
Decidability Problems for Actor Systems

F.S. de Boer1, M. M. Jaghoori1, C. Laneve2, and G. Zavattaro2

1 CWI, Amsterdam, The Netherlands
2 University of Bologna, INRIA Focus Research Team, Bologna, Italy

{f.s.de.boer,jaghoori}@cwi.nl, {laneve,zavattar}@cs.unibo.it

Abstract. We introduce a nominal actor-based language and study its
expressive power. We have identified the presence/absence of fields as
a relevant feature: the dynamic creation of names in combination with
fields gives rise to Turing completeness. On the other hand, restricting
to stateless actors gives rise to systems for which properties such as
termination are decidable. Such decidability result holds in actors with
states when the number of actors is finite and the state is read-only.

1 Introduction

Since their introduction in [14], actor languages have evolved as a powerful com-
putational model for defining distributed and concurrent systems [2,3]. Lan-
guages based on actors have been also designed for modelling embedded systems
[17,18], wireless sensor networks [7], multi-core programming [16], and web ser-
vices [5,6]. The underlying concurrent model of actor languages also forms the
basis of the programming languages Erlang [4] and Scala [13] that have recently
gained in popularity, in part due to their support for scalable concurrency.

In actor languages [2,14], actors use a queue for storing the invocations to
their methods in a FIFO manner. The queued invocations are processed sequen-
tially by executing the corresponding method bodies. The encapsulated memory
of an actor is represented by a finite number of fields that can be read and set
by its methods and as such exist throughout its life time.

In this paper we introduce a nominal actor-based language and study its
expressive power. This language, besides dynamic creation of actors, also sup-
ports the dynamic creation of variable names that can be stored in fields and
communicated in method calls. As such our nominal actor-based language gives
rise to unboundedness in (1) internal queues of the actors, (2) dynamic actor
creation/activation and (3) dynamic creation of variable names.

Statelessness has recently been adopted as a basic principle of service oriented
computing, in particular by RESTful services. Such services are designed to be
stateless, and contextual information should be added to messages, so a service
can customize replies simply by looking at the received request messages. In ser-
vice oriented computing read-only fields (which are initialized upon activation)
are used to provide configuration/deployment information that distinguishes the
distinct instances of the same service. We have identified the presence/absence
of fields as a relevant feature of our language: (1) and (3) in combination with

fields gives rise to a Turing complete calculus. On the other hand, restricting to
stateless actors gives rise to systems for which properties such as termination are
decidable. In order to preserve this decidability result to actors with states we
have to restrict the number of actors to be finite and the state to be read-only.

More specifically, we model systems consisting of finitely many actors with
read- only fields as a well-structured transition system [11] – henceforth the
decidability of termination. Further, we show that a termination and process
reachability preserving abstraction of systems of unboundedly many stateless
actors (i.e., actors without fields) is also an instance of well-structured transi-
tion system. It turns out that, in the context of unbounded actor creation, this
restriction to stateless actors is necessary by a reduction to the halting problem
for 2 Counter Machines.

To the best of our knowledge, the technique we use to establish the decid-
ability results for the above languages is original since (i) these systems respec-
tively admit the creation of unboundedly many variables and of unboundedly
many variables and actor names; (ii) actors in general are sensitive to the iden-
tity of names because of the presence of a name-match operator. In particular,
in the case of finitely many actors with read-only fields, we define an equiva-
lence on process instances in terms of renamings of the variables that generate
the same partition. This equivalence allows us to compute an upper bound to
the instances of method bodies, which is the basic argument for the model be-
ing a well-structured transition system. In case of systems with unboundedly
many stateless actors, the reasonable extensions of this equivalence on process
instances have been unsuccessful because of the required abstraction of the iden-
tity of actor names. Therefore we decided to apply our arguments to an abstract
operational model where messages may be enqueued in every actor of the same
class. The above equivalence can be successfully used in this model, thus yielding
again the upper bounds for the number of method body instances. Further, the
abstract model still provides enough information to derive decidable properties
of the language.

