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Abstract

A linear forwarder is a process that receives one message on a channel and sends it on
a different channel. We use linear forwarders to provide a distributed implementation
of Milner’s asynchronous pi calculus. Such a distributed implementation is known to
be difficult due to input capability, where a received name is used as the subject of a
subsequent input. This allows the dynamic creation of large input processes in the
wrong place, thus requiring comparatively large code migrations in order to avoid
consensus problems. Linear forwarders constitute a small atom of input capability
that is easy to move.

We show that the full input capability can be simply encoded using linear for-
warders. We also design a distributed machine, demonstrating the ease with which
we can implement the pi calculus using linear forwarders. We also show that lin-
ear forwarders allow for a simple encoding of distributed choice and have “clean”
behaviour in the presence of failures.

Key words: Pi-calculus, distributed implementation, input capability, linear
forwarders.

1 Introduction

Distributed interaction has become a necessary part of modern programming
languages. The asynchronous pi calculus, aπ for short, is widely regarded as
a foundation for such languages. In this calculus, a program (or process) has
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a collection of channels, and it executes through interaction over these chan-
nels. A natural, well-studied distributed interpretation is to let each channel
belong to a single location: for instance, one location for the channels x, y, z
and another for u, v, w. Interaction on channel x only occurs at the location
assigned to x: an input resource x(u).P resides at location x, waits to receive
formal parameter u and then continues with P ; an output x v knows to go
to the location x in order to find the matching input resource. Outputs are
small and so have the freedom to move between locations, whereas inputs have
possibly large continuations and so their movement is restricted.

This restricted input movement is subtle, since aπ has a behaviour called input
capability, which is the ability to receive a channel name and subsequently
accept input on it. Consider the example x(u).u(v).Q. This program is located
at (the location of) x, but upon reaction with x w it produces the continuation
w(v).Q{w/u}. This continuation is in the wrong place, since it is still at x
whereas it should be at w. A key challenge with distributing aπ is to find
sensible ways of restricting this input capability so that inputs only reside at
their correct locations.

The join calculus [13], the local pi calculus [25] and the π1` calculus [1] are
examples of local calculi that simply disallow input capability: that is, in a
term x(u).P , the P may not contain any input on channel u. The join calculus
achieves localisation with an elegant syntactic constraint in which the same
language construct is used both to declare a channel and define its input
behaviour. The local pi calculus achieves it with a well-formedness constraint
on processes, and the π1` calculus with a type system. Whilst these calculi and
resulting implementations [10] are elegant and highly successful, we believe the
argument for always removing input capability is not convincing.

An initial reason for removing input capability, used for example in the devel-
opment of the join calculus and its associated implementation, was just that it
was unimplementable. Researchers then argued that input capability was also
unnecessary, since much can be done without it and aπ can be encoded in the
join calculus. This is a compelling yet incomplete reasoning. There remains the
open problem of whether it is in fact possible to provide a distributed imple-
mentation of input capability, and whether such an implementation is useful.
In this paper, we show that such a distributed implementation is theoreti-
cally possible. The PiDuce project [7] is a substantial prototype for assessing
whether such an implementation is useful.

To help introduce our ideas, we first recall the encoding of input capability
into the join calculus. A key point of the encoding is to split channels into two
parts: the input part and the output part. The input x(u).P is encoded as (we
write it in aπ syntax rather than using the join calculus syntax) (x′)(xi x

′ |
!x′(ui, uo).Q), which sends an input proxy x′ to the input part xi of x. When
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an output on x is available – encoded as a message on the output part xo of
x – the proxy x′ will be activated and the translated continuation Q of P be
triggered. To obtain a tight correspondence with aπ – a full abstraction result
– the join calculus encodings must be wrapped by terms protecting the access
to the channels (enforcing the protocol splitting names into input and output
parts). Therefore, whilst this is an interesting expressivity result, it cannot be
regarded as a sensible implementation of aπ; such an implementation should
not split channels and should not require the use of wrappers.

We show that a simple and direct distributed implementation of aπ is possible,
contrary to folklore. Our idea is to introduce a limited form of input capability,
the linear forwarder, using which it is possible to encode input capability in a
straightforward way. A linear forwarder x(y is a process that allows just one
x to be turned into a y. It plays a similar role of an input proxy in the join
calculus, except that it really does behave like an input and so does not require
a firewall. It is like an input in that it reacts with an output on x, by forwarding
(renaming it) to y. It is an input capability in that, in the term u(x).P for
example, a forwarder x(y is allowed in P . Using this limited form of input
capability, we provide a simple encoding of general input capability, prove
a simple full-abstraction result, and design a distributed abstract machine
showing that it is indeed possible to give a simple distributed implementation
in aπ.

One interpretation of x(y is just as the pi process x(u).y u. In fact, a linear
forwarder may be viewed as an input proxy in a point-to-point network such
as the Internet. However, we choose to use forwarders as first-class operators
in order to abstract away from a particular style of implementation. Other
networks might provide different implementations of linear forwarders. In a
broadcast network for example, the forwarder x(y might be located at y:
when it hears an offer of x ũ being broadcast, the machine at y can take up
the offer.

Our results demonstrate that it is possible to implement aπ on a distributed
machine. An essential next step is study practical applications of our imple-
mentation of aπ, in particular fully contrasting our implementation with the
indirect implementation given by the join machine. We are actively applying
our ideas to Web services, where channel update is essential: for example,
when query patterns must be combined, as argued in [34,16,23], or when ex-
isting services must be orchestrated in order to provide new services [21]. In
particular, this orchestration of services is currently being studied in Univer-
sity of Bologna as part of the extensive PiDuce project [7]; see conclusions for
more details. We also note that in BizTalk, a language for Web services by Mi-
crosoft [40], input capability is offered when run over a reliable message service
(MSMQ), but not otherwise. This paper provides a formal treatment of one
possible implementation of BizTalk (the implementation details of BizTalk
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have not been published). A more precise account of our work follows.

We begin by introducing the linear forwarder calculus, al`π for short, which
is like aπ except that input capability is restricted to linear forwarders. We
show that al`π has a direct distributed implementation by describing an ab-
stract machine and provide a simple encoding of aπ in al`π. To illustrate the
encoding, consider the aπ term x(u).u(v).Q. We encode it as

[[x(u).u(v).Q]] = x(u).(u′)(u(u′ | u′(v).[[Q]])

where the input u(v) has been turned into a local input u′(v) at the same
location as x, and the forwarder allows one output on u to interact with u′

instead. Thus, for example, the process x w | w y | [[x(u).u(v).Q]] manifests the
following behaviour:

x w | w y | x(u).(u′)(u(u′ | u′(v).[[Q]]) (1)

→ w y | (u′)(w(u′ | u′(v).[[Q]]) interact on x

→ (u′)(u ′y | u′(v).[[Q]]) forward w y to u ′y

→ (u′)[[Q]]{y/v} interact on u′

In the encoding there are exactly as many forwarders u(u′ as there are avail-
able inputs on u′. We remark that the forwarders being linear is crucial; if there
were unlimited forwarders for just one input, then any further u forwarded to
u′ would become inert. Because of linearity, we have a full abstraction result
for the encoding using barbed congruence.

Linear forwarders also give an appealing encoding of distributed choice. The
process x(u).P + y(v).Q allows either a reaction on x, or one on y, but not
both. If x and y are at the same location, the choice is easy to implement. If
they are remote, we linearly forward x and y to co-located channels x′ and y′

where a local choice can be made:

[[x(u).P + y(v).Q]] =

(x′y′)
(
x(x′ | y(y′ | x′(u).([[P ]]|y′(y) + y′(v).([[Q]]|x′(x)

)
Linearity is again crucial. If the x′ branch were taken, then the other forwarder
y(y′ can be completely undone by releasing a reverse linear forwarder y′(y
(or vice versa). With choice, the full abstraction result is weaker, since the
correspondence is mediated by coupled simulation [30] rather than barbed
congruence. This weaker result is unsurprising, as coupled simulation is also
used in the result of Nestmann and Pierce on encoding input-guarded choice
in the choice-free aπ [29].

We design a distributed abstract machine for al`π, called the linear forwarder
machine. It is a channel-based machine which is distributed in the sense that
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the channels are partitioned between locations. All processes must initially be
in the “right” place for a machine to be well-formed. This means that every
process inputing on free channels, let us say x, are located at the machine of
x. Interaction is always local, occuring at the nominated locations of the chan-
nels. A property of our machine is that, during interaction, either processes
remain in the correct place, or they are ouputs and linear forwarders which are
small processes with the freedom to move. We show that the linear forwarder
machine is a natural implementation of the linear forwarder calculus, proving
a full-abstraction result up to barbed congruence. This result, together with
our encoding of aπ into the linear forwarder calculus, shows that it is possible
to give a fully-distributed implementation of aπ.

To examine the robustness of the linear forwarder machine, we analyze two
failure models usually studied for distributed machines: (1) when failures are
due to message losses and (2) when failures are due to crashes of locations. In
(1), since outputs and linear forwarders are the only processes that move over
the network, the failure model only accounts for their losses. The effect of one
lost output or forwarder is that one input process may deadlock. Our formal
account of message failure in the linear forwarder machine amounts to adding
two rules that allow the outputs and linear forwarders to disappear. We show
that this fallible linear forwarder calculus, fa`π for short, can be simulated
via the corresponding machine with failures. This is a weaker result than one
using coupled similation. Coupled simulation cannot be established in this case
because, in the machine, local messages can never be lost. On the contrary, in
fa`π, missing the location information, every message may be lost. For (2),
we give a formal account of location crashes in the linear forwarder machine,
where processes running on a location are rebooted to some safe initial state.
Such rebooted states are assumed to be the empty location for simplicity. We
establish similar results to (1).

