(A × A)).

Deadlock analysis of unbounded process networks 3

Definition 1. A relation R has a circularity if (a, a) ∈ R+ for some a. A set of relations
R has a circularity if there is R ∈ R that has a circularity.

For instance
{
{(a, b), (b, c)}, {(a, b), (c, b), (d, b), (b, c)}, {(e, d), (d, c)}, {(e, d)}

}
has a

circularity because the second element of the set does.

3 The language of lams

In addition to the set of (level) names, we will also use function names, ranged over by
f, g, h, · · · . A sequence of names is denoted by ã and, with an abuse of notation, we
also use ã to address the set of names in the sequence.

A lam program is a pair
(
L , L

)
, where L is a finite set of function definitions

f(̃a) = Lf, with ã and Lf being the formal parameters and the body of f, and L is the
main lam. The syntax of the function bodies and the main lam is

L ::= 0 | (a, b) | f(̃a) | LN L | L + L | (ν a)L

The lam 0 enforces no dependency, the lam (a, b) enforces the dependency (a, b), while
f(̃a) represents a function invocation. The composite lam LNL′ enforces the dependen-
cies of L and of L′, while L + L′ nondeterministically enforces the dependencies of L
or of L′, (ν a)L creates a fresh name a and enforces the dependencies of L that may use
a. Whenever parentheses are omitted, the operation “N” has precedence over “+”. We
will shorten L1 N · · ·N Ln into Ni∈1..nLi and (ν a1) · · · (ν an)L into (ν a1 · · · an)L. Function
definitions f(̃a) = Lf and (ν a)L are binders of ã in Lf and of a in L, respectively, and
the corresponding occurrences of ã in Lf and of a in L are called bound. A name x in
L is free if it is not underneath a (ν a) (similarly for function definitions). Let var(L) be
the set of free names in L.

In the syntax of L, the operations “N” and “+” are associative, commutative with
0 being the identity on N, and definitions and lams are equal up-to alpha renaming of
bound names. Namely, if a < var(L), the following axioms hold:

(ν a)L = L (ν a)L′ N L = (ν a)(L′ N L) (ν a)L′ + L = (ν a)(L′ + L)
Additionally, when V ranges over lams that do not contain function invocations, the

following axioms hold:

VN V = V V + V = V VN (L′ + L′′) = VN L′ + VN L′′ (1)

These axioms permit to rewrite a lam without function invocations as a collection (op-
eration +) of relations (elements of a relation are gathered by the operation N). Let ≡
be the least congruence containing the above axioms.

Definition 2. A lam V is in normal form, denoted nf(V), if V = (ν ã)(V1 + · · · + Vn),
where V1, · · · , Vn are dependencies only composed with N.

Proposition 1. For every V, there is nf(V) such that V ≡ nf(V).

In the rest of the paper, we will never distinguish between equal lams. Moreover,
we always assume lam programs

(
L , L

)
to be well formed.

4 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

Remark 1. The axioms (1) are restricted to terms V that do not contain function invoca-
tions. In fact, f(d̃)N((a, b)+(b, c)), (f(d̃)N(a, b))+(f(d̃)N(b, c)) because the evaluation
of the two lams (see below) may produce terms with different names.

In the paper, we always assume lam programs
(
L , L

)
to be well-formed.

Definition 3. A lam program
(
L , L

)
is well formed if (1) function definitions in L

have pairwise different function names and all function names occurring in the function
bodies and L are defined; (2) the arity of function invocations occurring anywhere in the
program matches the arity of the corresponding function definition; (3) every function
definition in L has shape f(̃a) = (ν c̃)Lf, where Lf does not contain any ν-binder and
var(Lf) ⊆ ã ∪ c̃.

Operational semantics. Let a lam context, noted L[], be a term derived by the following
syntax:

L[] ::= [] | LN L[] | L + L[]

As usual L[L] is the lam where the hole of L[] is replaced by L. According to the
syntax, lam contexts have no ν-binder; that is, the hassle of name captures is avoided.
The operational semantics of a program

(
L , L

)
is a transition system where states are

lams, the transition relation is the least one satisfying the rule

(Red)

f(̃a) = (ν c̃)Lf ∈ L c̃′ are fresh Lf [̃c
′
/̃c][̃a′/̃a] = L′

f

L[f(̃a′)] −→ L[L′
f
]

and the initial state is the lam L′ such that L ≡ (ν c̃)L′ and L′ does not contain any
ν-binder. We write −→∗ for the reflexive and transitive closure of −→.

By (red), a lam L is evaluated by successively replacing function invocations with
the corresponding lam instances. Name creation is handled by replacing bound names
of function bodies with fresh names. For example, if f(a) = (ν c)((a, c) N f(c)) and
f(a′) occurs in the main lam, then f(a′) is replaced by (a′, c′) N f(c′), where c′ is a
fresh name.

Let us discuss some examples.

1.
(
{f(a, b, c) = (a, b) N g(b, c) + (b, c), g(d, e) = (d, e) + (e, d)}, f(a, b, c)

)
. Then

f(a, b, c) −→ (a, b) N g(b, c) + (b, c) −→ (a, b) N (
(b, c) + (c, b)

)
+ (b, c)

−→ (a, b) N (b, c) + (a, b) N (c, b) + (b, c)
The lam in the final state does not contain function invocations. This is because
the above program is not recursive. Additionally, the evaluation of f(a, b, c) has not
created names. This is because the bodies of f and g do not contain ν-binders.

2.
(
{f′(a) = (ν b)(a, b) N f′(b)} , f′(a0)

)
. Then

f′(a0) −→ (a0, a1) N f′(a1) −→ (a0, a1) N (a1, a2) N f′(a2)
−→

n (a0, a1) N · · ·N (an+1, an+2) N f′(an+2)
In this case, because of the (ν b) binder, the lam grows in the number of dependen-
cies as the evaluation progresses.

Deadlock analysis of unbounded process networks 5

3.
(
{f′′(a) = (ν b)(a, b) + (a, b) N f′′(b)}, f′′(a0)

)
. Then

f′′(a0) −→ (a0, a1) + (a0, a1) N f′′(a1)
−→ (a0, a1) + (a0, a1) N (a1, a2) + (a0, a1) N (a1, a2) N f′′(a2)
−→

n (a0, a1) + · · · + (a0, a1) N · · ·N (an+1, an+2) N f′′(an+2)

In this case, the lam grows in the number of “+”-terms, which in turn become larger
and larger as the evaluation progresses.

Flattening and circularities. Lams represent elements of the set P(P(A ×A)). This
property is displayed by the following flattening function.