Related Works. There exist a vast body of related work on decidability of infinite-
state systems (see [1]) that however does not address the specific characteris-
tics of the pure asynchronous mechanism of queued and dequeued method calls
in actor-based languages. It is interesting to observe that the most expressive
known fragment of the pi-calculus for which interesting verification problems
are still decidable is the depth-bounded fragment [19]. In [21] the theory of well-
structured transition systems is applied to prove the decidability of coverability
problems for bounded depth pi-calculus. Our nominal actor language also fea-
tures the creation and communication of new names. In our decidable fragments
however, differently from the depth-bounded pi-calculus fragment, we do not
restrict the creation and communication of names. For instance, in the queue of
an actor we might have unboundedly many messages (representing process con-
tinuations) where each message shares one name with the previous message in
the queue. Recent work on actor-based language focusses on deadlock analysis:
In [12], a technique for the deadlock analysis has been introduced for a version

of Featherweight Java which features asynchronous method invocations and a
synchronization mechanism based on futures variables. The approach followed
in [10] for detecting deadlock in an actor-like subset of Creol [15] is based on
suitable over-approximations.

Disclaimer. Due to space limitations, proofs have been removed; they are in [8].

2 The language Actor

Four disjoint infinite sets of names are used: actor classes, ranged over C, D, · · · ,
method names, ranged over m, m′, n, n′, · · · , field names, ranged over f, g, · · · ,
and variables, ranged over x, y, z, · · · . For notational convenience, we use x̃
when we refer to a list of variables x1, . . . , xn (and similarly for other kinds of
terms).

The syntax of the language Actor uses expressions E and processes P defined
by the rules

E ::= f | x | new C(Ẽ)

P ::= 0 | (f←[E).P | let x = E in P | x!m(Ẽ).P |
[E = E]P;P | P + P

An expression E either denotes a value stored in a field f, or a variable x, or a
new actor of class C with fields initialized to the values of Ẽ. A process may be
either the terminated one 0, or a field update (f ← [E).P , or the assignment

let x = E in P of a value to a variable, or an invocation x!m(Ẽ).P of a

method m of the actor x with arguments Ẽ, or a check [E = E′]P;P ′ of the
identity of expressions with positive and negative continuations, or, finally a
nondeterministic process P + P ′. We never write the tailing 0 in processes; for
example (f← [x).0 will be always shortened into (f← [x). We will also shorten
[E = E′]P;0 into [E = E′]P .

The operation let x = E in P is a binder of the occurrences of the variable
x in the process P that are not already bound by a nested let operation of x;
the occurrences of x in E are free. Let free(P) be the set of variables of P that
are not bound. As usual, the substitution operation P [y/x] returns the process
P where the free occurrences of x are replaced by y.

A program is a main process P and a finite set of actor class definitions
C.m(x̃) = PC,m, where PC,m may contain the special variable this (which can
be seen as an implicit formal parameter of each method). In the following we
restrict to programs that are

1. unambiguous, namely, every pair C, m has at most one definition;
2. correct, namely, let fields(·) be a map that associates a tuple of field names

to every actor class. Then, (i) in every expression new C(Ẽ), the length of the

tuples Ẽ and fields(C) are the same; (ii) in every definition C.m(x̃) = PC,m,
the field names occurring in PC,m are in the tuple fields(C).

In this paper, we abstract from types and type-correctness because we are only
interested in expressive power issues. However, it is straightforward to equip the
above language with a type discipline.

The operational semantics. The operational semantics of the language Actor will
use an infinite set of actor names, ranged over A, B, · · · . This set is partitioned
by the actor classes in such a way that every partition retains infinitely many
actor names. We write A ∈ C to say that A belongs to the partition of C. In the
following, the (run-time) expressions will also include actor names and, with an
abuse of notation, this estended set of expressions will be ranged over by E. The
set of terms that are variables or actor names, called values, will be addressed
by U , V , · · · .

The semantics is defined in terms of a transition relation S −→ S′, where S,
S′, called configurations, are sets of terms A . (P,ϕ, q) with A being an actor
name, ϕ, the state of A, being a map from fields(C) to values, where A ∈ C,

and q being a queue of terms m(Ũ). The empty queue will be denoted with ε.
Configurations contain at most one A . (P,ϕ, q) for each actor name A.

The operational semantics of Actor is defined in Table 1, where the evaluation

function E
ϕ
 U ; S is used. This function takes an expression E and a store ϕ

and returns a value U and a possibly empty configuration S of terms A.(0, ϕ, ε).
These terms represent actors created during the evaluation – the names A are
fresh – and ϕ records the initial values of the fields of A. The auxiliary function
fresh(·) used in the evaluation function takes a class actor and returns an actor
name of that class that is fresh. The same auxiliary function is used in rule
(inst) on a tuple of variables. In this case it returns a tuple of the same length of
variables that are fresh. For notational convenience, we always omit the standard
curly brackets in the set notation and we use “, ” both to separate elements inside
sequences and for set union (the actual meaning is made clear by the context).