Related works. Forwarders have already been studied in detail, but for very
different reasons to the work presented here. Much work centres around the
private pi calculus [35] – a variant of the pi calculus in which only private
names may be emitted, as in (w)x w. Boreale uses forwarders to encode the
emission of free names [6]; the reaction x(u).Q | x w does not perform the sub-
stitution {w/u}, but instead encodes it as a persistent (non-linear) forwarder
from u to w. The forwarders must be persistent since names may occur many
times in a term. Because of persistence, the number of forwarders increases
during an execution of a program. The same technique is used by Merro and
Sangiorgi [25] in proofs about the local pi calculus. Both were inspired by
Honda’s equators [19,24], which are bidirectional forwarders.

In our work, we use linear forwarders in a very different way, to move messages
between locations rather than for encoding substitutions. Our forwarders must
be linear, and hence their number decreases during execution. In a translated
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pi process, if a linear forwarder moves an output message to another location,
there will be an input waiting to interact with it. In contrast, this property
would not hold if we used persistent forwarders, hence messages would be lost
and we would not be able to prove our full-abstraction result. Our proofs are
similar in structure to those of Boreale, but are much simpler due to linearity.
We have only seen one other use of linear forwarders, in Kobayashi et al.’s
work on using linear forwarders to simulate substitutions when channels are
used linearly [20]. This work follows Boreale’s agenda, rather than the ideas
presented here.

The linear forwarder machine evolved from our previous work on the fusion
machine [14], which had a similar mechanism for distributing processes. The
fusion machine is based on the explicit fusion calculus [17] that uses explicit
fusions x = y rather than linear forwarders x(y. Fusions yield equivalence
classes of names, without giving information about the direction to which
outputs should be forwarded – the representatives of the classes. In the fusion
machine, this issue was solved using spanning trees. While our solution was a
good first attempt, it is in fact a poor implementation strategy since it is not
robust to failures of the network. A break of the spanning tree of fused names
can result in many messages being lost. This limitation provided our initial
motivation for exploring the work presented here.

Other distributed abstract machines for aπ in the literature include Facile [18],
the Jocaml prototype [10], Distributed pi calculus [2], Nomadic Pict [38], the
Ambient Calculus [8], the Channel Ambient Machine [31], and the Klaim Ma-
chine [11]. Facile uses two classes of distributed entities: (co-)located processes
which execute, and channel-managers which mediate interaction. This requires
a hand-shake discipline for communication between the locations of the in-
puts and outputs, and the different locations of the channel managers. Jocaml
simplifies the Facile approach by combining input processes with channel-
managers, and hence avoiding the hand-shake. However, it uses a quite dif-
ferent form of interaction, which does not relate that directly to pi calculus
communication. This is illustrated by the encoding of the pi calculus, which
has a strong correctness result but only because it is mediated by firewall pro-
cesses. In addition, Jocaml forces a coarser granularity, in that every channel
must be co-located with at least one other. Like Jocaml, our linear forwarder
machine combines processes with channel-managers. Unlike Jocaml, our ma-
chine has finer granularity and uses the same form of interaction as the pi
calculus. The other machines mentioned are based on a completely different
approach to distribution, which adds explicit location constructs to the pi
calculus and uses agent migrations for remote interactions. In summary, the
linear forwarder machine describes a direct distributed implementation of the
asynchronous pi calculus, which is correct in a stronger way than the other
proposed implementations.
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Summary of paper. Section 2 describes the linear forwarder calculus, and its
reference semantics – barbed congruence. Section 3 gives the encoding of the
pi calculus (i.e. the encoding of input capability) and proves the encoding
correct. Section 4 gives a distributed abstract machine for implementing the
linear forwarder calculus and proves the implementation correct. Section 5
extends the pi calculus with choice and the linear forwarder calculus with
local choice, and proves a correctness result for the encoding of choice into
local choice. Section 6 discusses the extension of the calculi and the abstract
machines with failures, and provides correctness results. Section 7 analyzes the
issue of loading program codes into the machine. We conclude in Section 8.

This paper extends our conference paper [15] in several ways: we give proofs
in full, extend the work to include distributed choice, and analyze failures.

2 The linear forwarder calculus

We assume an infinite set of names ranged over by u, v, x, y, . . .. Names rep-
resent communication channels; these names can also be transmitted during
communication. Write x̃ for a (possibly empty) finite sequence x1 · · ·xn of
names. Name substitutions {ỹ/x̃} are as usual.

Definition 1 (The calculus al`π) The (asynchronous) local linear forwarder
calculus, which we abbreviate al`π 1 , is the calculus whose terms P are given
by

P ::= 0
∣∣∣ x ũ

∣∣∣ x(ũ).P
∣∣∣ (x)P

∣∣∣ P |P
∣∣∣ !P

∣∣∣ x(y

and which satisfy the no-input-capability constraint: in x(ũ).P , the P has no
free occurrence of u ∈ ũ as subject of u(ṽ).Q.

Free and bound names are standard: x is bound in (x)P and ũ is bound in
x(ũ).P ; names are free when they are not bound. Write fn(P ) for the free
names of P .

The operators in al`π are all standard apart from the linear forwarder x(y.
This allows one output on x to be transformed into one on y, through Defini-
tion 3 below. The meaning of the other operators is standard: the term 0 is
inert; x ũ is a command to send data ũ over channel x; x(ũ).P receives formal
arguments ũ and then continues as P ; restriction (x)P limits the scope of
x to P ; parallel composition P |Q allows two terms to run concurrently and

1 The acronym al`π follows naming conventions in [37]: a stands for “asyn-
chronous”, l for “local” and ` for “linear-forwarders”.
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interact; and repetition !P behaves like infinitely many copies of P . Write
(x1 · · ·xn)P for (x1) · · · (xn)P .

Following Milner’s presentation [27], we first define a structural congruence
which equates all agents that have essentially the same structure and which
we will never wish to distinguish. We then use structural congruence when
giving the operational semantics.

Definition 2 Structural congruence ≡ is the smallest equivalence relation
which satisfies the following axioms and is closed with respect to contexts and
alpha-renaming:

P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R !P ≡ P |!P
(x)0 ≡ 0 (x)(y)P ≡ (y)(x)P (x)(P |Q) ≡ P | (x)Q if x 6∈ fn(P )

Definition 3 The reduction relation → is the least relation satisfying the fol-
lowing rules and closed under ≡, (x) and | :

x(ũ).P | x ṽ → P{ṽ/ũ} x ũ | x(y → y ũ

Notice that the no-input-capability constraint of al`π is preserved by struc-
tural congruence and reaction.

For behavioural equivalence in al`π we use the standard notion of barbed
bisimulation [28]. According to this notion, two agents are considered equiv-
alent if their reductions match and they are indistinguishable under global
observations:

Definition 4 The name x is a barb of P , written P ↓ x, when

x ũ ↓ x (y)P ↓ x, if P ↓ x and x 6= y

!P ↓ x, if P ↓ x P |Q ↓ x, if P ↓ x or Q ↓ x

Write ⇒ for →∗ and ⇓ for ⇒↓.

Barbed bisimulation
•≈ is the largest symmetric relation such that whenever

P
•≈ Q then (1) P ↓ u implies Q ⇓ u, and (2) P → P ′ implies Q ⇒ Q′ and

P ′ •≈ Q′.

Let C[ ] be the set of contexts of al`π generated by

C[ ] ::= [·]
∣∣∣ x(ũ).C[ ]

∣∣∣ (x)C[ ]
∣∣∣ P | C[ ]

∣∣∣ C[ ] | P
∣∣∣ !C[ ]

The barbed congruence is the largest symmetric relation ∼=Lc
a such that when-

ever P ∼=Lc
a Q then, for all contexts C[ ] such that C[P ] and C[Q] are al`π

terms, C[P ]
•≈ C[Q].
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As examples of barbed congruent terms in al`π, we recall a couple of laws.

Proposition 5 (Merro,Sangiorgi [24])

(1) If P is a term in al`π and u does not occur free in P as subject of an
input then P{u′

/u} ∼=Lc
a (u)(!u(u′ | P ).

(2) (u)x u ∼=Lc
a (u)(x u | u(v).0).

We discuss the first law. The rationale behind it is that, in an asynchronous
calculus with a semantics that is unsensible to internal moves, input con-
sumptions cannot be tested. Additionally, since u does not occurs as subject
of inputs in P , emitting on u′ by P{u′

/u} is the same as outputting on u, then
letting the message be consumed by the (persistent linear) forwarder !u(u′

and transformed into a message on u′.

3 The asynchronous pi calculus and its encoding

In this section we present the asynchronous pi caluclus aπ and encode it into
al`π.

Definition 6 (Pi calculus) The asynchronous pi calculus aπ has the same
terms P as for al`π (Definition 1), but with no linear forwarders and no
input-capability condition [26]. Structural congruence ≡ and reduction → are
defined as in Definitions 2 and 3, but in this case the reduction relation →
only has the rule x(ũ).P | x ṽ → P{ṽ/ũ}. Barbs P ↓ u, barbed bisimulation

•≈,
and barbed congruence ∼=πc

a are as in Definition 4, replacing al`π with aπ.

Note that if P and Q are valid terms in al`π and aπ, then P
•≈ Q in al`π

if and only if P
•≈ Q in aπ. This justifies our use of the same symbol

•≈ for
both. Note also that, for congruence ∼=Lc

a in al`π, the contexts are a subset of
those that are used for ∼=πc

a in aπ. We will see, however, that al`π contexts
and aπ contexts are equally discriminating (Theorem 18).

The following law generalizes Proposition 5.1 to aπ and, therefore it also holds
in al`π.

Proposition 7 (Honda,Yoshida [19]) P{u′
/u} ∼=πc

a (u)(!u′(u | !u(u′ | P ).

We use the law of Proposition 7 in the context lemma below. This lemma
usually states that contexts gain no additional discriminating power through
restriction and input-prefixing [24,37], namely P ∼=πc

a Q if and only if R |
Pσ

•≈ R | Qσ, for every R and renaming σ. However, in asynchronous calculi
a simpler statement without renamings is equally strong. (We suspect that
this is a standard result, but have not been able to find a reference for it.)
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Lemma 8 R | P •≈ R | Q, for every R, if and only if, for every C[ ], C[P ]
•≈

C[Q].