Let L be a set of function definitions and let I(·), called flattening, be a function on
lams that (i) maps function name f defined in L to elements of P(P(A × A)) and (ii)
is defined on lams as follows

I(0) = {∅}, I((a, b)) = {{(a, b)}}, I(LN L′) = I(L) N I(L′),

I(L + L′) = I(L) ∪ I(L′), I((ν a)L) = I(L)[a′/a] with a′ fresh,

I(f(̃c)) = I(f)[̃c/̃a] (where ã are the formal parameters of f).

Note that I(L) is unique up to a renaming of names that do not occur free in L. Let
I⊥ be the map such that, for every f defined in L , I⊥(f) = {∅}. For example, let L
defines f and g and let

I(f) = {{(a, b), (b, c)}} I(g) = {{(b, a)}}
L′′ = f(a, b, c) + (a, b) N g(b, c) N f(d, b, c) + g(d, e) N (d, c) + (e, d).

Then
I(L′′) =

{
{(a, b), (b, c)}, {(a, b), (c, b), (d, b), (b, c)}, {(e, d), (d, c)}, {(e, d)}

}
I⊥(L′′) =

{
∅, {(a, b)}, {(d, c)}, {(e, d)}

}
.

Definition 4. A lam L has a circularity if I⊥(L) has a circularity. A lam program
(
L , L

)
has a circularity if there is L −→∗ L′ and L′ has a circularity.

The property of “having a circularity” is preserved by ≡ while the “absence of cir-
cularities” of a composite lam can be carried to its components.

Proposition 2. 1. if L ≡ L′ then L has a circularity if and only if L′ has a circularity;
2. L N L′ has no circularity implies both L and L′ have no circularity (similarly for
L + L′ and for (ν a)L).

4 The decision algorithm for detecting circularities

In this section we assume a lam program
(
L , L

)
such that pairwise different function

definitions in L have disjoint formal parameters. Without loss of generality, we assume
that L does not contain any ν-binder.

6 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

Fixpoint definition of the interpretation function. The basic item of our algorithm is the
computation of lam functions’ interpretation. This computation is performed by means
of a standard fixpoint technique that is detailed below.

Let A be the set of formal parameters of definitions in L and let κ be a special name
that does not occur in

(
L , L

)
. We use the domain

(
P(P(A∪ {κ} × A∪ {κ})), ⊆

)
which

is a finite lattice [3].

Definition 5. Let fi (̃ai) = (ν c̃i)Li, with i ∈ 1..n, be the function definitions in L . The
family of flattening functions I(k)

L
: {f1, · · · , fn} →P(P(A ∪ {κ} × A ∪ {κ})) is defined

as follows

I(0)
L

(fi) = {∅} I(k+1)
L

(fi) = {projãi
(R+) | R ∈ I(k)

L
(Li)}

where projã(R)
def
= {(a, b) | (a, b) ∈ R and a, b ∈ ã} ∪ {(κ, κ) | (c, c) ∈ R and c < ã}.

We notice that I(0)
L

is the function I⊥ of the previous section.

Proposition 3. Let f(̃a) = (ν c̃)Lf ∈ L . (i) For every k, I(k)
L

(f) ∈P(P((̃a∪{κ})× (̃a∪
{κ}))). (ii) For every k, I(k)

L
(f) b I(k+1)

L
(f).

Proof. 1 is immediate by definition. 2 follows by a straightforward structural induction
on L. ut

Since, for every k, I(k)
L

(fi) ranges over a finite lattice, by the fixpoint theory [3], there
exists m such that I(m)

L
is a fixpoint, namely I(m)

L
≈ I(m+1)

L
where ≈ is the equivalence

relation induced by b. In the following, we let IL , called the interpretation function (of
a lam), be the least fixpoint I(m)

L
.

Example 1. For example, let L be the factorial function in Section 1. Then

I(0)
L

(fact) = {∅} I(1)
L

(fact) = {{(a2, a3)},∅} I(2)
L

(fact) = {{(a2, a3)},∅}

That is, in this case, IL = I(1)
L

. ut

Lemma 1. Let f(̃a) = (ν c̃)Lf ∈ L and b′, b′′ ∈ b̃ and c̃′ be disjoint from b̃, ã. Then
(b′, b′′) ∈∈ I(k+1)

L
(f(̃b)) if and only if there is R ∈ I(k)

L
(Lf[c̃

′/̃c][̃b/̃a]) such that (b′, b′′) ∈ R+.
(In particular this statement holds when I(k+1)

L
= I(k)

L
= IL .)

Lam programs and circularities. Below we use multiple lam contexts, that is lam con-
texts with several holes, written L[] · · · [], with the standard meaning. For example, if
L[][] = [] N (a, b) + [] then L[f(b, c)][(a, c)] = f(b, c) N (a, b) + (a, c).

Lemma 2. Let
(
{f1 (̃a1) = (ν c̃1)L1, · · · , fn (̃an) = (ν c̃n)Ln}, L

)
be a lam program and

let

L[fi1 (̃a′1)] · · · [fim (̃a′m)] −→m
L[Li1 [̃c′1/̃ci1

][̃a′1/̃ai1
]] · · · [Lim [̃c′m/̃cim

][̃a′m/̃aim
]]

where L[·] · · · [·] is a multiple context without function invocations.
Then, the following two properties are equivalent:

Deadlock analysis of unbounded process networks 7

1. I(k+1)
L

(L[fi1 (̃a′1)] · · · [fim (̃a′m)]) has a circularity,

2. I(k)
L

(L[Li1 [̃c′1/̃ci1
][̃a′1/̃ai1

]] · · · [Lim [̃c′m/̃cim
][̃a′m/̃aim

]]) has a circularity.

Proof. Let L′ = L[fi1 (̃a′1)] · · · [fim (̃a′m)] and L′′ = L[Li1 [̃c′1/̃ci1
][̃a′1/̃ai1

]] · · · [Lim [̃c′m/̃cim
][̃a′m/̃aim

]].
For the implication 2⇒ 1, there are two subcases:

a) I(k)
L

(L′′) has a circularity consisting only of names in c̃′i . Namely there are c′0, c
′
1, · · · ,

c′h ∈ c̃′j such that

(c′0, c
′
1), (c′1, c

′
2), · · · , (c′h, c

′
0) ∈∈ I(k)

L
(L′′) .

Since names c̃′i are fresh, then, by definition of IL (·), the circularity must occur in
I(k)
L

(Li j [̃c
′
i /̃ci j

]), and conversely. In turn, this is possible if and only if I(k)
L

(Li j) has a

circularity consisting of names in c̃i j (because [̃c′j/̃ci j
] is a bijective renaming). This

means, by definition of I(k+1)
L

(·), that (κ, κ) ∈∈ I(k+1)
L

(fi j) and, in turn, (κ, κ) ∈∈ I(k+1)
L

(L′).
b) I(k)

L
(L′′) has a circularity, let it be (b0, b1), · · · (bh, b0), that also contains names not

in c̃′1, · · · , c̃
′
m. Without loss of generality, let

(b0, b1), · · · , (bh′−1, bh′) ∈∈ I(k)
L

(Li j [̃c
′
j/̃ci j

][̃a′j/̃ai j
]) (2)

while the other pairs of the circularity come from the context L[] · · · []. The general
case follows by iterating the following argument. Then, by Lemma 1, (2) is possible
if and only if (b0, bh′) ∈ I(k+1)

L
(fi j (̃a

′
j)). This last statement gives (b0, bh′), (bh′+1, bh′+2),

· · · (bh, b0) ∈∈ I(k+1)
L

(L′).