Given a program, with main process P , the initial configuration is ℵ .
(P,∅, ε), where ℵ is a name of the root, an actor of a class without fields and
methods. We assume that the class of ℵ does not belong to the classes of the
program. Note that the root actor is guaranteed to terminate because its queue
remains empty (no method invocation may be enqueued) and the main process
(as any other one) terminates.

We finally remark that transition systems of the language Actor are not
finitely branching because of the choice of actor names (in the evaluation of
new C) and the choice of fresh variables (in the instantiation of the bodies of
methods). For example, if C.m() = [x = x]P then A . (0,∅,m()) −→ A . ([z =
z]P,∅,m()) for every z. Additionally, every configuration A . ([z = z]P,∅,m())
transits to A.(P,∅,m()). Said otherwise, the sets Succ(S) = {S′ ∈ S | S −→ S′},
called the successor configurations of S, and Pred(S) = {S′ ∈ S | S′ −→ S}, called
the predecessor configurations of S, are not finite, in general.

Relevant sublanguages. We will consider the following fragments of Actor whose
relevance has been already discussed in the Introduction:

The evaluation relation E
ϕ
 U ; S:

U
ϕ
 U ; ∅ f

ϕ
 ϕ(f) ; ∅

Ẽ
ϕ
 Ũ ; S f̃ = fields(C) A = fresh(C)

new C(Ẽ)
ϕ
 A ; A . (0, [f̃ 7→ Ũ], ε), S

Ei
ϕ
 Ui ; Si, for i ∈ 1..n

E1, · · · , En
ϕ
 U1, · · · , Un ; S1, · · · , Sn

The transition relation S −→ S′:

(upd)

E
ϕ
 U ; S

A . ((f← [E).P,ϕ, q)
−→ A . (P,ϕ[f← [U], q), S

(let)

E
ϕ
 U ; S

A . (let x = E in P,ϕ, q)

−→ A . (P [U/x], ϕ, q), S
(invk-s)

Ẽ
ϕ
 Ũ ; S

A . (A!m(Ẽ).P,ϕ, q)

−→ A . (P, ϕ, q ·m(Ũ)), S

(invk)

Ẽ
ϕ
 Ũ ; S

A . (A′!m(Ẽ).P,ϕ, q), A′ . (P ′, ϕ′, q′)

−→ A . (P,ϕ, q), A′ . (P ′, ϕ′, q′ ·m(Ũ)), S

(inst)

A ∈ C C.m(x̃) = P ỹ = free(P) \ x̃ ỹ′ = fresh(ỹ)

A . (0, ϕ,m(Ũ) · q) −→ A . (P [A/this][ỹ
′
/ỹ][Ũ/x̃], ϕ, q)

(match)

E,E′
ϕ
 U,U ; S

A . ([E = E′]P;Q,ϕ, q) −→ A . (P,ϕ, q), S

(mmatch)

E,E′
ϕ
 U, V ; S U 6= V

A . ([E = E′]P;Q,ϕ, q) −→ A . (Q,ϕ, q), S

(plus-l)

A . (P, q), S −→ S′

A . (P +Q, q), S −→ S′

(plus-r)

A . (P, q), S −→ S′

A . (Q+ P, q), S −→ S′

(context)

S −→ S′

S, S′′ −→ S′, S′′

Table 1. The operational semantics of the language Actor

– Actorba is the sublanguage where the new expression only occurs in the main
process (the number of actor names that it is possible to create is bounded).

– Actorro is the sublanguage without the field update operation (f ← [E)
(fields are read-only as they cannot be modified after the initialization).

– Actorroba is the intersection of Actorba and Actorro.
– Actorsl is the sublanguage with classes without fields (objects are stateless).

3 Undecidability results for Actorba and Actorro

In this section we establish the main undecidability results for the actor language
in Section 2. In particular, we will prove the undecidability of termination and
process reachability.

Definition 1. An actor program terminates if it has no infinite computation;
it reaches a process P if it has a computation traversing a configuration having
a term A . (P ′, ϕ, q) with P ′ being equal to P up-to renaming of variables and
actor names.