PROOF. The reverse direction is clear. For the forward direction, we negate
the consequent: i.e. we suppose there exists C[ ] such that C[P ] 6 •≈ C[Q]. By

the Context Lemma in [37] there exist R′ and σ such that R′ | Pσ 6 •≈ R′ | Qσ.
By Proposition 7, there exist R′′ and x̃ such that (x̃)(R′′ | P ) ∼=Lc

a Pσ and

(x̃)(R′′ | Q) ∼=Lc
a Qσ. Henceforth it must be the case that R′ | (x̃)(R′′ | P ) 6 •≈

R′ | (x̃)(R′′ | Q). Without loss of generality, let x̃∩fn(R′) = ∅. This reduces the

proof to (x̃)(R′ | R′′ | P ) 6 •≈ (x̃)(R′ | R′′ | Q). Hence R′ | R′′ | P 6 •≈ R′ | R′′ | Q.

Definition 9 (Encoding pi) The encoding [[·]] maps terms from aπ to al`π
by [[P ]] = [[P ]]∅, where [[P ]]ũ for set of names ũ is an auxiliary function defined
inductively by:

[[x(ỹ).P ]]ũ =

x(ỹ).[[P ]]ũỹ if x /∈ ũ

(x′)(x(x′ | x′(ỹ).[[P ]]ũỹ) if x ∈ ũ, x′ 6∈ fn(P ) ∪ {x, ũ, ỹ}
[[0]]ũ = 0

[[x ỹ]]ũ = x ỹ

[[(x)P ]]ũ = (x)([[P ]]ũ)

[[P |Q]]ũ = [[P ]]ũ | [[Q]]ũ
[[!P ]]ũ = ![[P ]]ũ

In the input and restriction cases, we assume that the bound names do not
clash with ũ. We write ũṽ for set union and ũ \ ṽ for set difference.

It is worth remarking that we are abusing notation slightly. For input pro-
cesses, ũ denotes a sequence of names. In the subscript [[P ]]ũ, ũ denotes a set
of names.

To understand the encoding, note that the subscript contains all names that
have been received in input. By the no-input-capability constraint (Defini-
tion 1), they cannot therefore be used as the subject of subsequent input. To
achieve this, the encoding uses “primed” names to denote local copies of them.
So the encoding of x(u).u(y).P will consume a message on x and result in the
processes u′(y).[[P ]]uy, where u′ is a new channel, and u(u′ forwarding one
message from u to u′. Meanwhile, any output use of u is left unchanged, since
it will be forwarded if appropriate using a linear forwarder.

To illustrate the connection between the reactions of a term and its translation,
we consider the aπ reduction x v | x(u).P → P{v/u}. By translating we
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obtain:

[[ x v | x(u).P ]]x = x v | (x′)(x(x′ | x′(u).[[P ]]xu)

→ (x′)(x ′v | x′(u).[[P ]]xu)

→ (x′)([[P ]]xu{v/u})
≡ [[P ]]xu{v/u}

Note that the final state of the translated term is subscripted on x and u,
not just on x. In addition, the translated term ends up with some garbage
that was not present in the original (the restriction (x′)(· · · )). Because of this
garbage, it is not in general true that Q → Q′ implies [[Q]] →∗ [[Q′]]; instead
we must work up to some behavioural congruence.

Linearity is crucial in the translation. For instance, consider a nonlinear trans-
lation where forwarders are replicated:

〈|x(u).P |〉x = (x′)(!x(x′ | x′(u).〈|P |〉xu)

Then consider the example

〈|x(u).P | x(u).Q | x v | x w|〉x
= (x′)(!x(x′ | x′(u).〈|P |〉xu) | (x′′)(!x(x′′ | x′′(u).〈|Q|〉xu) | x v | x w

⇒ (x′)(!x(x′ | 〈|P |〉xu{v/u}) | (x′′)(!x(x′′ | x′′(u).〈|Q|〉xu) | x w

→ (x′)(!x(x′ | 〈|P |〉xu | x′ w) | (x′′)(!x(x′′ | x′′(u).〈|Q|〉xu)

Here, both outputs were forwarded to the local name x′, even though the re-
source x′(u).〈|P |〉xu had already been consumed by the first one. This precludes
the second one from reacting with (x′′)(!x(x′′ | x′′(u).〈|Q|〉xu), a reaction that
would have been possible in the original aπ term. Linearity prevents the pos-
sibility of such dead ends.

Remark 10 A simpler encoding is also possible, which does not use subscripts
and always applies the x ∈ ũ case. We chose the current one for the following
appealing property: if P has no free input on x then [[P ]]z̃x = [[P ]]z̃. As an
immediate consequence, if a term P in aπ satisfies the no-input-capability
constraint, then the encoding [[·]] leaves it unchanged.

3.1 The correctness of the encoding

The correctness of the encoding [[·]], that P ∼=πc
a Q if and only if [[P ]] ∼=Lc

a [[Q]], is
not straightforward to prove because of the garbage left by the encoded term.
To show that it is indeed garbage, we must prove that [[P ]]u and [[P ]]ux are con-
gruent. But the barbed semantics offers too weak an induction hypothesis for
this proof. A standard alternative technique (used for instance by Boreale [6])
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is to use the barbed semantics as the primary definition, but to switch to a
labelled transition system and labelled bisimulation in the proofs. Labelled
bisimualtion is defined coinductively, which makes it easier to use in proofs,
and is stronger than ∼=Lc

a . It therefore provides a useful proof technique for
establishing results about ∼=Lc

a .

To help our argument, we introduce a further calculus, called the asynchronous,
non-local linear forwarder calculus a`π in Definition 11.

Definition 11 The calculus a`π has terms P and contexts C[ ] as in al`π
(Definitions 1 and 4), but without the no-input-capability constraint. Structural
congruence ≡ reduction →, and barbs are as in al`π (Definitions 2, 3, and 4).

The calculus a`π has both al`π and aπ as subcalculi. It is al`π without the
no-input-capability constraint or, equivalently, aπ with linear forwarders. We
first define the labelled transition system for a`π, and therefore for al`π and
aπ. To this aim, let µ range over input labels x(ũ), bound output labels (z̃)x ũ
where z̃ ⊆ ũ, and the label τ . Let also fn(x(ũ)) = {x}, fn((z̃)x ũ) = {x, ũ}\ z̃,
bn(x(ũ)) = {ũ}, bn((z̃)x ũ) = {z̃}, and fn(τ) = bn(τ) = ∅.
Definition 12 The transition relation P

µ−→ Q, for terms P and Q in a`π,
is defined inductively on the structure of P :

x(ũ).P
x(ũ)−→ P x ũ

x ũ−→ 0 x(y
x(ũ)−→ y ũ

P
µ−→ Q y 6∈ fn(µ)

(y)P
µ−→ (y)Q

P
(z̃)x ũ−→ Q y 6= x, y ∈ ũ\z̃

(y)P
(yz̃)x ũ−→ Q

P | !P µ−→ Q

!P
µ−→ Q

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P | Q µ−→ P ′ | Q
P

(z̃)x ṽ−→ P ′ Q
x(ũ)−→ Q′ z̃ ∩ fn(Q) = ∅

P | Q τ−→ (z̃)(P ′ | Q′{ṽ/ũ})

The transitions of P |Q have mirror cases, which we have omitted. We implic-

itly identify terms up to alpha-renaming ≡α: that is, if P ≡α P ′ and P ′ µ−→ P ′′

then P
µ−→ P ′′. Write

τ
=⇒ for

τ−→∗
, and

µ
=⇒ for

τ
=⇒ µ−→ τ

=⇒ when µ 6= τ .

The reduction and barb relations in Definition 11 and the transition relation
in Definition 12 are related by the proposition below.

Proposition 13 (1) P → P ′ if and only if P
τ−→≡ P ′;

(2) P ↓ x if and only if P
x ũ−→ P ′, for some ũ.

The calculus a`π is equipped with an observational semantics called asyn-
chronous bisimulation [4]. The next definition also introduces the asynchronous
simulation, to be used in Section 5.

Definition 14 An asynchronous simulation is a binary relation R between
a`π processes such that P RQ implies:
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(1) if P
τ−→ P ′, then Q

τ
=⇒ Q′ and P ′RQ′;

(2) if P
(z̃)x ũ−→ P ′ and z̃ ∩ fn(Q) = ∅, then Q

(z̃)x ũ
=⇒ Q′ and P ′RQ′;

(3) if P
x(ũ)−→ P ′ and ũ ∩ fn(Q) = ∅ then

(a) either Q
x(ũ)
=⇒ Q′, and P ′RQ′;

(b) or Q
τ

=⇒ Q′, and P ′R (Q′ | x ũ).

A relation R is an asynchronous bisimulation when both R and R−1 are
asynchronous simulations. Asynchronous bisimilarity, written ≈a is the largest
asynchronous bisimulation.

Some standard results, from asynchronous bisimilarity for aπ (see [37], Chap-
ter 5), extend naturally to a`π:

Theorem 15 (1) ≈a is an equivalence relation;
(2) ≡⊆≈a;
(3) ≈a is a congruence.

Clearly ≈a is a barbed bisimulation; therefore ≈a⊆
•≈. Because it is a congru-

ence, it is closed under all contexts in a`π, then a fortiori it is also closed
under aπ contexts and al`π contexts, and so

≈a ⊂ ∼=πc
a and ≈a ⊂ ∼=Lc

a . (2)

These key equations justify our choice to perform our proofs in ≈a rather
than ∼=πc

a or ∼=Lc
a . We recall that asynchronous bisimilarity, although useful as

a proof technique, is stronger than desirable for general use. For instance, by
Proposition 5.1, x u ∼=Lc

a (v)(x v | !(v(u)). However this equality is false in

≈a. In particular, the term on the right hand side may undergo
(v)x (v)−→ , but the

term on the left cannot.

The following laws are key to the correctness proof.

Lemma 16 For all P in a`π and y /∈ fn(P ),

(1) x(z ≈a x(ũ).z ũ.
(2) P ≈a (y)(y ũ | y(ũ).P ).
(3) x(ũ).P ≈a (y)(x(y | y(ũ).P ).