For the converse, we consider two cases.

c) Case (κ, κ) ∈∈ I(k+1)
L

(L′). If (κ, κ) comes from the context L, (κ, κ) ∈∈ I(k)
L

(L′′) follows
immediately. If (κ, κ) comes from I(k+1)

L
(fi j (̃a

′
j)), then by the definition of I(k+1)

L
,

I(k)
L

(Li j) also has a circularity, hence also I(k)
L

(L′′).
d) Otherwise, I(k+1)

L
(L′) has a circularity on names other than κ. By the definition of

I(k+1)
L

(·), there exists R j ∈ I(k+1)
L

(fi j (̃a
′
j)) for each j ∈ {1, . . . ,m} such that

I(k+1)
L

(L[R1] · · · [Rm])

has a circularity. (Here, we have identified R ⊆ A × A with the lam expression
N(a1,a2)∈R(a1, a2).) Because L does not contain function invocations, we have

I(k+1)
L

(L[R1] · · · [Rm]) = I(k)
L

(L[R1] · · · [Rm]).

By the definition of I(k+1)
L

, there exists R′j ∈ I(k)
L

(Li j [̃c
′
j/̃ci j

][̃a′j/̃ai j
]) such that R j ⊆

R′j
+. Therefore, I(k)

L
(L[R′1] · · · [R′m]) has a circularity, hence also I(k)

L
(L′′). ut

Lemma 3. Let
(
L , L

)
be a lam program and L[f(̃a′)] −→ L[L′ [̃c′/̃c][̃a′/̃a]]. The fol-

lowing two properties are equivalent:

1. IL (L[f(̃a)]) has a circularity,

8 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

2. IL (L[L′ [̃c′/̃c][̃a′/̃a]]) has a circularity.

Proof. The proof is similar to the one of Lemma 2: we consider the k such that I(k)
L

= I
and we reason on I(k+1) and I(k). ut

Theorem 1. A lam program
(
L , L

)
has a circularity if and only if IL (L) has a circu-

larity.

Proof. (If direction) By definition,
(
L , L

)
has a circularity if there is L −→∗ L′ such

that I⊥(L′) has a circularity. By induction on the length of L −→∗ L′. When the length
is 0 then I⊥(L′) has a circularity implies IL (L) has a circularity (by I⊥(L′) = I(0)

L
(L′)

and Proposition 3(2)). Assume L −→∗ L′ be equal to L −→ L′′ −→∗ L′. By inductive
hypothesis, we assume that the theorem holds on the computation L′′ −→∗ L′. Then,
by Lemma 3, if IL (L′′) has a circularity then IL (L) has a circularity. Therefore the
theorem.

(Only-if direction) We demonstrate that, if IL (L) has a circularity then there is
L −→

∗
L′ such that I⊥(L′) has a circularity.

Let m be the least natural number such that IL = I(m)
L

. Let L = L[fi1 (̃a′1)] · · · [fin (̃a′n)]
such that L[] · · · [] does not contain function invocations. Then

L −→
n
L[Li1 [̃c′1/̃ci1

][̃a′1/̃ai1
]] · · · [Lin [̃c′n/̃cin

][̃a′n/̃ain
]] = L′′

where c̃′1, · · · , c̃
′
n are fresh. Additionally, by Lemma 2, I(m−1)

L
(L′′) has a circularity be-

cause I(m)
L

(L′) has a circularity. Now, we reapply the same argument to L′′ since I(m−1)
L

(L′′)
has a circularity. After m-steps we get a lam L′ such that I(0)

L
(L′) = I⊥(L′) has a circu-

larity. ut

For example, let L be the factorial function in Section 1 and let L = (a3, a2) N
fact(a1, a2, a3.a4). From Example 1, we have IL (fact) = {{(a2, a3)},∅}. Since IL (L)
has a circularity, by Theorem 1, there is L −→∗ L′ such that I⊥(L′) has a circularity. In
fact it displays a circularity after the first transition:

L −→ (a3, a2) N ((a2, a3) +
(
(a2, a5) N fact(a5, a6, a3, a4)

)
) .

5 Value-passing CCS

In the present and next sections, we apply the foregoing theory of lams to refine Kobaya-
shi’s type system for deadlock-freedom of concurrent programs [11]. In his type system,
the deadlock-freedom is guaranteed by a combination of usages, which are a kind of
behavioral types capturing channel-wise communication behaviors, and capability/obli-
gation levels, which are natural numbers capturing inter-channel dependencies (like “a
message is output on x only if a message is received along y”). By replacing numbers
with (lam) level names, we can achieve a more precise analysis of deadlock-freedom
because of the algorithm in Section 4. The original type system in [11] is for the pi-
calculus [16], but for the sake of simplicity, we consider a variant of the value-passing
CCS [15], which is sufficient for demonstrating the power of our lam-based approach.

Deadlock analysis of unbounded process networks 9

P (processes) ::= 0 | x!e | x?y.P | (P | Q) | if e then P else Q | (ν ã; x : T)P | A(̃a; ẽ)
e (expressions) ::= x | v | e1 op e2

T (types) ::= int | U
U (usages) ::= 0 |!a1

a2 |?
a1
a2 .U | (U1|U2) | α | µα.U

Fig. 1. The Syntax of value-passing CCS

Our value-passing CCS uses several disjoint countable sets of names: in addition
to level names, there are integer and channel names, ranged over by x, y, z, · · · , process
names, ranged over by A, B, · · · , and usage names, ranged over by α, β, · · · . A value-
passing CCS program is a pair

(
D , P

)
, where D is a finite set of process name definitions

A(̃a; x̃) = PA, with ã; x̃ and PA respectively being the formal parameters and the body
of A, and P is the main process.

The syntax of processes PA and P is shown in Figure 1. A process can be the inert
process 0, a message x!e sent on a name x that carries (the value of) an expression e, an
input x?y.P that consumes a message x!v and behaves like P[v/y], a parallel composition
of processes P | Q, a conditional if e then P else Q that evaluates e and behaves either
like P or like Q depending on whether the value is , 0 (true) or = 0 (false), a restriction
(ν ã; x : T)P that behaves like P except that communications on x with the external
environment are prohibited, an invocation A(̃a; ẽ) of the process corresponding to A.

