
Reversible structures

Luca Cardelli1 Cosimo Laneve2

1 Microsoft Research, Cambridge
2 Università di Bologna

Abstract. Reversible structures are computational units that may pro-
gress forward and backward and are primarily inspired by dna circuits.
We demonstrate a standardization theorem that bears a quadratic al-
gorithm for reachability when units have unique id. We also discuss the
encoding of a reversible concurrent calculus into reversible structures.

1 Introduction

In abstract computation systems, such as automata, lambda calculus, process
algebra, etc., we usually model the forward progress of computations through
a sequence of irreversible steps. But physical implementations of these steps
are usually reversible: in physics and chemistry all operations are reversible, and
only an appropriate injection of energy and entropy can move the computational
system in a desired direction. Reversible computation has been shown to have
very interesting physical properties [1]. Here we discuss the implementation of a
simple computational calculus into a chemical system, reflecting the reversibility
of the chemical system into the calculus instead of abstracting it.

In general, since a process calculus is not confluent and processes are non-
deterministic, reversing a (forward) computation history means undoing the his-
tory not in a deterministic way but in a causally consistent fashion, where states
that are reached during a backward computation are states that could have been
reached during the computation history by just performing independent actions
in a different order. In rccs [8], Danos and Krivine achieve this with ccs with-
out recursion by attaching a memory m to each process P , in the monitored
process construct m : P . Memories in rccs are stacks of information needed for
processes to backtrack.

Chemical systems, however, are naturally reversible but have no such back-
tracking memory. Reversibility there means reversibility of configurations, while
time of course keeps marching forward. The only way to make such a system
exactly reversible is to remember the position and momentum of each molecule,
which is precisely contrary to the well-mixing assumption of chemical soups,
namely that the probability of collision between two molecules is independent of
their position. Moreover, notions of causality and independence of events need to
be adapted to reflect the fundamental fact that different molecules of the same
chemical species are indistinguishable. Their interactions can cause effects, but
not to the point of being able to identify the precise molecule that caused an
effect.

We use dna chemical systems as an example implementation, because dna
systems can be precisely and programmably orchestrated in a ’calculus-like’ fash-
ion. These systems can model ccs-style interaction and (massive) concurrency,
and they naturally model structural congruence as well-mixed chemical solu-
tions [2]. They can achieve irreversible computation, but they cannot avoid using
reversible steps to do it (for example, for binary operators), and hence it is inter-
esting to study their intrinsic reversibility. We provide a scheme for the molecular
implementation of significant computational primitives – the weak coherent re-
versible structures (coarser, irreversible primitives and their dna implementation
were introduced in [4]).

We then study the formal interplay between causal dependency and (weak
coherent) reversible structures where terms bear multiplicities, which are a way
of expressing concentrations of chemical soups. Following Lévy [11], we define
an equivalence on computations that abstracts away from the order of causally
independent reductions – the permutation equivalence. Because of multiplicities
this abstraction is more discriminating than usual. In particular, our permuta-
tion equivalence does not always exchange independent reductions. For exam-
ple, two reductions that use a same signal cannot be exchanged because one
cannot grasp whether the two reductions are competing on a same signal or are
using two different occurrences of a same signal. Notwithstanding this inade-
quacy, permutation equivalence in (weak coherent) reversible structures yields
a standardization theorem that allows one to remove converse reductions from
computations. To our knowledge, the study of causality in a language with mul-
tiplicities is original (similar studies have been carried out in models such as
Petri nets [9]).

We finally study coherent reversible structures where terms have unique ids
– they have multiplicity one – and we draw a precise comparison with asyn-
chronous rccs [8]. (Coherence is not realizable in mass action systems, but may
become realizable in the future if we learn how to control individual molecules.)
The reachability problem in these structures has a computational complexity
that is quadratic with respect to the size of the structure, a problem that is
expspace-complete otherwise. As a byproduct, reachability in asynchronous
rccs is quadratic as well.