PROOF. For item (i), consider the relation S= {(x(z, x(ũ).z ũ)}∪ ≈a. It
is easy to show that S is contained in ≈a.

For item (ii), this is an instance of a well-known law in aπ: P{ṽ/ũ} ≈a (y)(y ṽ |
y(ũ).P ).

Item (iii) is omitted because it is similar to item 2.
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The following corollary shows the operational correspondence of the encod-
ing: any transition of P is matched by one in [[P ]]ũ, and vice versa up to
asynchronous bisimilarity.

Corollary 17 (Operational correspondence) P ≈a [[P ]]ũ, for all ũ.

PROOF. This follows directly from Lemma 16.3 and Definition 9. We spell
out the details. Consider the smallest relation S containing the identity and
closed under the following.

• If P S Q and Q ≈a R then P S R.
• If P S Q then also x(ũ).P S x(ũ).Q, (x)P S (x)Q, !P S !Q, and Pσ S Qσ

for all substitutions σ.
• If P S Q and P ′ S Q′ then P | P ′ S Q | Q′.

The proof that S is a ≈a-bisimulation is standard. By Lemma 16.3 we derive
{(P, [[P ]]ũ)} ⊆ S, thus concluding the proof.

We have all the preliminaries in place for demonstrating the correctness of the
encoding.

Theorem 18 (Correctness) For P and Q in aπ,

(1) P
•≈ Q if and only if [[P ]]

•≈ [[Q]];
(2) P ∼=πc

a Q if and only if [[P ]] ∼=Lc
a [[Q]].

PROOF. Item 1 is a simple consequence of Corollary 17, since ≈a ⊂
•≈. For

item 2 we use Lemma 8 and its analogue in aπ; namely, for P, Q in aπ then

∀R : R|P •≈ R|Q ⇔ P ∼=πc
a Q. (3)

To prove item 2, start in the reverse direction and assume the converse that
P 6∼=πc

a Q. By Equation 3 there exists a term R in aπ such that R|P 6 •≈ R|Q.
The followings results hold:

R | P 6
•
≈ R | Q in aπ

≈a ≈a by Corollary 17

[[R]] | [[P ]] 6
•
≈ [[R]] | [[Q]] in al`π

Hence [[P ]] 6∼=Lc
a [[Q]] in al`π.

We now prove the forwards direction. Define a translation
︷︸︸︷
· from a`π to
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aπ as follows:

︷ ︸︸ ︷
u(v = u(x̃).v x̃︷ ︸︸ ︷

u(x̃).P = u(x̃).
︷︸︸︷
P︷︸︸︷

0 = 0︷︸︸︷
u x̃ = u x̃︷ ︸︸ ︷

(x)P = (x)
︷︸︸︷
P︷ ︸︸ ︷

P |Q =
︷︸︸︷
P |

︷︸︸︷
Q︷︸︸︷

!P = !
︷︸︸︷
P

By Lemma 16.1, for any R in a`π, we have R ≈a

︷︸︸︷
R . Assume [[P ]] 6∼=Lc

a [[Q]] in

al`π. Then by Lemma 8 there exists R in al`π such that R | [[P ]] 6 •≈ R | [[Q]].
By Corollary 17, P ≈a [[P ]]. Therefore by congruence and transitivity of ≈a

we have R | [[P ]] ≈a

︷︸︸︷
R | P and R | [[Q]] ≈a

︷︸︸︷
R | Q. Additionally, since

≈a⊆
•≈ (see the discussion after Theorem 15) then

︷︸︸︷
R | P 6 •≈

︷︸︸︷
R | Q.

Hence P 6∼=πc
a Q.

4 The linear forwarder machine

In this section we develop a distributed machine for al`π, called the linear
forwarder machine, which is suitable for a point-to-point network such as the
Internet. We start with a set of locations identified by IP numbers. Each
location contains several channel-managers identified by port numbers, which
run in parallel. Each channel-manager contains an unordered set of program-
fragments; some fragments may be blocked, waiting to receive on that channel;
others may be waiting to be deployed to the right channel manager; others
may be waiting to be interpreted locally. Let the names u, v, x, y, . . . range
over IP:port pairs, so that each name identifies a particular channel-manager
at a particular location.

We first give a diagrammatic overview of the machine. Then we provide a
formal syntax and semantics, give a translation from al`π to the machine,
and prove a full abstraction result with respect to barbed congruence.
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4.1 Machine diagrams

The following diagram shows a machine consisting of two locations, one with
channel managers x, y and the other with z, w.

x

x(u).(u′)Q

y z

xw

w y

w

This machine corresponds to the al`π term x w | w y | x(u).(u′)Q. Let Q =
u(u′ | u′(v).R, so that the above term also corresponds to the example in
the Introduction, which illustrates the encoding of input capability into linear
forwarders.

The input fragment at x is currently blocked, waiting for input. The output
fragments at z will be sent asynchronously to their intended destinations:

x

x(u).(u′)Q

xw

y z w

w y d.out

Now the channel-manager x has an available input and output, and so reacts
them together. This gives rise to the substitution {w/u}:

x

(u′)Q{w/u}

y z w

w y react

Next the channel-manager x executes the (u′) command, by creating a new
co-located channel manager. In order to evidence that u′ is a channel manager
local to the current machine, we wrap u′ into the parentheses (|·|) . Recall that
Q{w/u} = w(u′ | u′(v).R{w/u}.

x

w(u′

u′(v).R{w/u}

(|u′|) y z w

w y new

Next the linear forwarder w(u′ is sent to its intended destination w. This
is easy to implement because the linear forwarder is a small data structure
carrying only two channel names. Additionally, the input u′(z).R{w/u} is sent
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to u′. This is also easy to implement because x and u′ are co-located:

x (|u′|)

u′(v).R{w/u}

y z w

w(u′

w y
d.fwd

The channel-manager at w now contains a linear forwarder and an output,
and so allows them to react:

x (|u′|)

u′(v).R{w/u}

y z w

u ′y fwd

Finally, this output at w is forwarded to channel u′ where it can react

x (|u′|)

R{wy/uv}

y z w

A crucial machine step is the deployment of the input u′(v).R{w/u} from x to
u′. This deployment is only allowed when x and u′ are co-located. Otherwise,
it would be too unwieldy to move the potentially-large program across the
network. We must ensure that programs are never deployed at runtime be-
tween channels that are not co-located. We enforce this with well-formedness
properties. First, we require that, in a machine x[P ], every free input z(v).Q
in P is such that the channels x and z are co-located. Second, we require that
P satisfies the no-input-capability constraint. Together, these constraints are
sufficient to avoid the deployment problem.

4.2 The formal account

Definition 19 (Linear forwarder machine) The linear forwarder machines
M are given by the following grammar, where P ranges over terms in al`π
(Definition 1).

M ::= 0
∣∣∣ x̊[P ]

∣∣∣ (|x|) [P ]
∣∣∣ M, M

The presentation here is similar to that given for the fusion machine [14].
The basic channel-manager x̊[P ] denotes a channel-manager at channel x
containing a body P . The local channel-manager (|x|) [P ] denotes a channel-
manager where the name x is not visible outside the machine. For example,
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if M = (|x|) [P ], M ′ then x cannot be accessed from the environment without
being extruded in advance. We write lchan(M) for the names of only the
local channel-managers ; we write chan(M) to denote the set of names of all
channel-managers, local and not, in the machine. We also write x to denote x̊
or (|x|) .

In this presentation, we have used arbitrary replication !P for simplicity. In a
real machine, we would instead use guarded replication !x(ũ).P [36], as it is
more amenable to implementation.

Assume a co-location equivalence relation L on channels. Write x@y to mean
that (x, y) ∈ L with the intended meaning that the two channels are at the
same location. It is always possible to create a fresh channel at an existing
location: to this end we assume that each equivalence class in L is infinitely
large. In the machine calculus, we generally assume L rather than writing it
explicitly. Machines meet the following well-formed conditions :

Localization. All code is in the right place, and does not need to be moved
at runtime. Formally, for every channel machine x[P ], then every free input
z(ũ).Q in P satisfies x@z. Moreover, P satisfies the no-input-capability
constraint.

Single-definition. There is exactly one channel-manager per channel. For-
mally, a machine x1[P1], · · · , xn[Pn] is singly-defined when i 6= j implies
xi 6= xj.

For example, the machines x[y().P ], y[y ] with x/@y and x[P ], x[Q] are ill-
formed. Note that the localization constraint for machines is stricter than
that used for al`π or the Lπ of [37]. This is to be expected, since these cal-
culi do not have explicit locations. Well-formedness is preserved by structural
congruence and reactions defined below.

Definition 20 The structural congruence ≡ is the smallest equivalence rela-
tion satisfying the following axioms and closed with respect to alpha-equivalence
of local channel managers:

M,0 ≡ M M1, M2 ≡ M2, M1 M1, (M2, M3) ≡ (M1, M2), M3

P ≡ Q implies x̊[P ] ≡ x̊[Q] and (|x|) [P ] ≡ (|x|) [Q]

The reduction step → and the heating step ⇀ are the smallest relations sat-
isfying the rules below, and closed with respect to structural congruence.

x[x ṽ | x(ũ).P | R] → x[P{ṽ/ũ} | R] (react)

x[x(z | x ṽ | R] → x[z ṽ | R] (fwd)
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x[(y)P | R] ⇀ x[P{z/y}|R], (|z|) [0], if z 6∈ {x} ∪ fn(P |R), z@x
(new)

x[z(y | P ], z[Q] ⇀ x[P ], z[z(y | Q], (d.fwd)

x[z ṽ | P ], z[Q] ⇀ x[P ], z[z ṽ | Q], (d.out)

x[z(ũ).P | Q], z[R] ⇀ x[Q], z[z(ũ).P | R], if x@z (d.in)

M → M ′, chan(M ′) ∩ chan(N) = ∅
M, N → M ′, N

M ⇀ M ′, chan(M ′) ∩ chan(N) = ∅
M, N ⇀ M ′, N

We write M ⇒ M ′ if M (→ ∪ ⇀)∗ M ′.