An expression e can be a name x, an integer value v, or a generic binary operation
on integers v op v′, where op ranges over a set including the usual operators like +,
≤, etc. Integer expressions without names (constant expressions) may be evaluated to
an integer value (the definition of the evaluation of constant expressions is omitted).
Let [[e]] be the evaluation of a constant expression e ([[e]] is undefined when the integer
expression e contains integer names). Let also [[x]] = x when x is a non-integer name.

We defer the explanation of the meaning of types T (and usages U) until Section 6. It
is just for the sake of simplicity that processes are annotated with types and level names.
They do not affect the operational semantics of processes, and can be automatically
inferred by using an inference algorithm similar to those in [11, 10].

Similarly to lams, A(̃a; x̃) = PA and (ν ã; x : T)P are binders of ã; x̃ in PA and of ã, x
in P, respectively. We use the standard notions of alpha-equivalence, free and bound
names of processes and, with an abuse of notation, we let var(P) be the free names in
P. In process name definitions A(̃a; x̃) = PA, we always assume that var(PA) ⊆ ã, x̃.

Definition 6. The structural equivalence ≡ on processes is the least congruence con-
taining alpha-conversion of bound names, commutativity and associativity of | with
identity 0, and closed under the following rule:

((ν ã; x : T)P) | Q ≡ (ν ã; x : T)(P | Q) ã, x < var(Q) .

The operational semantics of a program
(
D , P

)
is a transition system where the states

are processes, the initial state is P, and the transition relation →D is the least one

10 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

closed under the following rules:

(R-Com)
[[e]] = v

x!e | x?y.P→D P[v/y]

(R-Par)
P→D P′

P | Q→D P′ | Q

(R-New)
P→D Q

(ν ã; x : T)P→D (ν ã; x : T)Q
(R-IfT)

[[e]] , 0
if e then P else Q→D P

(R-IfF)
[[e]] = 0

if e then P else Q→D Q

(R-Call)
[[̃e]] = ṽ A(̃a; x̃) = P ∈ D

A(̃a′; ẽ)→D P[̃a′/̃a][̃v/x̃]
(R-Cong)
P ≡ P′ P′ →D Q′ Q′ ≡ Q

P→D Q

We often omit the subscript of →D when it is clear from the context. We write →∗

for the reflexive and transitive closure of→.

The deadlock-freedom of a process P, which is the basic property that we will verify,
means that P does not get stuck into a state where there is a message or an input. The
formal definition is below.

Definition 7 (deadlock-freedom). A program
(
D , P

)
is deadlock-free if the following

condition holds: whenever P →∗ P′ and either (i) P′ ≡ (ν ã1; x1 : T1) · · · (ν ãk; xk :
Tk)(x!v | Q), or (ii) P′ ≡ (ν ã1; x1 : T1) · · · (ν ãk; xk : Tk)(x?y.Q1 | Q2), then there exists
R such that P′ → R.

Example 2 (The dining philosophers). Consider the program consisting of the process
definitions

Phils(a1, a2, a3, a4; n : int, fork1 : U1, fork2 : U2) =

if n = 1 then Phil(a1, a2, a3, a4; fork1, fork2) else
(ν a5, a6; fork3 : U3 | U3 | !

a5
a6)(Phils(a1, a2, a5, a6; n − 1, fork1, fork3)

| Phil(a5, a6, a3, a4; fork3, fork2) | fork3!1)

Phil(a1, a2, a3, a4; fork1 : U1, fork2 : U2) =

fork1?x1.fork2?x2.(fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2))

and of the main process P:

(ν a1, a2; fork1 : U1 | U1 | !
a1
a2)(ν a3, a4; fork2 : U2 | U2 | !

a1
a2)

(Phils(a1, a2, a3, a4; m, fork1, fork2) | Phil(a1, a2, a3, a4; fork1, fork2) | fork1!1 | fork2!1)

Here, U1 = µα.?a2
a1 .(!

a1
a2 | α), U2 = µα.?a4

a3 .(!
a3
a4 | α), and U3 = µα.?a6

a5 .(!
a5
a6 | α), but please ig-

nore the types for the moment. Every philosopher Phil(a1, a2, a3, a4; fork1, fork2) grabs
the two forks fork1 and fork2 in this order, releases the forks, and repeats the same be-
havior. The main process creates a ring consisting of m + 1 philosophers, where only
one of the philosophers grabs the forks in the opposite order to avoid deadlock. This
program is indeed deadlock-free in our definition. On the other hand, if we replace
Phil(a1, a2, a3, a4; fork1, fork2) with Phil(a1, a2, a3, a4; fork2, fork1) in the main process,
then the resulting process is not deadlock-free. ut

The dining philosophers example is a paradigmatic case of the power of the analysis
described in the next section. This example cannot be type-checked in Kobayashi’s
previous type system [11]: see Remark 2 in Section 6.

Deadlock analysis of unbounded process networks 11

6 The deadlock freedom analysis of value-passing CCS

We now explain the syntax of types in Figure 1. A type is either int or a usage. The
former is used to type integer names; the latter is used to type channel names [11,
9]. A usage describes how a channel can be used for input and output. The usage 0
describes a channel that cannot be used, !a1

a2 describes a channel that is used for output,
?a1

a2 .U describes a channel that is first used for input and then used according to U, and
U | U′ describes a channel that is used according to U and U′, possibly in parallel. For
example, in process x!2 | x?z.y!z, y has the usage !a1

a2 (please, ignore the subscript and
superscript for the moment), and x has the usage !a3

a4 | ?
a5
a6 .0. The usage µα.U describes a

channel that is used recursively according to U[µα.U/α]. The operation µα.− is a binder
and we use the standard notions of alpha-equivalence, free and bound usage names.
For example, µα.!a1

a2 .α describes a channel that can be sequentially used for output an
arbitrary number of times; µα.?a1

a2 .!
a3
a4 .α describes a channel that should be used for input

and output alternately. We often omit a trailing 0 and just write ?a1
a1 for ?a1

a1 .0.
The superscripts and subscripts of ? and ! are level names of lams (recall Section 3),

and are used to control the causal dependencies between communications [11]. The
superscript, called an obligation level, describes the degree of the obligation to use the
channel for the specified operation. The subscript, called a capability level, describes the
degree of the capability to use the channel for the specified operation (and successfully
find a partner of the communication).