Due to space limitations, the technical details are omitted as well as the
formal definitions of the encoding of asynchronous rccs into reversible structures
and the encoding of the latter ones into dna circuits. We refer the interested
reader to the full paper [?].

Related work. The studies about reversibility in calculi date back at least to the
seventies when Bennett theorized reversible Turing machines that compute by
dissipating less energy than irreversible ones [1]. Already Bennett’s machines use
histories for backtracking computations that are deterministic in that case.

More recently, areas such as bio-systems and quantum computing have stim-
ulated foundational studies of reversible and distributed computations. For this
reason, several reversible process calculi have been developed. In [8], Danos and
Krivine define a reversible concurrent calculus – rccs – and undertake a thor-

2

ough algebraic study of reversibility. In rccs the histories are recorded in memo-
ries that need a complex ad-hoc management. In particular, the congruence rule
of distribution of memories in parallel contexts requires a global synchronization
in the backward direction. Using a similar technique, [10] studies reversibility
in the context of higher order concurrent languages and demonstrate that re-
versibility does not augment the expressive power of the language.

A general technique for reversing process calculi without using memories
is proposed in [15]. As in our structures, in this technique, the structure of
processes is not destroyed and the progress is noted by underlying the actions
that have been performed (while we use the symbol ^). Unlike our structures,
the technique, in order to tag the communicating processes, generates ids on-
the-fly during the communications. As for rccs, when the computation must be
reverted in a distributed setting, this technique requires a global synchronization
between parallel processes that have been spawned at the same time.

The authors of the above papers have all noticed that reversing a computation
history means undoing the history not in a deterministic way but in a way that
is consistent with causal dependency. This is discussed in some detail in [14].

2 The algebra of reversible structures

The syntax of reversible structures uses five disjoint infinite sets: names N ,
ranged over by a, b, c, . . . , co-names N , ranged over by a, b, c, . . . , and a countable
set of ids, ranged over u, v, w, · · · . Names and co-names are ranged over by
α, α′, . . . and α = α. The following notations for sequences of actions will be
taken: A, B, · · · range over sequences of N ; A, B, · · · range over sequences of
elements u : a; A⊥, B⊥, · · · range over sequences of elements u : a.

Sequences of ids are ranged over by ũ, ṽ, · · · . The dots in sequences of ids
are always omitted, that is u.v.w is shortened into uvw, and the empty sequence
is represented by ε. The length of a sequence is given by the function length(·).

The syntax of reversible structures includes gates g and structures S, which
are defined by the following grammar:

g ::= A⊥.^B.C (length(A⊥.B) > 0)
| A⊥.B.^C (length(A⊥) > 0)

S ::= 0 | u : a | g | S | S | (new a)S

0 is the void structure. A signal u : a is an elementary message with an id u;
a gate is a term that accepts input signals and emits output signals, reversibly.
The form A⊥.^B.C represents input-accepting gates, at least when not considering
reverse reactions. A⊥ are the inputs that have been processed, B are the inputs
still to be processed, and C are the outputs to be emitted. The other form A⊥.B.^C
represents an output-producing gate (when not considering reverse reactions).
The A⊥ is as before, B are the outputs that have been emitted, and C are the
outputs still to be emitted. Since all the inputs in a gate have to be processed
before the outputs are produced, we do not need to consider other forms. In

3

both forms, the symbol ^ indicates the next operations (one forward and one
backward) that the gate can perform.

For example, a transducer gate transforming a signal from a name a to b is
defined by ^a.u : b. This gate may evolve into v : a.^u : b by inputting a signal
v : a. At this stage it may emit the signal u : b, thus becoming v : a.u : b^
or may backtrack to ^a.u : b by releasing the signal v : a (see the following
semantics). Another example is a sink gate, such as ^a.b, that collects signals
(and, in a stochastic model, may freeze them for a while). This gate may evolve
into u : a.^b, and then may become u : a.v : b^.