Alpha-equivalence of local channel managers means that, if M = (|x|) [P ], M ′

and z 6∈ chan(M), then M ≡ (|z|) [P{z/x}], M ′{z/x}. We observe that, in rules
d.fwd, d.out, and d.in, x 6= z by well-formedness.

The rationale of splitting steps in reductions and heatings is as follows: reduc-
tion steps closely reflect the reductions in al`π; heating steps model move-
ments of codes between locations of the distributed machine. We draw atten-
tion to steps (new) and (d.in). The step (new) picks a fresh channel-name
z and this channel is deemed to be at the location where the command was
executed. The step (d.in) will only move an input from one channel x to an-
other channel z, if the two channels are co-located; hence, there is no “real”
movement of input processes. In other words, the migration of input processes
from a location to a different one is disallowed in the linear forwarder ma-
chine. Actually, such machines are banned by well-formedness. Note that well-
formedness is a sufficient but not a necessary condition for avoiding such mi-
grations. For instance, the localization constraint says that nested free inputs
must be co-located. However, if x and u are not co-located then x[(z)(z( ).u( ))]
violates the localization property, but it is inert and would show no problem
at run-time.

Definition 21 A name x is a barb in a machine M , written M ↓ x, when

z̊[P ] ↓ x if P ↓ x

(|z|) [P ] ↓ x if P ↓ x and x 6= z

M, N ↓ x if x 6∈ lchan(M, N) and (M ↓ x or N ↓ x)

We write M ⇓ x, when M ⇒ M ′ and M ′ ↓ x.

For example

x̊[x u] ↓ x y[x u] ↓ x (|x|) [x u] 6↓ x (|x|) [0], y[x u] 6↓ x.

Definition 22 Barbed bisimulation
•≈ is defined as in Definition 4, where

processes are replaced by machines. Machine equivalence M ∼=a M ′ holds
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when, for all machines N , then M, N
•≈ M ′, N assuming that M, N and M ′, N

are well-formed.

For example x̊[x u] 6∼=a x̊[x v] because of the context machine z̊[x(z | z(w).w ]
or because the machine z̊[x(w).w ] where x@z. This is an interesting point: in
machine contexts, we may always add inputs on remote names either by using
linear forwarders or by using co-located names.

The linear forwarder machine is a faithful implementation of al`π, as shown
by the the translation and results below.

Definition 23 (Translation) Let calc(M) = (z̃)(M̂) where z̃ = lchan(M)
and

0̂ = 0 ̂̊x[P ] = P (̂|x|) [P ] = P M̂, N = M̂ | N̂ .

Before demonstrating the correctness of the translation, we give notations for
machines and state some preliminary results.
Notation 24 (x̃)M, with x̃ ⊆ chan(M), denotes the machine M where every

channel in x̃ has been turned local;
M || N, with lchan(M) = lchan(N) = ∅, denotes the machine defined as

follows.

M || N def
=


N if M = 0

x̊[P |Q], (M ′ || (N ′, N ′′)) if M = x̊[P ], M ′, N = N ′, x̊[Q], N ′′

x̊[P ], (M ′ || N) if M = x̊[P ], M ′, x /∈ chan(N)

M | N, where M = (x̃)M ′, N = (ỹ)N ′, lchan(M ′) = lchan(N ′) = ∅, and
x̃ ∩ chan(N ′) = ∅ = ỹ ∩ chan(M ′), denotes the machine (x̃ỹ)(M || N).

It is easy to verify that (M | M ′) | M ′′ = M | (M ′ | M ′′). Therefore, in the
following, we compose machines in parallel without caring about parenthe-
ses. The proposition below collects some properties that follow directly from
definitions.

Proposition 25 (1) If M → M ′ and x 6∈ lchan(M) then (x)(M | x[0]) →
(x)(M ′ | x[0]). Similarly, if M ⇀ M ′ and x 6∈ lchan(M) ∪ lchan(M ′)
then (x)(M | x[0]) ⇀ (x)(M ′ | x[0]).

(2) If M → M ′ and M | N is defined then M | N → M ′ | N . Similarly, if
M ⇀ M ′ and both M | N and M ′ | N are defined then M | N ⇀ M ′ | N .

Note that Proposition 25 has additional constraints for heating steps. These
constraints guarantee the absence of clashes of names created by steps in the
context.

Labelled transitions in the calculus and heating steps in the machine are
related as detailed by the following lemma. Let 0x1···xn denote the machine
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x1[0], · · · , xn[0].

Lemma 26 (1) If calc(M)
x(ũ)−→ P then:

• either M ⇀∗ (ỹ)(x[x(ũ).Q] | M ′) and P ≡ calc((ỹ)(x[Q] | M ′)),
• or M ⇀∗ (ỹ)(x[x(z] | M ′) and P ≡ calc((ỹ)(x[z ũ] | M ′))
according to whether the process that moves in calc(M) is an input or a
linear forwarder;

(2) if calc(M)
(z̃)x ṽ−→ P then M ⇀∗ (z̃ỹ)(x′[x ṽ] | 0z̃ | M ′) with z̃ ∩ ỹ = ∅ and

P ≡ calc((ỹ)(x′[0] | 0z̃ | M ′)).

PROOF. The first item is not difficult to prove. We demonstrate the second

item by induction on the depth of the derivation of calc(M)
(z̃)x ṽ−→ P . The

basic case is when calc(M) = x ṽ. Therefore, by definition of calc, there is
x′ such that M = x′[x ṽ]. The statement follows immediately.

The inductive steps regard the rules for parallel, scope, and replication. For

parallel we have calc(M) = Q | R with Q
(z̃)x ṽ−→ P and z̃ 6∈ fn(R). In this

case lchan(M) = ∅, therefore, by definitions of calc and the operation | on
machines, there are M ′ and M ′′ such that M = M ′ | M ′′, calc(M ′) = Q, and
calc(M ′′) = R. By inductive hypothesis, M ′ ⇀∗ (z̃ỹ)(x′[x ṽ] | 0z̃ | M ′

1) and
P ≡ calc((ỹ)(x′[0] | 0z̃ | M ′

1)). Then, by Proposition 25.2, M ⇀∗ (z̃ỹ)(x′[x ṽ] |
0z̃ | M ′

1) | M ′′ and P | R = calc((z̃ỹ)(x′[x ṽ] | 0z̃ | M ′
1) | M ′′) follows by

definition of calc. For scope we have calc(M) = (u)Q and Q
(z̃)x ṽ−→ P . There

are two cases: (a) when u /∈ ṽ\ z̃x, and (b) when u ∈ ṽ\ z̃x. We discuss subcase
(b), the subcase (a) is simpler. By definition of calc, either (b1) M = (|u|) [Q′] |
M ′ or (b2) M = x[(u)Q]. We discuss (b2). In this case, M ⇀ (u)(x′[Q] | u[0])
with a (new). By inductive hypothesis x′[Q] ⇀∗ (z̃ỹ)(x′[x ṽ] | 0z̃ | M ′

1) and
P ≡ calc((ỹ)(x′[0] | 0z̃ | M ′

1)). Without loss of generality, let u 6∈ ỹ. By
Proposition 25, M ⇀∗ (u)(z̃ỹ)(x′[x ṽ] | 0z̃ | M ′

1 | u[0]) = (uz̃ỹ)(x′[x ṽ] |
0uz̃ | M ′

1). By definition of calc and structural congruence: calc((ỹ)(x′[x ṽ] |
0uz̃ | M ′

1)) ≡ calc((ỹ)(x′[0] | 0z̃ | M ′
1)) ≡ P . The case when the last rule is

replication may be reduced to the parallel case.

The theorem about the correctness of the encoding calc follows.

Theorem 27 (Machine correctness) (1) M ≡ M ′ implies calc(M) ≡
calc(M ′), M ⇀ M ′ implies calc(M) ≡ calc(M ′), and M → M ′ implies
calc(M) → calc(M ′).

(2) calc(M) → P implies there exists N such that M⇒N and P≡ calc(N).
(3) M ⇓ x if and only if calc(M) ⇓ x.

(4) M
•≈ N if and only if calc(M)

•≈ calc(M ′).
(5) M ∼=a M ′ if and only if calc(M) ∼=Lc

a calc(M ′).
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PROOF. Item 1 is obvious.

For Item 2, the reduction calc(M) → P might have been deduced using struc-
tural congruence, which is difficult to match with structural congruence in the
machine. Instead, we analyse the reduction via labelled transitions because,
by Proposition 13, calc(M) → P implies calc(M)

τ−→ P ′ ≡ P , for some P ′.
Therefore it is enough to prove that calc(M)

τ−→ P ′. The argument is by
induction on the proof of this transition. The basic case is when the last rule
is a communication rule:

R
(z̃)x ṽ−→ R′ Q

x(ũ)−→ Q′ z̃ ∩ fn(Q) = ∅
calc(M) = R | Q τ−→ (z̃)(R′ | Q′{ṽ/ũ}) = P ′

We discuss the case when Q
x(ũ)−→ Q′ is due to an input process; the case when

the transition is due to a linear forwarder is similar. By Proposition 25, let
M ′, M ′′ be such that M = M ′ | M ′′ and calc(M ′) = R and calc(M ′′) = Q.
By Lemma 26, M ′ ⇀∗ (z̃ỹ)(x′[x ṽ] | 0z̃ | M ′

1) and M ′′ ⇀∗ (ỹ′)(x[x(ũ).Q′′] |
M ′′

1 ). Therefore, by assuming that names ũ and z̃ do not clash with any other
name:

M ⇀∗(z̃ỹ)(x′[x ṽ] | 0z̃ | M ′
1) | (ỹ′)(x[x(ũ).Q′′] | M ′′

1 ) by Proposition 25

⇀(z̃)((ỹ)(x′[0] | 0z̃ | M ′
1) | (ỹ′)(x[x ṽ | x(ũ).Q′′] | M ′′

1 )) by (d.out)

→(z̃)((ỹ)(x′[0] | 0z̃ | M ′
1) | (ỹ′)(x[Q′′{ṽ/ũ}] | M ′′

1 )) by (react)

=(z̃)((ỹ)(x′[0] | 0z̃ | M ′
1) | (ỹ′)(x[Q′′] | M ′′

1 ){ṽ/ũ})

The last machine, say N , is equal to (z̃)(N ′ | N ′′{ṽ/ũ}) and, by Lemma 26,
calc(N) ≡ (z̃)(R′ | Q′{ṽ/ũ}). This concludes the proof of the basic case.