In order to detect deadlocks we consider the following two conditions:
1. If a process has an obligation of level a, then it can exercise only capabilities of

level a′ less than a before fulfilling the obligation. This corresponds to a dependency
(a′, a). For example, if x has type ?a1

a2 and y has type !a3
a4 , then the process x?u.y!u has

lam (a2, a3).
2. The whole usage of each channel must be consistent, in the sense that if there

is a capability of level a to perform an input (respectively, a message), there must be a
corresponding obligation of level a to perform a corresponding message (respectively,
input). For example, the usage !a1

a2 | ?
a2
a1 is consistent, but neither !a1

a2 | ?
a1
a2 nor !a1

a2 is.
To see how the constraints above guide our deadlock analysis, consider the (deadlocked)
process: x?u.y!u | y?u.x!u. Because of condition 2 above, the usage of x and y must be
of the form ?a1

a2 | !
a2
a1 and ?a3

a4 | !
a4
a3 respectively. Due to 1, we derive (a2, a4) for x?u.y!u, and

(a4, a2) for y?u.x!u. Hence the process is deadlocked because the lam (a2, a4) N (a4, a2)
has a circularity. On the other hand, for the process x?u.y!u | y?u.0 | x!u, we derive the
lam (a2, a4), which has no circularity. Indeed, this last process is not deadlocked. While
we use lams to detect deadlocks, Kobayashi [11] used natural numbers for obligation/-
capability levels.

As explained above, usages describe the channel-wise behavior of a process, and
they form a tiny process calculus. The usage reduction relation U { U′ defined below
means that if a channel of usage U is used for a communication, the channel may be
used according to U′ afterwards.

Definition 8. Let = be the least congruence on usages containing alpha-conversion of
bound names, commutativity and associativity of | with identity 0, and closed under the

12 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

following rule:
(UC-Mu)

µα.U = U[µα.U/α]

The reduction relation U { U′ is the least relation closed under the rules:

(UR-Com)

!a1
a2 | ?

a3
a4 .U { U

(UR-Par)
U1 { U′1

U1 | U2 { U′1 | U2

(UR-Cong)
U1 = U′1 U′1 { U′2 U′2 = U2

U1 { U2

As usual, we let{∗ be the reflexive and transitive closure of{.

The following relation rel(U) guarantees the condition 2 on capabilities and obliga-
tions above, that each capability must be accompanied by a corresponding obligation.
This must hold during the whole computation, hence the definition below. The predicate
rel(U) is computable because it may be reduced to Petri Nets reachability (see [10] for
the details about the encoding).

Definition 9. U is reliable, written rel(U), when the following conditions hold:

1. whenever U {∗ U′ and U′ = !a1
a2 | U1, there are U2 and U3 such that U1 =

?a2
a3 .U2 | U3 for some a3; and

2. whenever U {∗ U′ and U′ = ?a1
a2 .U1 | U2, there is U3 such that U2 = !a2

a3 | U3 for
some a3.

The following type system uses type environments, ranged over Γ, Γ′, · · · , that
map integer and channel names to types and process names to sequences [̃a; T̃]. When
x < dom(Γ), we write Γ, x : T for the environment such that (Γ, x : T)(x) = T and
(Γ, x : T)(y) = Γ(y), otherwise. The operation Γ1 | Γ2 is defined by:

(Γ1 | Γ2)(x) =

Γ1(x) if x ∈ dom(Γ1) and x < dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) and x < dom(Γ1)
[̃a; T̃] if Γ1(x) = Γ2(x) = [̃a; T̃]
int if Γ1(x) = Γ2(x) = int
U1 | U2 if Γ1(x) = U1 and Γ2(x) = U2

The map Γ1 | Γ2 is undefined if, for some x, (Γ1 | Γ2)(x) does not match any of the
cases. Let var(Γ) = {a | there is x : Γ(x) = U and a ∈ var(U)}.

There are three kinds of type judgments:

Γ ` e : T – the expression e has type T in Γ;
Γ ` P : L – the process P has lam L in Γ;
Γ `

(
D , P

)
:
(
L , L

)
– the program

(
D , P

)
has lam program

(
L , L

)
in Γ.

As usual, Γ ` e : T means that e evaluates to a value of type T under an environ-
ment that respects the type environment Γ. The judgment Γ ` P : L means that P uses
each channel x according to Γ(x), with the causal dependency as described by L. For
example, x:?a1

a2 , y:!a3
a4 ` x?u.y!u : (a2, a3) should hold.

The typing rules of value-passing CCS are defined in Figure 2, where we use the
predicate noact(Γ) and the function ob(U) defined as follows:

Deadlock analysis of unbounded process networks 13

Processes:
(T-Zero)
noact(Γ)
Γ ` 0 : 0

(T-Out)
Γ ` e : int

Γ, x:!a1
a2 ` x!e : 0

(T-In)
Γ, x : U, y : int ` P : L

Γ, x:?a1
a2 .U ` x?y.P : LN (Na∈ob(Γ)(a2, a))

(T-Par)
Γ ` P : L Γ′ ` P′ : L′

Γ | Γ′ ` P | P′ : LN L′

(T-New)
Γ, x : U ` P : L rel(U) ã ∩ var(Γ) = ∅

Γ ` (ν ã; x : U)P : (ν ã)L

(T-If)
Γ ` e : int Γ′ ` P : L Γ′ ` P′ : L′

Γ | Γ′ ` if e then P else P′ : L + L′

(T-Call)

Γ(A) = [̃a; T̃] |̃a| = |̃a′| Γ ` ẽ : T̃
Γ ` A(̃a′; ẽ) : fA (̃a′)

Expressions:
(T-Int)
noact(Γ)
Γ ` n : int

(T-Var)
noact(Γ)

Γ, x : T ` x : T

(T-Op)
Γ ` e : int Γ ` e′ : int
Γ ` e op e′ : int

(T-Seq)

(Γi ` ei : Ti)i∈1..n

Γ1 | · · · | Γn ` e1,. . ., en : T1,. . ., Tn

Programs:
(T-Prog)

D =
⋃

i∈1..n{Ai (̃ai; x̃i : T̃i) = Pi} Γ = (Ai : [̃ai; T̃i])i∈1..n

(Γ, x̃i : T̃i ` Pi : Li)i∈1..n Γ′ ` P : L L =
⋃

i∈1..n{fAi (̃ai) = Li}

Γ | Γ′ `
(
D , P

)
:
(
L , L

)
Fig. 2. The type system of value-passing CCS (we assume a function name fA for every process
name A)

noact(Γ) = true if and only if, for every channel name x ∈ dom(Γ), Γ(x) = 0;
ob(Γ) =

⋃
x∈dom(Γ),Γ(x)=U ob(U) where

ob(0) = ∅ ob(!a1
a2) = {a1} ob(?a1

a2 .U) = {a1}

ob(U | U′) = ob(U) ∪ ob(U′) ob(µα.U) = ob(U[0/α])

The predicate noact(Γ) is used for controlling weakening (as in linear type systems). For
example, if we did not require noact(Γ) in rule T-Zero, then we would obtain x:?a1

a2 .0 `
0 : 0. Then, by using T-In and T-Out, we would obtain: x:?a1

a2 .0 | !
a2
a1 ` 0 | x!1 : 0, and

wrongly conclude that the output on x does not get stuck. It is worth to notice that, in
the typing rules, we identify usages up to =.