A parallel composition “ | ” allows gates and signals to interact. We often
abbreviate the parallel of Si for i ∈ I, where I is a finite set, with

∏
i∈I Si. The

new operator (new a)S limits the scope of a to S; the name a is said to be bound
in (new a)S. This is the only binding operator in reversible structures. We write
(new a1, · · · , an)S for (new a1)· · · (new an)S, n ≥ 0, and sometimes we shorten
a1, · · · , an into ã. The free names in S, denoted fn(S), are the names in S with a
non-bound occurrence.

Structures we will never want to distinguish for any semantic reason are
identified by a congruence. Let ≡, called structural congruence, be the least
congruence between structures containing alpha equivalence and satisfying the
abelian monoid laws for parallel (associativity, commutativity and 0 as identity),
and the scope laws

(new a)0 ≡ 0 (new a)(new a′)S ≡ (new a′)(new a)S,

S | (new a)S′ ≡ (new a)(S | S′), if a 6∈ fn(S)

It is folklore that, for every structure S, there is a structure S′ = (new ã)(
∏

i∈I gi
|
∏

j∈J uj : aj). The structure S′, which is unique up-to ≡, is called the normal
form of S.

Definition 1. The reduction relation of reversible structures is the least relation
−→ satisfying the axioms

(input capture) u : a | A⊥.^a.B.C −→ A⊥.u : a.^B.C,
(input release) A⊥.u : a.^B.C −→ u : a | A⊥.^a.B.C,
(output release) A⊥.B.^u : a.C −→ u : a | A⊥.B.u : a.^C,
(output capture) u : a | A⊥.B.u : a.^C −→ A⊥.B.^u : a.C,

and closed under the rules

S −→ S′

(new a)S −→ (new a)S′

S −→ S′

S | S′′ −→ S′ | S′′

S1 ≡ S′1 S′1 −→ S′2 S′2 ≡ S2

S1 −→ S2

As usual, sequences of reductions, called computations, are noted −→∗. The
reductions (input capture) and (output release) are called forward reductions, the
reductions (input release) and (output capture) are called backward reductions.

We explain the axioms of reversible structures semantics by discussing the
reductions of the transducer ^a.u : b when exposed to signals v : a and w : a. The

4

transducer may behave either as v : a | w : a | ^a.u : b −→ w : a | v : a.^u : b
or as v : a | w : a | ^a.u : b −→ v : a | w : a.^u : b according to the axiom
(input capture) is instantiated either with the signal v : a or with w : a – in these
cases A⊥ is empty. In turn, w : a | v : a.^u : b may reduce with (output release)
as w : a | v : a.^u : b −→ w : a | v : a.u : b^ | u : b or may backtrack with
(input release) as follows w : a | v : a.^u : b −→ v : a | w : a | ^a.u : b. This
backtracking is always possible in our algebra. In fact, it is a direct consequence
of the property that, for every axiom S −→ S′ of Definition 1, there is a “converse
one” S′ −→ S.

Proposition 1. For any reduction S −→ S′ there exists a converse one S′ −→ S.

In the following sections we limit our analysis to a subclass of structures.

Definition 2. A structure S is weak coherent whenever in its normal form
(new ã)S′, ids are uniquely associated to names and co-names. That is, if u : α
and u : α′ occur in S′ then either α = α′ or α = α′.

For example, the structure u : a.v : b^ | v : c is not weak coherent because v
is associated to two different co-names, while u : a.v : b^ | v : b is weak coherent.
It is worth to remark that weak coherence is easily and compositionally enforced
in reversible structures by appropriate use of new operators (see Section 3).
Weak coherent structures are intended to include the “real-life” structures. In
experimental (initial) solutions one has structures like

(new ã)(
∏
i∈I

(new ui)(ni × (ui : ai)) |
∏
j∈J

(new ṽ)(nj × gj))

where nh, with h ∈ I ∪ J , are (usually huge) naturals and where (new ũ) S is

syntactic sugar for S{ũ′/ũ}, where ũ′ are fresh ids (we recall that news do not
apply to ids; this simplifies the definition of labels in the next section).

Proposition 2. If S is weak coherent and S −→ S′ then S′ is weak coherent.