Actually, in order to convey a stronger result, we consider two sublanguages:
(i) where methods never use the new expression – actors may be only created
by the main process –, therefore the actor names are bounded, and (ii) where
fields cannot be updated – the fields are read-only after the initialization.

We will use a reduction technique of the halting and reachability problems
in 2 Counter Machines (2CMs) [20] – a well-known Turing-complete model –
to that of our actor model. A 2CM is a machine with two registers R1 and R2

holding arbitrary large natural numbers and a program P consisting of a finite
sequence of numbered instructions of the following type:

– j : Inc(Ri): increments Ri and goes to the instruction j + 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1

and goes to the instruction j + 1, otherwise jumps to the instruction l;
– j : Halt: stops the computation and returns the value in the register R1.

A state of the machine is given by a tuple (i, v1, v2) where i indicates the next
instruction to execute (the program counter) and v1 and v2 are the contents of
the two registers. The user has to provide the initial state of the machine. In the
sequel, we consider 2CMs in which registers are initially set to zero.

3.1 The language Actorba

We encode the value n stored in a register as n messages (of the same type) that
are enqueued in an actor – see Figure 1. Namely, let R1 and R2 be two actors of
class R and let the number of messages item in R1 and R2 be their value. The
instruction Inc is implemented by inserting one item message in the queue of the
corresponding register. In our formalism, this is done by invoking the method
item whose execution has two possible outcomes: (i) the invocation is enqueued

R // R has fields dec, ctr, loop and stop

R.item(tt , ff) = [stop = ff]
(
[dec = ff]this!item(tt , ff);(dec←[ff)

)
R.inc(pc, tt , ff) = [stop = ff](loop← [ff).this!item(tt , ff).ctr!run(pc, tt , ff)

R.decjump(pc, pc′, tt , ff) = [stop = ff](loop← [ff).(dec← [tt).this!checkzero(pc, pc′, tt , ff)

R.checkzero(pc, pc′, tt , ff) = [stop = ff](loop← [ff).(
[dec = tt]ctr!run(pc′, tt , ff);ctr!run(pc, tt , ff)

)
R.init(tt , ff ,Ctrl) = (dec←[ff).(ctr←[Ctrl).(loop←[ff).(stop←[ff).

this!bottom(tt , ff)

R.bottom(tt , ff) = [loop = ff](loop← [tt).this!bottom(tt , ff); (stop←[tt)

Ctrl // Ctrl has fields stm1, · · ·, stmn and r1 and r2

Ctrl.run(pc, tt , ff) = [pc = stm1][[Instruction 1]]1,tt,ff
· · ·

[pc = stmn][[Instruction n]]n,tt,ff

Ctrl.init() = r1!init(tt , ff , this).r2!init(tt , ff , this).this!run(stm1, tt , ff)

where [[Instruction i]]i,tt,ff is equal to

– rj!inc(stmi+1, tt , ff) if Instruction i = Inc(Rj);
– rj!decjump(stmi+1, stmk, tt , ff) if Instruction i = DecJump(Rj , k);
– 0 if Instruction i = Halt.

The main process is let x = new Ctrl(x1, · · · , xn, new R(, , ,), new R(, , ,)) in x!init().

Fig. 1. Encoding a 2CM in Actorba (“ ” denotes an irrelevant initialization parameter)

again; (ii) the invocation is discarded because we are in the presence of a residual
of a DecJump operation, as described next.

In case (i), to avoid an infinite sequence of item dequeues and enqueues, the
queue of the registers is initialized with a bottom message. The execution of
bottom updates the field loop to tt (it is initialized to ff). This field is reset to
ff when either inc, or decjump, or checkzero is executed. If the bottom method
is executed with loop set to tt , the register becomes inactive by setting another
field stop. This value of stop possibly makes the overall computation block as
soon as an instruction concerning that register is performed.

In case (ii), registers have a field dec that is set to tt by a decjump method
execution. This field means that the actual decrement of the register is delayed
to the next execution of checkzero. Since in (ii) item in not enqueued, then the
register is actually decremented and the field dec is set to ff . When checkzero will

be executed, since dec = ff then the next instruction of the 2CM is simulated.
On the contrary, when checkzero is executed with dec = tt then the decrement
has not been performed (the register is 0) and the simulation jumps.