A few key rules are discussed. Rule (T-In) is the unique one that introduces de-
pendency pairs. In particular, the process x?u.P will be typed with a lam that contains
pairs (a2, a), where a2 is the capability of x and a is the obligation of every channel
in P (because they are all causally dependent from x). Rule (T-Out) just records in
the type environment that x is used for output. Rule (T-Par) types a parallel composi-
tion of processes by collecting the environments – operation “ | ” – (like in other linear
type systems [13, 9]) and the lams of the components. Rule (T-Call) types a process
name invocation in terms of a (lam) function invocation and constrains the sequences
of level names in the two invocations to have equal lengths (|̃a| = |̃a′|) and the types of
expressions to match with the types in the process declaration.

14 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

Example 3. We illustrate the type system in Figure 2 by typing two simple processes:

P = (ν a1, a2; x:?a1
a2 | !

a2
a1)(ν a3, a4; y:?a3

a4 | !
a4
a3)(x?z.y!z | y?z.x!z)

Q = (ν a1, a2; x:?a1
a2 | !

a2
a1)(ν a3, a4; y:?a3

a4 | !
a4
a3)(x?z.y!z | y?z.0 | x!1)

The proof tree of P is

y:!a4
a3 , z : int ` y!z : 0

x:?a1
a2 , y:!a4

a3 ` x?z.y!z : (a2, a4)
x:!a2

a1 , z : int ` x!z : 0
x:!a2

a1 , y:?a3
a4 ` y?z.x!z : (a4, a2)

x:?a1
a2 | !

a2
a1 , y:?a3

a4 | !
a4
a3 ` x?z.y!z | y?z.x!z : (a2, a4) N (a4, a2)

∅ ` P : (ν a1, a2)(ν a3, a4)
(
(a2, a4) N (a4, a2)

)
and we notice that the lam in the conclusion has a circularity (in fact, P is deadlocked).
The typing of Q is

z : int ` z : int
y:!a4

a3 , z : int ` y!z : 0
x:?a1

a2 , y:!a4
a3 ` x?z.y!z : (a2, a4)

y : 0, z : int ` 0 : 0
y:?a3

a4 ` y?z.0 : 0
∅ ` 1 : int

x:!a2
a1 ` x!1 : 0

x:?a1
a2 | !

a2
a1 , y:?a3

a4 | !
a4
a3 ` x?z.y!z | y?z.0 | x!1 : (a2, a4)

∅ ` Q : (ν a1, a2)(ν a3, a4)(a2, a4)

The lam in the conclusion has no circularity. In fact, Q is not deadlocked. ut

Example 3 also spots one difference between the type system in [11] and the one in
Figure 2. Here the inter-channel dependencies check is performed ex-post by resorting
to the lam algorithm in Section 4; in [11] this check is done during the type check-
ing(/inference) and, for this reason, the process P is not typable in previous Kobayashi’s
type systems. In this case, the two analysers both recognize that P is deadlocked; Ex-
ample 4 below discusses a case where the precision is different.

The following theorem states the soundness of our type system.

Theorem 2. Let Γ `
(
D , P

)
:
(
L , L

)
such that noact(Γ). If

(
L , L

)
has no circularity

then
(
D , P

)
is deadlock-free.

The following examples highlight the difference of the expressive power of the sys-
tem in Figure 2 and the type system in [11].

Example 4. Let
(
D , P

)
be the dining philosopher program in Example 2 and U1 and U2

be the usages defined therein. We have Γ `
(
D , P

)
:
(
L , L

)
where

Γ = Phils : [a1, a2, a3, a4; int,U1,U2],Phil : [a1, a2, a3, a4; U1,U2]
L = { fPhils(a1, a2, a3, a4) = fPhil(a1, a2, a3, a4)

+(νa5, a6)(fPhils(a1, a2, a5, a6) N fPhil(a5, a6, a3, a4)),
fPhil(a1, a2, a3, a4) = (a1, a4) N (a3, a1) N (a3, a2) N fPhil(a1, a2, a3, a4) }

L = (νa1, a2, a3, a4)(fPhils(a1, a2, a3, a4) N fPhil(a1, a2, a3, a4))

For example, let

P1 = fork1?x1.fork2?x2.(fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2))
P2 = fork2?x2.(fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2))
P3 = fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2)

Deadlock analysis of unbounded process networks 15

Then the body P1 of Phil is typed as follows:

Γ2, fork1:!a1
a2 ` fork1!x1 : 0 Γ2, fork2:!a3

a4 ` fork2!x2 : 0
Γ2, fork1 : U1, fork2 : U2 ` Phil(a1, a2, a3, a4; fork1, fork2) : fPhil(a1, a2, a3, a4)

Γ2, fork1:!a1
a2 | U1, fork2:!a3

a4 | U2 ` P3 : fPhil(a1, a2, a3, a4)
Γ1, fork1:!a1

a2 | U1, fork2 : U2 ` P2 : (a3, a1) N (a3, a2) N fPhil(a1, a2, a3, a4)
Γ, fork1 : U1, fork2 : U2 ` P1 : (a1, a4) N (a3, a1) N (a3, a2) N fPhil(a1, a2, a3, a4)

where Γ1 = Γ, x1 : int, Γ2 = Γ, x2 : int, U1 = µα.?a2
a1 .(!

a1
a2 | α) and U2 = µα.?a4

a3 .(!
a3
a4 |

α). Because
(
L , L

)
has no circularity, by Theorem 2, we can conclude that

(
D , P

)
is

deadlock-free. ut

Remark 2. The dining philosopher program cannot be typed in Kobayashi’s type sys-
tem [11]. That is because his type system assigns obligation/capability levels to each
input/output statically. Thus only a fixed number of levels (represented as natural num-
bers) can be used to type a process in his type system. Since the above process can
create a network consisting of an arbitrary number of dining philosophers, we need an
unbounded number of levels to type the process. (Kobayashi [11] introduced a heuristic
to partially mitigate the restriction on the number of levels being fixed, but the heuristic
does not work here.) A variant of the dining philosopher example has been discussed
in [8]. Since the variant is designed so that a finite number of levels are sufficient, it is
typed both in [11] and in our new type system.

Similarly to the dining philosopher program, the system in [11] returns a false positive
for the process Fact in Section 1, while it is deadlock-free according to our new system.
We detail the arguments in the next example.

Example 5. Process Fact of Section 1 is written in the value passing CCS as follows.