It turns out that weak coherent reversible structures are a subcalculus of a
language for dna circuits – the dsd language [13]. We refer to [?] for details
about this correspondence.

3 Weak coherence and causality

Because of reversibility, computations in our algebra may have a lot of forward
and backward reductions that continuously do and undo stuff. For example, in
the transducer of Section 2, the computation

v : a | w : a | ^a.u : b −→ w : a | v : a.^u : b −→ v : a | w : a | ^a.u : b

is actually equivalent to the empty one – the computation performing no re-
duction at all. Clearly the above two reductions may be repeated at will, still

5

being equivalent to the empty computation. Therefore, it is meaningful to ana-
lyze whether a computation may be simplified, i.e. shortened, without altering
its computational meaning. Let us discuss the problems through few examples.
Consider the computation

v : a | w : a | ^a.u : b | ^a.z : c −→ w : a | v : a.^u : b | ^a.z : c (1)

−→ v : a.^u : b | w : a.^z : c (2)

−→ v : a | ^a.u : b | w : a.^z : c (3)

The reductions (1) and (3) may be simplified because one is the reverse of the
other. In order to achieve this simplification one may observe that reductions
(1) and (2) involve disjoint structures – there is no causal dependency between
them (similarly for (2) and (3)). When this happens, two consecutive reductions
may be swapped, that is the second may be performed before the first. After the
swapping of (1) and (2), the reduction (1) occurs immediately before (3) and
they may be safely removed, thus obtaining the computation

v : a | w : a | ^a.u : b | ^a.z : c −→ v : a | ^a.u : b | w : a.^z : c

This equivalence between computations that swaps causally independent reduc-
tions is known in the literature as permutation equivalence [11, 3]. Following
Lévy, permutation equivalence is defined in terms of labels that mark tran-
sitions and that allows one to retrieve reactants. The point of our structures
is that labels are already available as ids of signals and gates. In particular,
there is a label, noted µ, ν, · · · , for every type of axiom of the reversible
structures semantics: input capture label : u | ṽ^A.w̃, input release label : ṽu^A.w̃,
output release label : ṽ.w̃^uz̃, output capture label : u | ṽ.w̃u^z̃. The labels of re-
ductions are defined as follows. Let id(A⊥) = ṽ, id(B) = w̃ and id(C) = z̃; we
write µ : (new ã)S −→ (new ã)S′, where S and S′ do not contain news, when the
axiom used in the proof tree is

– (input capture) u : a | A⊥.^a.A′.C −→ A⊥.u : a.^A′.C and µ = u | ṽ^A′.z̃,
– (input release) A⊥.u : a.^A′.C −→ u : a | A⊥.^a.A′.C and µ = ṽu^A′.z̃,
– (output release) A⊥.B.^u : a.C −→ u : a | A⊥.B.u : a.^C and µ = ṽ.w̃^uz̃,
– (output capture) u : a | A⊥.B.u : a.^C −→ A⊥.B.^u : a.C and µ = u | ṽ.w̃u^z̃.

The definition of labels for reductions between structures in normal form and
with the same bound names is necessary for addressing reactants in a unique
way (up-to multiplicities). We notice that, in our case, this constraint does not
bring any loss of generality.

If structures are not weak coherent then labels may fail to address reactants.
For example, in u : a | u : b | ^a.v : c | ^a.v : d, the two reductions are both
labelled u | ^a.v even if they address two different pairs of signal and gate. It
is worth to notice a little notational discrepancy between labels and the terms
they specify. Gates may perform two reductions: one forward and one backward.
These reductions must be noted in different ways in order to separate them, even
if they address the same gate. There is only one configuration that may cause

6

ambiguity: when the symbol ^ is at the beginning of the output part of a gate.
For example, the gate u : a.^v : b may reduce either into u : a.v : b^ or into
^a.v : b (the signals are omitted). In order to separate the two reductions, we
label the former with u.^v and the latter with u^.v (the positions of “^” and
“.” are inverted). While these two labels are different, we agree that they specify
the same gate.