For the inductive step, the rules of interest are the parallel composition, the
scope, and the replication. The first two follow by Proposition 25. If the last
rule is

P | !P τ−→ P ′

!P
τ−→ P ′

and calc(M) = !P , then we observe that there is M ′ ≡ M such that calc(M ′) =
P | !P . Therefore we reduce to reason on M ′, thus concluding the proof.

The result about barbs (Item 3) follows directly from Items 1 and 2.

The bisimulation result (Item 4) follows by Items 1 , 2, and 3.

For full abstraction (Item 5), by Lemma 8, we may restrict the definition
of ∼=Lc

a to parallel contexts. The reverse direction of item 5 is straightforward,
because machine contexts are partial parallel compositions while calculus con-
texts allow arbitrary parallel composition. In the forward direction we must
show that the partial is as discriminating as the arbitrary. Suppose there ex-
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ists a al`π context R such that R| calc(M) 6 •≈ R| calc(M ′). Let z̃ be the set
of free names in R, and suppose without loss of generality that z̃ does not
clash with lchan(M) or lchan(M ′). Now define ER = u[[[R]]z̃] for some fresh
u. Clearly ER, M and ER, M ′ are well-formed. We may derive the following
relations:

R | calc(M) 6
•
≈ R | calc(M ′) by assumption

∼=Lc
a

∼=Lc
a by Corollary 17

[[R]]z̃ | calc(M) 6
•
≈ [[R]]z̃ | calc(M

′)
≡ ≡ since there are no clashes

(lchan(M))([[R]]z̃ | M̂) 6
•
≈ (lchan(M ′))([[R]]z̃ | M̂ ′)

Hence, by Item 4, ER, M 6 •≈ ER, M ′.

We observe that from Theorems 18 and 27 one cannot derive a correspondence
between a aπ process and its implementation (i.e. M ∼=Lc

a calc(M), or replac-
ing ∼=Lc

a with ∼=a). The reason is because the two formalisms are different.
However our results relate the formalisms in a very strong way. Practically,
their strength means that a program can be debugged purely at source-level
rather than at machine-level. This means that the linear forwarder machine
is a natural implementation of aπ, in contrast to other ones, such as Join.
Of course, one might establish similar results with weaker semantics, such as
coupled simulation [32], thus obtaining weaker relationships between source
processes and their implementations.

5 The encoding of distributed choice

In this section we study another standard operator in aπ, the input-guarded
choice, written x(ũ).P + y(ṽ).Q. This process can either react on x and so
discard the y branch, or vice versa. It is well known that choice is problematic
to implement in a distributed setting because the two channel managers x
and y might be remote. In this case, the choice becomes a problem of global
consensus.

Nestmann and Pierce [29] have encoded the input-guarded choice in the choice-
free aπ. Their encoding used booleans t and f and the conditional statement
if b then P ′ else P ′′. For example, the process x(ũ).P + y(ṽ).Q is translated
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into:

(`)
(
` t | x(u).`(w).(` f | if w then P else x u)

| y(v).`(w).(` f | if w then Q else y v)
)

They demonstrated for such encoding a full abstraction result weaker than
Theorem 27; the correspondence uses coupled simulation [30] rather than
barbed congruence. (Nestmann and Pierce also gave a similar encoding with-
out using booleans and conditionals.)

We design a different encoding of input-guarded choice using linear forwarders.
Our encoding is amenable to a distributed implementation because it reduces
the choice between remote channels to a choice between co-located channels.
We demonstrate a full-abstraction result similar to Nestmann and Pierce’s
result [29]. We begin by defining the extension of al`π with input-guarded
choice.

Definition 28 (Calculi with choice) The calculi al`π (Definition 1), a`π (Def-
inition 11), and aπ (Definition 6) are augmented with choice as follows 2 :

P ::= . . .
∣∣∣ x(ũ).P + y(ṽ).Q

along with the structural congruence law P+Q ≡ Q+P and the reduction rule

x w̃ | x(ũ).P + y(ṽ).Q → P{w̃/ũ}

The al`π calculus with choice has an extended no-input-capability constraint
that, in x(ũ).P occurring alone or as part of a choice, the P has no free
occurrence of v ∈ ũ as the subject of an input.

Labelled transition semantics of al`π are as in Definition 12 but with two
additional rules:

x(ũ).P+y(ṽ).Q
x(ũ)−→ P x(ũ).P+y(ṽ).Q

y(ṽ)−→ Q

We extend the function [[·]] of Definition 9 mapping aπ processes to al`π
processes to accout for choice, and we again demonstrate its correctness.

Definition 29 (Encoding choice) The encoding [[·]] is as in Definition 9 but

2 A multi-way choice operator
∑

ui(x̃i).Pi is often studied, instead of the two-
way choice used here. Multi-way choice is used theoretically because it allows an
axiomatisation of bisimulation congruence in the replication-less calculus. We stick
to the two-way choice for simplicity.
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with the additional rule that [[x(ũ).P + y(ṽ).Q]]z̃ =

x(ũ).[[P ]]ũz̃+y(ṽ).[[Q]]ṽz̃ if x /∈ z̃, y /∈ z̃

(y′)(y(y′ | x(ũ).(y′(y|[[P ]]ũz̃)+y′(ṽ).[[Q]]ṽz̃) if x /∈ z̃, y ∈ z̃

(x′)(x(x′ | x′(ũ).[[P ]]ũz̃+y(ṽ).(x′(x|[[Q]]ṽz̃)) if x ∈ z̃, y /∈ z̃

(x′y′)(x(x′ | y(y′ | x′(ũ).(y′(y|[[P ]]ũz̃)+y′(ṽ).(x′(x|[[Q]])ṽz̃) if x ∈ z̃, y ∈ z̃

where x′ and y′ are fresh names and ũ, ṽ are disjoint from x, y, z̃.

This encoding is similar to Definition 9, but with the addition of undo agents
y′(y and x′(x. Their function is to undo the forwarder that is not taken,
using (x′)(x(x′ | x′(x) ≈a 0 3 .

The correctness of the encoding of distributed choice cannot be established in
the same way as for the choice-free fragment. In particular, a basic property
of Definition 9 – the Corollary 17 that P ≈a [[P ]]ũ – fails in this case because
bisimulation is sensitive to the branching structure of processes (cf. gradual
commitment in [29]). For example x(u).P +y(v).Q 6≈a [[x(u).P +y(v).Q]]xy be-

cause [[x(u).P+y(v).Q]]xy
x(u)−→ (x′y′)(x′ u | y(y′ | x′(u).(y′(y|[[P ]]xyu)+y′(v).(x′(x|[[Q]])xyv)

can be mimicked by x(u).P+y(v).Q
x(u)−→ P , but the processes P and (x′y′)(x′ u |

y(y′ | x′(u).(y′(y|[[P ]]xyu)+y′(v).(x′(x|[[Q]])xyv) are not bisimilar because
the latter has not yet committed to the choice. The asynchronous bisimu-
lation might match this last process with x u | x(u).P + y(v).Q. But this

match also fails because x u | x(u).P + y(v).Q
x(u′)−→ x u | P{u′

/u}, while
(x′y′)(x′ u | y(y′ | x′(u).(y′(y|[[P ]]xyu)+y′(v).(x′(x|[[Q]])xyv) cannot mimick
this transition.

To solve a similar problem, Nestmann and Pierce used a coarser semantics
– the coupled simulation [29]. We adapt this notion to our case by using
asynchronous simulation as defined in Definition 14.

Definition 30 A coupled simulation is a pair (R,S) of relations such that
R and S−1 are asynchronous simulations and

(1) P RQ implies there is Q′ such that Q
τ

=⇒ Q′ and P S Q′;
(2) P S Q implies there is P ′ such that P

τ
=⇒ P ′ and P ′ RQ.

Coupled similarity, written �a, is the largest coupled simulation.

Coupled similarity retains useful properties that we recall from [29].

Theorem 31 (1) �a is an equivalence relation;
(2) �a is a congruence in a`π (and therefore in aπ and in al`π);
(3) ≈a ⊆ �a.

3 Remark 10 also applies for this extension.
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Next we may establish the analogous statement to Corollary 17, this time for
coupled simulation.

Lemma 32 (Operational correspondence for choice) P �a [[P ]]ũ, for
all ũ.

PROOF. To simplify the proof, we introduce some notation. Let [[P, Q]]x,x′,y,y′

ũ

def
=

x′(ṽ).(y′(y | [[P ]]ũṽ) +y′(w̃).(x′(x | [[Q]]ũw̃) and let [[P, Q]]x,x′,y

ũ

def
= x′(ṽ).[[P ]]ũṽ +

y(w̃).(x′(x | [[Q]]ũw̃), where the names x′, y′, ṽ, and w̃ are disjoint from the
names in ũ.