Fact(a1, a2, a3, a4; n : int, r:?a1
a2 , s:!a3

a4) =

if n = 0 then r?n.s!n else
(ν a5, a6; t:?a5

a6 | !
a6
a5)(r?n.t!(m × n) | Fact(a5, a6, a3, a4; n − 1, t, s))

Let Γ = Fact : [a1, a2, a3, a4; int, ?a1
a2 , !

a3
a4] and P be the body of the definition above.

Then we have Γ, n : int, r:?a1
a2 , s:!a3

a4 ` P : L for L = (a2, a3) + (ν a5, a6)((a2, a6) N
fFact(a5, a6, a3, a4)). Thus, we have: Γ `

(
D , P′

)
:
(
L , L′

)
for:

P′ = (ν a1, a2; r:?a1
a2 | !

a2
a1)(ν a3, a4; s:?a4

a3 | !
a3
a4)(r!1 | Fact(a1, a2, a3, a4; m, r, s) | s?x.0)

L = {fFact(a1, a2, a3, a4) = L}

L′ = (ν a1, a2, a3, a4)(0N fFact(a1, a2, a3, a4) N 0)

where m is an integer constant. Since (L , L′) does not have a circularity, we can con-
clude that (D , P′) is deadlock-free.

6.1 Proof of Theorem 2

Let Γ { Γ′ if, for some x, Γ = Γ′′, x : U and Γ′ = Γ′′, x : U′ with U { U′. As usual,
let{∗ be the transitive closure of{.

Theorem 2 follows from the following lemmas.

16 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

Lemma 4 (type preservation). Let Γ `
(
D , P

)
:
(
L , L

)
and P→D Q. Then there exist

L′ and Γ′ such that Γ {∗ Γ′ and Γ′ `
(
D ,Q

)
:
(
L , L′

)
and IL (L′) b IL (L).

Proof. This follows by induction on the derivation of P →D Q, with case analysis on
the last rule used. The only non-trivial cases are R-Com and R-Call.

– Case R-Com: In this case, we have

P = x!e | x?y.P′ Q = P′[v/y] [[e]] = v
Γ = Γ0 | Γ1 D =

⋃
i∈1..n{Ai (̃ai; x̃i : T̃i) = Pi}

(Γ0, x̃i : T̃i ` Pi : Li)i∈1..n Γ1 ` P : L

By the conditions Γ1 ` P : L and P = x!e | x?y.P′, we have

Γ1 = (Γ2 | Γ3), x:!a1
a2 | ?

a3
a4 .U

Γ2 ` e : int Γ3, x : U, y : int ` P′ : L′

L = 0N (L′ N (Na∈ob(Γ3)(a2, a)))

By the condition Γ2 ` e : int and [[e]] = v, we have Γ2 ` v : int. By using the
standard substitution lemma, we obtain Γ2 | Γ3, x : U ` P′[v/y] : L′. Let Γ′ =

Γ0 | ((Γ2 | Γ3), x : U). Then we have the required result.
– Case R-Call: In this case, we have

P = Ai (̃a′; ẽ) Q = Pi [̃a
′
/̃a][̃v/x̃] [[̃e]] = ṽ

Γ = Γ0 | Γ1 D =
⋃

i∈1..n{Ai (̃ai; x̃i : T̃i) = Pi}

(Γ0, x̃i : T̃i ` Pi : Li)i∈1..n Γ1 ` ẽ : T̃i L = fAi (̃a
′)

By the conditions Γ1 ` ẽ : T̃i and [[̃e]] = ṽ, we have Γ1 ` ṽ : T̃i. Thus, by applying the
standard substitution lemma to Γ0, x̃i : T̃i ` Pi : Li, we obtain Γ0 | Γ1 ` Q : Li[̃a

′
/̃ai

].
We have the required result for Γ′ = Γ1 and L′ = Li [̃a

′
/̃ai

]. ut

Lemma 5. Let Γ `
(
D , P

)
:
(
L , L

)
such that IL (L) has no circularity and noact(Γ). If

1. either P ≡ (ν ã1; x1 : U1) · · · (ν ãk; xk : Uk)(x!v | Q)
2. or P ≡ (ν ã1; x1 : U1) · · · (ν ãk; xk : Uk)(x?y.P′ | Q)

then there exists R such that P→D R.

Proof. If Q contains conditionals or process calls at the top level, then the required
property immediately follows. Thus, we can assume that Q is a parallel composition of
inputs and messages. That is

Q ≡ y1!e1 | · · · | ym!em | z1?w1.Q1 | · · · | zn?wn.Qn

where {x, y1, · · · , ym, z1, · · · , zn} ⊆ {x1, · · · , xk} because noact(Γ).
We demonstrate the case 1 of the statement, the other case is similar, hence omitted.
Since Γ `

(
D , P

)
:
(
L , L

)
then there is Γ′ such that Γ′ ` (ν ã1; x1 : U1) · · · (ν ãk; xk :

Uk)(x!e | Q) :L. By applying k-times rule (T-New), we are reduced to Γ′, x1 : U1, · · · xk :
Uk ` x!e | Q :L. Let x = x1. We notice that n ≥ 1 because, by rel(U1), U1 =!a

a′′ | ?
a′
a .U

′
1 |

U′′1 and by (T-Par) and definition of Γ | Γ′, Q ≡ z?w.Q′ | Q′′ for some z,w,Q′,Q′′.

Deadlock analysis of unbounded process networks 17

By the typing rules, Γ′, x1 :U1, · · · xk :Uk ` x!e | Q :L is possible provided, for every
1 ≤ i ≤ n:

Γ′i , zi:?
a′i
ai ` zi?wi.Qi : Li N (Na∈ob(Γ′i)(ai, a)

)
where Γ′i = Γ′, x1 : U i

1, · · · xk : U i
k and Γ′, x1 : U1, · · · xk : Uk = Γ′1, z1:?a′1

a1 | · · · | Γ
′
n, zn:?a′n

an

and L = Ni∈1..n
(
Li N (Na∈ob(Γ′i)(ai, a)

))
.

We notice that L ≡
(Ni∈1..nLi

) N L′, with L′ =
(Ni∈1..n, a∈ob(Γ′i)(ai, a)

)
. Since I⊥(L) has

no circularity then, by Proposition 2, I⊥(Ni∈1..nLi) N I⊥(L′) has no circularity and, in
turn, I⊥(L′) = {RL′ } and RL′ , where RL′ =

⋃
i∈1..n{(ai, a) | a ∈ ob(Γ′i)}, have no circularity.

Let a j, with j ∈ 1..n, be a minimal level of RL′ , namely:

– there is no a′ such that (a′, a j) ∈ RL′ .

Because RL′ has no circularity, a j does exist and, without loss of generality, let z j = x j.