Let [µ]+, read the converse label of µ, be the following labels (let a be the
name associated to u):

[u | ṽ^a.A.w̃]+
def
= ṽu^A.w̃ [ṽu^A.w̃]+

def
= u | ṽ^a.A.w̃

[ṽ.w̃^uz̃]+ def
= u | ṽ.w̃u^z̃ [u | ṽ.w̃u^z̃]+ def

= ṽ.w̃^uz̃

[µ]+ is called “the converse label of µ” because the computations µ ; [µ]+ and
[µ]+ ; µ do not change the initial structure (see Definition 3). In the following,
with an abuse of notation, we also consider labels as the sets of terms they
specify: input release labels and output release labels are singletons containing
the gates they specify, input capture labels and output capture labels are sets of
two elements, the signal and the gate they specify. Therefore we will be qualified
in using set operations on labels, such as µ ∩ ν.

Lemma 1. Let µ : S −→ S′ and ν : S −→ S′′ be such that µ∩ ν = ∅. Then there
exists S′′′ such that ν : S′ −→ S′′′ and µ : S′′ −→ S′′′.

Lemma 1 is known in the literature as “diamond lemma” because the two
computations µ; ν and ν;µ have same initial and final structures – they are
coinitial and cofinal. The condition µ ∩ ν = ∅ means that reactants of the two
reductions are disjoint, therefore reductions are not causally related and may be
swapped. Contrary to other formalisms [11, 3, 8], in (weak coherent) reversible
structures this condition does not completely catches reductions that may be
performed concurrently. For example, in u : a | u : a | ^a.u : a | w : c.u : a.^v : b
we have the possibility of one input capture and one output capture of the same
signal and Lemma 1 does not apply (even if there are two copies of the signal).
Yet, the two computations u | ^a.u ; u | w.u.^v and u | w.u.^v ; u | ^a.u are
coinitial and cofinal. The problem follows from the fact that labels do not convey
details about multiplicities of signals and gates.

In the following, the computations S −→∗ S′ will be always noted by the
sequence of labels of the corresponding reductions, separated by semicolons. For
example, the computation u : a | ^a.v : b −→2 v : b | u : a.v : b^ is noted
u | ^a.v ; u.^v.

Definition 3. Permutation equivalence, written ∼, is the least equivalence re-
lation between computations closed under composition and such that:

µ; [µ]+ ∼ ε
µ; ν ∼ ν;µ if µ and ν are coinitial and µ ∩ ν = ∅

7

For example, the computation

u : a | ^a.v : b | u : a.^v : b −→ u : a.^v : b | u : a.^v : b

−→ u : a.^v : b | u : a.v : b^ | v : b

−→ u : a | ^a.v : b | u : a.v : b^ | v : b

that is represented by the sequence of labels u|^a.v ; u.^v ; u^.v is permutation
equivalent to u.^v.

Permutation equivalence as defined in Definition 3 is more discriminant than
usual. For example, as already discussed, the computations u | ^a.u ; u |w.u.^v
and u |w.u.^v ; u |^a.u of the structure u : a | u : a | ^a.u : a | w : c.u : a.^v : b
are not equal even if the two reductions concern different terms. The reason for
this discriminating power is due to multiplicities of gates and signals and the fact
that labels do not distinguish different occurrences of a same term. Of course we
might have defined more informative labels, in the style of [3], but this would
have been a twist of mass action systems in the theory of reversible structures.
In facts, in the latters, molecules have concentrations and two occurrences of
a same molecule cannot be separated. Anyhow, reversible structures without
multiplicities (where labels uniquely identify the terms) and their properties are
studied in the next section.

Theorem 1 (Standardization theorem). Let S be weak coherent and µ1 ; · · · ; µn

be a computation of S such that µn is the converse of µ1. Then there is a shorter
computation that is permutation equivalent to µ1 ; · · · ; µn.