Consider the smallest pair of relations (R,S) such that both R and S contain
structural congruence and are closed under the following conditions:

•

P R [[P ]]ũ

P{ṽ′/ṽ} R (x′, y′)(x′ ṽ′ | y(y′ | [[P, Q]]x,x′,y,y′

ũ
)

y w̃′ | P{ṽ′/ṽ} R (x′, y′)(x′ ṽ′ | y′ w̃′ | [[P, Q]]x,x′,y,y′

ũ
)

P{ṽ′/ṽ} R (x′)(x′ ṽ′ | [[P, Q]]x,x′,y

ũ
)

where x′, y′ are fresh. Additionally, if P RQ, P ′RQ′, and x′ 6∈ fn(Q) then

P R (x′)(x(x′ | x′(x | Q) and P |P ′ R Q|Q′ and (x)P R (x)Q

•

P S [[P ]]ũ

x ṽ′ | x(ṽ).P + y(w̃).Q S (x′, y′)(x′ ṽ′ | y(y′ | [[P, Q]]x,x′,y,y′

ũ
)

x ṽ′ | y w̃′ | x(ṽ).P + y(w̃).Q S (x′, y′)(x′ ṽ′ | y′ w̃′ | [[P, Q]]x,x′,y,y′

ũ
)

x ṽ′ | x(ṽ).P + y(w̃).Q S (x′)(x′ ṽ′ | [[P, Q]]x,x′,y

ũ
)

where x′, y′ are fresh. Additionally, if P S Q, P ′ S Q′, and x′ 6∈ fn(Q) then

P S (x′)(x(x′ | x′(x | Q) and P |P ′ S Q|Q′ and (x)P S (x)Q

It is worth observing that R also pairs the processes

– Q{ṽ′/ṽ} and (x′, y′)(y′ ṽ′ | x(x′ | [[P, Q]]x,x′,y,y′

ũ
);

– x w̃′ | Q{ṽ′/ṽ} and (x′, y′)(y′ ṽ′ | x′ w̃′ | [[P, Q]]x,x′,y,y′

ũ
)

because it includes structural congruence. Similarly for S.

26



The proof that R and S−1 are asynchronous simulations is entirely standard.
We therefore focus on the proof that (R,S) is a coupled simulation. Since R
and S are inductively defined, the argument is by induction on the number of
rules used for deriving PRQ and PSQ.

• relation R:
(1) P is R-paired to Q since P ≡ Q. This follows by ≡⊆�a by using Theo-

rem 15.2 and Theorem 31.3.
(2) P is R-paired to [[P ]]ũ. Immediate because these two processes are also

S-paired.

(3) P{ṽ′/ṽ} is R-paired with (x′, y′)(x′ ṽ′ | y(y′ | [[P, Q]]x,x′,y,y′

ũṽ
). There is a

transition (x′, y′)(x′ ṽ′ | y(y′ | [[P, Q]]x,x′,y,y′

ũṽ
)

τ−→ (x′, y′)(y(y′ | y′(y |
[[P ]]ũṽ{ṽ

′/ṽ}) ≡ (y′)(y(y′ | y′(y | [[P{ṽ′/ṽ}]]
ũṽ′

) since x′ 6∈ fn([[P{ṽ′/ṽ}]]
ũṽ′

)

and ṽ are disjoint from ũ. This last process is S-paired with P{ṽ′/ṽ}.
(4) y w̃′ | P{ṽ′/ṽ} is R-paired with (x′, y′)(x′ ṽ′ | y′ w̃′ | [[P, Q]]x,x′,y,y′

ũ
). There is

a derivation (x′, y′)(x′ ṽ′ | y′ w̃′ | [[P, Q]]x,x′,y,y′

ũ
)

τ−→ (x′, y′)(y′ w̃′ | [[P ]]ũṽ{ṽ
′/ṽ} |

y′(y)
τ−→ (x′, y′)(y w̃′ | [[P ]]ũṽ{ṽ

′/ṽ}) ≡ y w̃′ | [[P{ṽ′/ṽ}]]
ũṽ′

. This last pro-

cess is S-paired with y w̃′ | P{ṽ′/ṽ} because of parallel closure.

(5) P{ṽ′/ṽ} is R-paired with (x′)(x′ ṽ′ | [[P, Q]]x,x′,y

ũ
). Similar to 3.

(6) The inductive cases (addition of a forward and backward linear forwarder,
parallel closure, and restriction closure) follow by the inductive hypothe-
ses.

• relation S:
(1) P is S-paired to Q because P ≡ Q. As for R, this case follows since

≡⊆�a.
(2) P is S-paired to [[P ]]ũ. Immediate because these two processes are also

R-paired.
(3) x ṽ′ | x(ṽ).P +y(w̃).Q is S-paired with (x′, y′)(x′ ṽ′ | y(y′ | [[P, Q]]x,x′,y,y′

ũ
).

The coupling condition follows by x ṽ′ | x(ṽ).P +y(w̃).Q
τ−→ P{ṽ′/ṽ} and

the process P{ṽ′/ṽ} is R-paired with (x′, y′)(x′ ṽ′ | y(y′ | [[P, Q]]x,x′,y,y′

ũ
).

(4) x ṽ′ | y w̃′ | x(ṽ).P+y(w̃).Q is S-paired with (x′, y′)(x′ ṽ′ | y′ w̃′ | [[P, Q]]x,x′,y,y′

ũ
).

The coupling condition follows in two ways: either (a) x ṽ′ | y w̃′ | x(ṽ).P +

y(w̃).Q
τ−→ y w̃′ | P{ṽ′/ṽ} or (b) x ṽ′ | y w̃′ | x(ṽ).P + y(w̃).Q

τ−→ x ṽ′ |
Q{w̃′/w̃}. The final processes are both R-paired with (x′, y′)(x′ ṽ′ | y′ w̃′ |
[[P, Q]]x,x′,y,y′

ũ
).

(5) x ṽ′ | x(ṽ).P + y(w̃).Q is S-paired with (x′)(x′ ṽ′ | [[P, Q]]x,x′,y

ũ
). There is

a transition x ṽ′ | x(ṽ).P + y(w̃).Q
τ−→ P{ṽ′/ṽ} and this last process is

R-paired with (x′)(x′ ṽ′ | [[P, Q]]x,x′,y

ũ
).

(6) The inductive cases are immediate consequences of the inductive hypothe-
ses.
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Our full abstraction result for the encoding of choice is an immediate conse-
quence of Lemma 32 and the transitivity of �a.

Theorem 33 For P and Q in aπ,

(1) P �a [[P ]].
(2) P �a Q if and only if [[P ]] �a [[Q]].

5.1 Choice in the machine

Our machine will only implement local choice, x(ũ).P + y(ṽ).Q where x and
y are co-located. The low-level implementation is easy: a single thread can
manage both x and y and so it chooses one branch atomically; or two threads
could manage x and y but the choice is protected by a mutex. The machine
reduction rule is

u

u(x).P ⊕ v(x).Q

u y

v

→

u

P{y/x}

v

The following diagrams show the execution of [[u(x).P + v(x).Q]] on the ma-
chine:

u

u(u′

u y

v

v(v′

v y

(|u′|)

u′(x).P ⊕ v′(x).Q

(|v′|)

⇒

u v (|u′|)

u′(x).P ⊕ v′(x).Q

u ′y

(|v′|)

v ′y

react, d.out

→

u v (|u′|)

P{y/x}

v′(v

(|v′|)

v ′y choice

→→

u v

v y

(|u′|)

P{y/x}

(|v′|)

react, d.out

We now give a formal treatment of choice in the machine.

Definition 34 The machine with choice is as before (Definition 19), but
where terms P now come from the al`π calculus with choice (Definition 28).
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The machine with choice has the same locality constraint as before: in x[P ] and
(|x|) [P ], then every free input y(ṽ).Q in P satisfies x@y. But this constraint
now also applies to inputs that are parts of summations.

The machine dynamics are as before (Definition 20), plus two additional re-
action rules:

x[y(ũ).P+z(ṽ).R | S], y[y w̃ | T ] → x[S], y[P{w̃/ũ} | T ] if x@y (choice-1 )

x[x(ũ).P+z(ṽ).R | x w̃ | S] → x[P{w̃/ũ} | S] (choice-2 )

Rule (choice-1 ) reduces a machine even if the subject y of the chosen branch
is different from the channel manager x performing the reduction. In this case
we constrain the two channels to be co-located. This seems at odds with (d-in)
that allowed migration of input processes on co-located machines by means
of an heating step. We prefer the reduction rule in order to avoid divergency
of heating steps. The reduction (choice-2 ) is similar to the choice rule in the
calculus.

We remark that all the machine operations preserve locality. Now we have to
prove again the bisimulation and full abstraction results, analogous to those in
Theorem 27. The new work is in re-proving the deduction from calc(M) → P ′

to M ⇒ M ′ and P ′ ≡ calc(M ′). If the calculus reaction involves (choice-1),
we rely on the well-formedness of M to satisfy the (choice-1) side condition
that x@y.

Proposition 35 (1) M
•≈ M ′ if and only if calc(M)

•≈ calc(M ′).
(2) M ∼=a M ′ if and only if calc(M) ∼=Lc

a calc(M ′).

PROOF. The proofs are substantially the same to those given earlier (from
Proposition 25 to Theorem 27). The only difference is in the analogous result
to Lemma 26.1 which, as well as the two cases given previously, requires the
additional case:

• M ⇀∗ (ỹ)(M ′, z[x(ũ).Q+y(ṽ).Q′ | R], M ′′), z@x and
P ≡ calc((ỹ)(M ′, x[Q | R], M ′′)).

Apart from this difference, the proof carries over unmodified from Theorem 27.

6 Failures

In this section we study two extensions of the linear forwarder machine to
incorporate failure information. The first extension considers failures that are
due to message losses or to software exceptions that deviate the normal flow of
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execution. The timescale of such failures is milliseconds. The second extension
considers failures due to crashes of locations. This model, whose timescale is
between minutes and hours, is similar to those discussed in [13,33,3]. For each
model of failure, we establish correctness results between the fallible versions
of the pi calculus, of the linear forwarder calculus and the machine.

6.1 Message loss failures

When failures such as message losses occur there are a number of problems
(for instance, consensus) that cannot be solved in an asynchronous framework
as al`π. In order to avoid these limitations, a calculus should ultimately use
timeout-based failure detectors. At the low-level (eg. TCP and UDP program-
ming), these will have the form x(ũ)t.P?Q and meaning: “if a message arrives
on channel x within t milliseconds then continue with P ; but if nothing ar-
rives within a given timeout then execute Q”. It is beyond the scope of the
current contribution to deal with the compensations Q and with timed issues
(the reader is referred to [5,22] for details). We therefore fix t = ∞ and Q = 0
in what follows, and write α.P?0 as just α.P .