By rule (T-In), U j =?
a′j
a j .U

′
j | U

′′
j . By rel(U j) we derive U′′j =!a j

a′′j
| U′′′j , for some a′′j and

U′′′j . By (T-Par) and the fact that a j is minimal in RL′ , we immediately derive that there
exists 1 ≤ i ≤ m such that yi = x j, thus we have P→D R for some R, as required. ut

Type inference An untyped value-passing CCS program is a program where restric-
tions are (ν x)P, process invocations are A(̃e) and process definitions are A(x̃) = P.
Given an untyped value-passing CCS program

(
D , P

)
, with var(P) = ∅, there is an

inference algorithm to decide whether there exists a program
(
D ′, P′

)
that coincides

with
(
D , P

)
, except for the type annotations, and such that Γ `

(
D ′, P′

)
:
(
L , L

)
. The

algorithm is almost the same as that of the type system in [10] and, therefore, we do not
re-describe it here. The only extra work compared with the previous algorithm is the
lam program extraction, which is done using the rules in Figure 2. Finally, it suffices to
analyze the extracted lams by using the fixpoint technique in Section 4.

Synchronous value passing CCS and pi calculus The type system above can be easily
extended to the pi-calculus, where channel names can be passed around through other
channels. To that end, we extend the syntax of types as follows.

T ::= int | ch(T,U).

The type ch(T,U) describes a channel that is used according to the usage U, and T is
the type of values passed along the channel. Only a slight change of the typing rules is
sufficient, as summarized below.

(T-Out’)
Γ ` e : T

Γ, x : ch(T, !a1
a2) ` x!e : Na∈ob(Γ)(a2, a)

(T-In’)
Γ, x : ch(T,U), y : T ` P : L

Γ, x : ch(T, ?a1
a2 .U) ` x?y.P : LN (Na∈ob(Γ)(a2, a))

In particular, (T-Out’) introduces dependencies between an output channel and the
values sent along the channel. We notice that, in case of synchronous value passing
CCS (as well as pi-calculus), where messages have continuations, rule (T-Out’) also
introduces dependency pairs between the capability of the channel and the obligations
in the continuation.

18 Elena Giachino 1, Naoki Kobayashi 2, and Cosimo Laneve 1

7 Related Work and Conclusions

In this paper we have designed a new deadlock detection technique for the value-passing
CCS (and for the pi-calculus) that enables the analysis of networks with arbitrary num-
bers of nodes. Our technique relies on a decidability result of a basic model featuring
recursion and fresh name generation: the lam programs. This model has been intro-
duced and studied in [5, 6] for detecting deadlock of an object-oriented programming
language [7], but the decidability was known only for a subset of lams where only linear
recursion is allowed [6], and only approximate algorithms have been given for the full
lam model.

The application of the lam model to deadlock-freedom of the value-passing CCS
(and pi-calculus) is also new, and the resulting deadlock-freedom analysis significantly
improves the previous deadlock-freedom analysis [11], as demonstrated through the
dining philosopher example. In particular, Kobayashi’s type system provides a mecha-
nism for dealing with a limited form of unbounded dependency chains, but the mecha-
nism is rather ad hoc and fragile with respect to a syntactic change. For example, while

Fib(n,r) = if n<2 then r?n else new s in new t in
(Fib!(n-1,s) | s?x.(Fib!(n-2,t)|t?y.r!(x+y))

is typable, the variation obtained by swapping new s in and new t in is untypable. Nei-
ther Fact nor the dining philosopher example are typable in [11]. More recently, in [17],
Padovani has introduced another type system for deadlock-freedom, which has a better
support than Kobayashi’s one for reasoning about unbounded dependency chains, by
using a form of polymorphism on levels. However, since the levels in his type system
are also integers, neither the Fact example nor the dining philosopher example are ty-
pable. In addition, Padovani’s type system cannot deal with non-linear channels, like
the fork channels in the dining philosopher example. That said, our type system does
not subsume Padovani’s one, as our system does not support recursive types.

Like other type-based analyses, our method cannot reason about value-dependent
behaviors. For example, consider the following process:

(if b then x?z.y!z else y!1 | x?z.) | (if b then x!1 | y?z. else y?z.x!z).

It is deadlock-free, but our type system would extract the lam expression: ((ax, ay) +

0) N (0 + (ay, ax)) (where ax and ay are the capability levels of the inputs on x and y
respectively), detecting a (false) circular dependency.

The integration of TyPiCal with the deadlock detection technique of this paper is
left for future work. We expect that we can extend our analysis to cover lock-freedom [8,
17], too. To that end, we can require that a lam is not only circularity-free but is also well
founded, and/or combine the deadlock-freedom analysis with the termination analysis,
following the technique in [14].

Acknowledgments This work was partially supported by JSPS Kakenhi 23220001 and
by the EU project FP7-610582 ENVISAGE: Engineering Virtualized Services.

Deadlock analysis of unbounded process networks 19

References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race
detection for Java. TOPLAS, 28, 2006.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe program.: prevent-
ing data races and deadlocks. In OOPSLA, pages 211–230. ACM, 2002.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

[4] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In PLDI, pages
338–349. ACM, 2003.

[5] E. Giachino and C. Laneve. A beginner’s guide to the deadLock Analysis Model.
In TGC’2012, volume 8191 of LNCS, pages 49–63. Springer-Verlag, 2013.

[6] E. Giachino and C. Laneve. Deadlock detection in linear recursive programs.
In Proceedings of SFM-14:ESM, volume 8483 of LNCS, pages 26–64. Springer-
Verlag, 2014.

[7] E. Giachino, C. Laneve, and M. Lienhardt. A framework for deadlock detection
in ABS. Software and System Modeling, To appear, 2014.

[8] N. Kobayashi. A type system for lock-free processes. Information and Computa-
tion, 177:122–159, 2002.

[9] N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Col-
loquium of UNU/IIST, volume 2757 of LNCS, pages 439–453. Springer, 2003.

[10] N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4-5):291–347, 2005.

[11] N. Kobayashi. A new type system for deadlock-free processes. In CONCUR,
volume 4137 of LNCS, pages 233–247. Springer, 2006.

[12] N. Kobayashi. TyPiCal: Type-based static analyzer for the Pi-Calculus. At
kb.ecei.tohoku.ac.jp/˜koba/typical/, 2007.

[13] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

[14] N. Kobayashi and D. Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM TOPLAS, 32(5), 2010.

[15] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,
1980.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, ii. Inf. and
Comput., 100:41–77, 1992.

[17] L. Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In CSL-
LICS’14, 2014.

[18] K. Suenaga. Type-based deadlock-freedom verification for non-block-structured
lock primitives and mutable references. In APLAS, volume 5356 of LNCS, pages
155–170. Springer, 2008.

[19] V. T. Vasconcelos, F. Martins, and T. Cogumbreiro. Type inference for deadlock
detection in a multithreaded polymorphic typed assembly language. In PLACES,
volume 17 of EPTCS, pages 95–109, 2009.