The definitions of permutation equivalence and weak coherence imply that
two permutation equivalent computations are cofinal. The converse direction is
false, as discussed after Lemma 1 with the computations u | ^a.u ; u | w.u.^v
and u | w.u.^v ; u | ^a.u. This problem, that we will amend in the next section
by refining weak coherence, is well-known in the theory of Petri nets [9].

4 Coherent structures

The mismatch between cofinality and permutation equivalence (of coinitial com-
putations) may be eliminated by strengthening the notion of weak coherence.
Following the remarks in Section 3, the refinement may be achieved by remov-
ing multiplicities from initial structures. We say that an occurrence of an id u
is positive in a structure S if u occurs in a signal or in a gate A⊥.B.^C or A⊥.^B.C
in the A⊥ sequence or in the C sequence. The occurrence of u is negative if it is
in the B sequence of a gate A⊥.B.^C. Let the type of g, written type(g), be the
sequence of ids of co-names in g. For example type(v : a.^a.u : a.w : c) = uw (as
usual, dots are omitted in sequences of ids). Let the type of a label be the type
of the gate involved in the reduction.

Definition 4. A weak coherent structure S is coherent whenever

– different gates in S have types with no id in common;

8

– ids occur at most twice: one occurrence is positive and the other is negative.

Had we used the simpler constraint that ids occur linearly in structures,
which may be reasonable for initial structures, a statement as Proposition 2 for
coherent structures should have been definitely threatened. For example, the
structure u : a | ^a.v : b.w : c | ^b.c reduces to u : a.v : b.w : c^ | v : b.^c | w : c
where the ids v and w occur twice – one occurrence is positive, the other is
negative: the reader may verify that this last structure matches the constraints
of Definition 4. It is possible to prove Proposition 2 for coherent structures.

Theorem 2. Let µ1;µ2; · · · ;µm and ν1; ν2; · · · ; νn be two coinitial computations
of a coherent structure. Then µ1;µ2; · · · ;µm ∼ ν1; ν2; · · · ; νn if and only if they
terminate in the same structure, up-to structural congruence (they are cofinal).

A coherent structure may be encoded by a 1-safe Petri net. For these nets
the reachability problem is pspace-complete [7] and an exponential algorithm is
presented in [7] (with respect to the number of gates in a structure). Below we
give an algorithm whose computational complexity is quadratic with respect to
the number of gates in the structure.

Let the distance between two gates g and g′ of the same type, written |g−g′|,
be the commutative operation defined as follows:

– if g = A⊥.A1⊥.^A.B and g′ = A⊥.A2⊥.^A.B, where the first id of A1⊥ is different
from the first id of A2⊥, then

|g − g′| def
= length(A1⊥) + length(A2⊥)

– if g = A⊥.A1⊥.^A.B and g′ = A⊥.A2⊥.A.B1.^B2, where the first id of A1⊥ is
different from the first id of A2⊥, then

|g − g′| def
= length(A1⊥) + length(A2⊥.A⊥.B1)

– if g = A⊥.A1⊥.B1.^B′1 and g′ = A⊥.A2⊥.B2.^B′2, where the first id of A1⊥ is
different from the first id of A2⊥, then

|g − g′| def
= length(A1⊥.B1) + length(A2⊥.B2)

The distance between two structures S and S′ containing gates of the same types,
noted |S− S′|, is

∑
g∈S,g′∈S′,type(g)=type(g′) |g − g′|.

Proposition 3. Let S be a coherent structure and let S −→ S′ −→∗ S′′ be a
minimal computation (according to Theorem 1). Then |S− S′′| > |S′ − S′′|.

The algorithm takes two coherent structures S and S′ such that, for every
gate in S there is a corresponding one in S′ with the same type, and conversely.

1. If S ≡ S′ then the algorithm terminates with success;
2. otherwise, a gate g in S is chosen with non-null distance from the correspond-

ing one g′ in S′ and such that it may be reduced in S by decreasing its distance
from g′. Let S −→ S′′ be such reduction (by construction |S−S′| > |S′′−S′|).

9

– if no such reduction is possible the algorithm terminates with failure;
– otherwise the algorithm returns to 1, replacing S with S′.