Definition 36 The calculus faπ is as in Definitions 6 and 12, but with the
additional reactions:

x ũ
τ−→ 0 x(ũ).P

τ−→ 0

The calculus fa`π is as in Definitions 11 and 12, but with these additional
reactions 4 .

x(y
τ−→ 0 x ũ

τ−→ 0

The fallible local linear forwarder machine is as in Definition 20 but with these
additional reaction steps:

x[z(y | P ] → x[P ] if x 6@z (f.fwd)

x[z ṽ | P ] → x[P ] if x 6@z (f.out)

Note that, in the fallible machine, only forwarders and outputs can be deployed
to remote locations. That is why we have added failure of forwarders (f.fwd)
and failure of outputs (f.out), but no rule for failure of input such as x[z(ỹ).Q |
P ]

τ−→ x[P ]. Similarly, in the fallible version of a`π, failures only concern
linear forwarders and outputs, which are the unique objects that are intended

4 For simplicity, in this section and the next one, we discuss failures in the choice-
free fragment of aπ.
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to move. However, every forwarder and output may fail in fa`π since the
calculus does not specify any location information.

As regards the relationship between faπ and the fallible machine, consider
the faπ term P = x u | x(w).Q. When translated into fa`π, the term [[P ]]x
admits two reactions, one of which is

x u | (x′)(x(x′|x′(w).[[Q]]xw)
τ−→ (x′)(x ′u|x′(w).[[Q]]xw).

At this point, [[P ]]x has committed to consuming the x u, but it remains in an
intermediate state where it is open either to succeed and yield [[Q]]wx{u/w}, or
to fail and yield a process that is ≈a-equivalent to 0. Meanwhile, the original
term P in faπ admits no such intermediate state. This is an instance of a
phenomenon similar to the one discussed in Section 5, namely that of an im-
plementation having intermediate states even though they are not observable.
As before, the behavioural equivalence we use is coupled simulation.

Theorem 37 For P and Q in faπ,

(1) P �a [[P ]].
(2) P �a Q if and only if [[P ]] �a [[Q]].

PROOF. The proof is similar to the one of Theorem 33. We therefore focus
on the proof of P �a [[P ]]ũ, for all ũ, by providing a coupled simulation.

Let (R,S) be the smallest pair such that both R and S contain ≈a and are
closed under the following (x′ 6∈ fn(P )) .

• For every ũ:

P R [[P ]]ũ

P{ṽ′/ṽ} R (x′)(x′ ṽ′ | x′(ṽ).[[P ]]ũṽ)

Additionally, if P RQ and P ′RQ′ then both P | P ′ R Q | Q′ and
(x)P R (x)Q.

• For every ũ:

P S [[P ]]ũ

x ṽ′ | x(ṽ).P S (x′)(x′ ṽ′ | x′(ṽ).[[P ]]ũṽ)

Additionally, if P S Q and P ′ S Q′ then both P | P ′ S Q | Q′ and (x)P S (x)Q.

The proof that (R,S) is a coupled simulation is omitted because similar to
that of Lemma 32.

Regarding fallible machines and their associated processes, we do not have
an analogous result to Theorem 27, not even for coupled simulation. This is
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because M manifests less failures than calc(M) since the latter misses the
co-location information, thus making every x(y and x ũ fail. For example, if
y@x, (|x|) [x | x( ).y ], ẙ[ ] never fails and always emits y, while calc((|x|) [x |
x( ).y ], ẙ[ ]) may fail without emitting anything.

It turns out that the relationship one may establish between a M and calc(M)
is a so-called barbed simulation, defined as in Definitions 4 and 22 without the
constraint of symmetry. Let P ≤ Q if Q simulates P . The proof of the following
statement is omitted because it is straightforward.

Proposition 38 M ≤ calc(M).

Remark 39 It is worth remarking that Proposition 38 may be strenghtened
because the machine implementation does not introduce deadlocks. Deadlock-
avoidance has been demonstrated for the implementation in Pict and in join
calculus of pi calculus [39,12].

6.2 Location crash failures

The second model we analyze considers locations that may crash and be re-
booted into some safe initial state. This style of failure is studied in detail
in [3,33]. As in these papers, we assume that the rebooted state is the empty lo-
cation and that channel managers located at crashed locations cannot be used
anymore. The usual failure detector has the form pingt x. P?Q with the mean-
ing: “if the location x is active (not crashed) then continue with P ; but if noth-
ing arrives within a given timeout t then execute Q”. For the sake of simplicity
we we will not explicitly use any ping command. Instead, in pingt x. P?Q we
let t be infinite, Q = 0 and shorten pingt x. P?0 into ping x. P . Addition-
ally, the process ping x. P is encoded by (z)(pingx z | z.P ), where pingx is a
channel co-located with x whose behaviour is !pingx(z).z .

The machine in Definition 20 is extended with terms representing crashed
channel managers :

M ::= · · · | x〈0〉

The machine x〈0〉 represents a location that cannot perform any action. This
means that every other machine co-located with x is crashed as well. The
following semantics enforces this constraint. We write {x1 · · ·xn}〈0〉 for the
(crashed) machine x1〈0〉, · · · , xn〈0〉. We use function fchan(M) to collect the
names of the failed channel managers in M and extend the function chan(M)
to include both failed and not-failed channel managers; we have fchan(M) ⊆
chan(M).

Definition 40 The calculus cfa`π is as in Definitions 11 and 12, but with
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these additional reactions.

x(y
τ−→ 0 x ũ

τ−→ 0 x(ũ).P
τ−→ 0

The machine with crash-failures is as in Definition 20 but with the additional
reaction steps:

for every x, y ∈ chan(M) . x@y

M → chan(M)〈0〉
(crash)

M → M ′, for every x ∈ fchan(M ′), y ∈ chan(N). x 6@y

M, N → M ′, N

With respect to fa`π, the calculus cfa`π also admits that an input process
may fail. This is because the corresponding channel manager may unexpect-
edly crash: see the rule (crash) of the machine with crash-failures. Rule (crash)
constraints co-located channel managers to crash simultaneously. In fact, the
inference rule has a premise verifying that failed channel managers in M ′ are
not co-located with machines in the environment.

We extend calc(·) as follows:

calc(x〈0〉) = 0

By definition of cfa`π, the statements corresponding to Theorem 37 also hold
for this calculus. As regards the correspondence between the machine with
crash failures and cfa`π, we observe that, in contrast to the previous failure
model, M manifests more failures than calc(M) because the co-location in-
formation of the formers causes failures of a group of processes at once. For
instance, take M = x[x(u).P, x(v).Q] then calc(M)

τ−→ x(v).Q but there is
no M ′ yielded from M such that calc(M ′) = x(v).Q. However x(v).Q

τ−→ 0
and M → x〈0〉 with calc(x〈0〉) = 0. Henceforth, Proposition 38 may be also
established for location crash failures.

7 Loadings of program codes

Due to the localisation constraint in al`π, loading a calculus program onto
a machine is not straightforward. Let us briefly discuss this topic. A given
program typically can be loaded in several ways: for instance, x u may be
loaded onto a machine either at x or at u (or indeed at any existing channel
manager). If all the channels are co-located – said otherwise, the machine is a
multiprocessor – then every loading of a al`π program is satisfactory and they
are all equivalent (by rule (d.in)). However, when the machine is distributed,
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there are al`π programs that cannot be loaded directly onto it. This is the
case when the program has nested free inputs but they are not co-located.
Following Remark 10 it is straightforward to use the encoding [[·]] to avoid
such nested free inputs, so making every calculus term loadable. For instance,
if z̃ = fn(P ), then [[P ]]z̃ is loadable.

Alternatively, one may achieve the same result by replacing on-the-fly the in-
put on a remote name with an input on a new co-located name and a linear
forwarder:

x[z(ũ).P | Q], z[R] → x[Q], (|x′|) [x′(ũ).P ], z[z(x′ | R] if x′ fresh, x@x′, x6@z

(d .din)

We actually use the on-the-fly solution in practice in PiDuce [9] since it avoids
the need for the encoding. The theory developed in this paper sustains the
correctness of this solution.

8 Conclusions

In this paper we have implemented the asynchronous pi calculus, and in par-
ticular its problematic feature of input capability on a distributed machine.
We have shown that a basic form of input capability, the linear forwarders,
is sufficient to express the general form. We have demonstrated this by in-
troducing a calculus with linear forwarders, providing a correct encoding of
the asynchronous pi calculus in the linear forwarder calculus, and presenting
a distributed abstract machine with a correct implementation of the linear
forwarder calculus. Distributed choice and failures have also been studied.

Laneve now has a large project in Bologna which provides a distributed imle-
mentation of PiDuce [9], a language that combines pi calculus processes and
XML datatypes, whose implementation relies on linear forwarders. This ma-
chine, as in the Join Calculus Machine, groups processes at their channels (or
locations). In contrast with the Join Calculus Machine that does not support
messages carrying channels with input capability, the PiDuce Machine sup-
ports input capability using linear forwarders as illustrated in this paper. The
ease of implementation of linear forwarders is demonstrated in the PiDuce Ma-
chine: the programs managing channels and linear forwarders are implemented
by a code of one thousand lines in C#.

It still remains for us to fully assess the practical significance of linear for-
warders. One promising application is the so-called orchestration and chore-
ography languages in Web services (WS-BPEL, WSCDL, BizTalk, etc.). These
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languages use input capability to allow services to change dynamically the
behaviour of other services, or to design new services out of existing ones. For
example the service

w(x, y, z).x(u).y(v).z uv

takes three services addresses (uri) x, y, and z, then catches one message to
x and to y, and finally packages the two messages and send them to z. The
theory of these simple patterns have been recently studied in [21]. It tuns out
that, combining linear forwarders and join-patterns, it is possible to describe
several workflow patterns in Web services. The next aim is to extend these
ideas to develop an expressive calculus for Web services, where every primitive
is easily amenable to a distributed implementation.
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