The data structures of the algorithm are two arrays. The first one stores the gates
and is addressed using the first id of their type (by coherence, the first ids are
sufficient to discriminate gates). The second array stores signals. The elements
are accessed through the co-name of the signal. Every element is a boolean array
that is accessed through the id and containing true or false according to the
corresponding signal is present or absent, respectively. Let n be the number of
gates in S and let k be the maximal length of a gate in S. The step 2 of the
algorithm may require (i) a complete visit of the array of gates, that costs n,
and, for each element, (ii) a gate analysis for determining the distance and the
possible reduction that costs k. Since in the worst case, gates may be at distance
2k, the algorithm may iterate 2k × n times. Then its computational complexity
is O(2k2 × n2). It is worth to remark that the computational complexity of
the reachability problem in (weak coherent) reversible structures reduces to the
reachability marking problem in bounded place-transition Petri nets, which is
expspace complete [12, 6] and we are not aware of any better algorithm for not
coherent structures.

5 The encoding of asynchronous RCCS

Coherent structures can encode a process calculus with a reversible transition
relation: the asynchronous rccs [8]. This allows one to establish properties of
asynchronous rccs using those of coherent structures, such as Theorem 2, which
has been proved for rccs in [8], or the above algorithm of reachability, which is
original. For lack of space we give a quick overview of asynchronous rccs and
illustrate the encoding by discussing an example.

The syntax of asynchronous rccs uses an infinite set of names, ranged over
by a, b, c, . . . , and a disjoint set of co-names. Names and co-names are ranged
over by α, β, . . . and are generically called actions. Processes P , memories m,
and run-time processes R are defined by the following grammar:

P ::= 0 |
∑

i∈I αi.Pi |
∏

i∈I Pi | (new a)P
m ::= 〈 〉 | 〈i〉n •m | 〈m,α,Q〉 •m
R ::= m . P | R | R | (new a)R

The term 0 defines the terminated process;
∑

i∈I αi.Pi defines a process that may
perform one action αi and continues as Pi;

∏
i∈I Pi defines the parallel compo-

sition of processes Pi; finally the term (new a)P defines a name with scope P .
Memories are used to record the discarded alternatives in choices and the part-
ners of synchronizations. Processes meet the following well-formed conditions:
(i) continuations of co-names are empty; (ii) in

∏
i∈I Pi the processes Pi are

guarded choices.
The semantics of asynchronous rccs is defined by a reduction relation −→

that is the least relation on run-time processes satisfying the axioms:

10

– m . (a.P +Q) | m′ . (a+R) −→ 〈m′, a,Q〉 •m . P | 〈m, a,R〉 •m′ . 0,
– 〈m′, a,Q〉 •m . P | 〈m, a,R〉 •m′ . 0 −→ m . (a.P +Q) | m′ . (a+R),

and closed under the contextual rules for parallel, new and structural congruence
(that, in addition to the standard rules, has also the rule m . (

∏
i∈1..n Pi) ≡∏

i∈1..n〈i〉n •m . Pi).
To illustrate the encoding in coherent reversible structures [?], consider the

process a.P + a that may progress either as P by inputting a or terminate by
outputting a, according to the external environment offers an output or an input
on a, respectively. The structure encoding this process is

(new c′)((^c.a.u : c′ | JP Kc′) | ^c.v : a)

where JP Kc′ is a structure implementing P . We assume that the environment may
emit at most one signal with co-name c. When such a signal arrives, one of the
gates ^c.a.u : c′ and ^c.v : a will react, let it be the second. Then the structure
becomes (new c′)((^c.a.u : c′ | JP Kc′) | u′ : c.^v : a) that emits a signal v : a.
It is crucial for the correctness of the encoding that v : a cannot interact with
any other branch of the choice, i.e. with the gate ^c.a.u : c′. At this stage, it
is possible that the context offers a signal v′ : a rather than accepting signals
v : a. That is, the local choice of the process does not matches the choice of
the context. Reversibility plays a crucial role at this point. In fact, the above
reductions are reverted; the signal u′ : c is re-emitted, and the left branch of the
above choice is chosen, thus obtaining the structure

(new c′)((u′ : c.^a.u : c′ | JP Kc′) | ^c.v : a)

that may accept the signal v′ : a. Notice that rccs memories are implemented
by inactive processes that are in parallel with the active ones. No ad-hoc memory
management operation is used.

6 Conclusions

We have developed a reversible concurrent calculus that is amenable to biological
implementations in terms of dna circuits and is expressive enough to encode a
reversible process calculus such as asynchronous rccs.

This study can be extended in several directions. One direction is suggested
to the theory of concurrency by biology. The encoding of rccs is given in terms
of coherent structures. For this reason asynchronous rccs bears Theorem 2
(that has been already proved for rccs in [8]), and an efficient algorithm of
reachability. However coherence – a solution must contain exactly one molecule
of every species – is very hard to achieve in nature, even if it will be simpler in
the future. So, biology prompts a thorough study of reversible concurrent calculi
where processes have multiplicities and the causal dependencies between copies
may be exchanged. Section 3 is a preliminary study of this matter.

Another direction is about implementations. In this paper we have discussed
the implementation of a concurrent language in biology. Since it is possible to

11

extend reversible structures with irreversible operators, the resulting language
may be used to model standard irreversible operators of programming languages
in the chemistry.

Our study about reachability has been inspired by biology and retains an
easy solution in reversible structures because of their simplicity. Studying other
biological relevant problems, such as absence of molecules/processes, persistence
of materials, etc., and designing efficient algorithms are other directions that
need to be investigated in reversible structures and may bear simple solutions
in this model.

References

1. C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17(6):525–
532, 1973.

2. G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of
POPL’90, pages 81–94. ACM, 1990.

3. G. Boudol and I. Castellani. Permutation of transitions: An event structure seman-
tics for ccs and sccs. In Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, volume 354 of Lecture Notes in Computer Science,
pages 411–427. Springer, 1989.

4. L. Cardelli. Strand algebras for dna computing. In DNA 2009, volume 5877 of
Lecture Notes in Computer Science, pages 12–24, 2009.

5. L. Cardelli. Two-domain dna strand displacement. In Developments in Computa-
tional Models (DCM 2010), volume 25 of EPTCS, pages 33–47, 2010.

6. E. Cardoza, R. J. Lipton, and A. R. Meyer. Exponential space complete problems
for petri nets and commutative semigroups: Preliminary report. In Eighth Annual
ACM Symposium on Theory of Computing, pages 50–54. ACM, 1976.

7. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In
Foundations of Software Technology and Theoretical Computer Science, volume
761 of Lecture Notes in Computer Science, pages 326–337. Springer, 1993.

8. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR 2004,
volume 3170 of Lecture Notes in Computer Science, pages 292–307, 2004.

9. P. Degano, J. Meseguer, and U. Montanari. Axiomatizing net computations and
processes. In LICS’89, pages 175–185. IEEE Computer Society, 1989.

10. I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing higher-order pi. In Proceed-
ings of CONCUR 2010, volume 6269 of Lecture Notes in Computer Science, pages
478–493. Springer, 2010.

11. J.-J. Lévy. An algebraic interpretation of the lambda beta k-calculus; and an
application of a labelled lambda -calculus. Theor. Comput. Sci., 2(1):97–114, 1976.

12. E. W. Mayr and A. R. Meyer. The complexity of the word problems for commu-
tative semigroups and polynomial ideals. Adv. in Math., 46(3):305–329, 1982.

13. A. Phillips and L. Cardelli. A programming language for composable dna circuits.
Journal of the Royal Society Interface, 6(S4), 2009.

14. I. Phillips and I. Ulidowski. Reversibility and models for concurrency. In Proceed-
ings of SOS 2007, volume 192 of ENTCS, pages 93–108, 2007.

15. I. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. Log. Algebr.
Program., 73(1-2):70–96, 2007.

12