Booleans are implemented by two variables – see the method Ctrl.init –
that are distributed during the invocations. With a similar machinery, in the
actor class Ctrl, the labels of the instructions are represented by the variables
x1, · · · , xn, which are stored in the fields stm1, . . . , stmn of Ctrl .

Theorem 1. Termination and process reachability are undecidable in Actorba.

The undecidability of termination in Actorba follows by the property that a
2CM diverges if and only if the corresponding actor program has an infinite
computation. As regards process reachability, we need a smooth refinement of
the encoding in Figure 1 where the Halt instruction is simulated by a specific
process P ′ (see Definition 1).

3.2 The language Actorro

We show that Actorro is Turing-complete by delivering another encoding of a
2CM – see Figure 2. In this encoding the two registers are represented by two
disjoint stacks of actors linked by the next field. The top elements of the two
stacks are passed as parameters r1 and r2 of the run method of the controller.
As before, this actor encodes the control of the 2CM.

The instruction Inc is implemented by pushing an element on top of the
corresponding stack. This element is an actor of class R storing in its field the
old pointer of the stack. The new pointer, i.e. the new actor name, is passed to
the next invocation of the run method.

The instruction DecJump is implemented by popping the corresponding stack.
In particular, the method run of the controller is invoked with the field next

of the register being decreased. This pop operation is performed provided the
register that is argument of run is different from nil . Otherwise a jump is per-
formed. Note that the other top of the stack rj (i 6= j) and the next instruction
to be executed are simply passed around and therefore they do not need to be
stored in updatable fields.

Theorem 2. Termination and process reachability are undecidable in Actorro.

4 Decidability results for Actorroba

We demonstrate that programs in Actorroba are well-structured transition sys-
tems [1,11]. This will allow us to decide a number of properties, such as termi-
nation. We begin with some background on well-structured transition systems.

A reflective and transitive relation is called quasi-ordering. A well-quasi-
ordering is a quasi-ordering (X,≤) such that, for every infinite sequence x1, x2, x3,
· · · , there exist i < j with xi ≤ xj .

R // R has a field next

R.dec1 (ctrl , r, stm) = ctrl!run(next, r, stm)

R.dec2 (ctrl , r, stm) = ctrl!run(r, next, stm)

Ctrl // Ctrl has fields stm1, · · ·, stmn and nil

Ctrl.run(r1, r2, pc) = [pc = stm1][[Instruction 1]];
· · ·
[pc = stmn][[Instruction n]]

where [[Instruction i]] is equal to

– this!run(new R(r1), r2, stmi+1) if Instruction i = Inc(R1);
– this!run(r1, new R(r2), stmi+1) if Instruction i = Inc(R2);
– [r1 = nil]this!run(r1, r2, stmk);r1!dec1 (this, r2, stmi+1)

if Instruction i = DecJump(R1, k);
– [r2 = nil]this!run(r1, r2, stmk);r2!dec2 (this, r1, stmi+1)

if Instruction i = DecJump(R2, k);
– 0 if Instruction i = Halt.

The program is invoked with let x = new Ctrl(x1, · · · , xn,nil) in x!run(nil ,nil , x1).

Fig. 2. Encoding a 2CM in Actorro

Definition 2. A well-structured transition system is a transition system (S,−→
,�) where � is a quasi-ordering relation on states such that

1. � is a well-quasi-ordering
2. � is upward compatible with −→, i.e., for every S1 � S′1 such that S1 −→ S2,

there exists S′1 −→∗ S′2 such that S2 � S′2.

In the following we assume given an actor program with its main process and

its set of actor class definitions. The first relation we convey is
•
= that relates

renamings of variables that are not free in the main process into either actor
names or variables that are not free in the main process. Let

ρ
•
= ρ′

def
= for every x, y : (i) ρ(x) = ρ(y) if and only if ρ′(x) = ρ′(y)

(ii) ρ(x) = ρ′(x) if ρ(x) or ρ′(x) is an actor name

Namely, two renamings are in the relation
•
= if they identify the same variables,

regardless the value they associate when such a value is a variable. For example,
[x 7→ y, y 7→ z]

•
= [x 7→ x, y 7→ z] and [x 7→ y, y 7→ y, z 7→ A]

•
= [x 7→ x′, y 7→

x′, z 7→ A]. However [x 7→ y, y 7→ z] 6 •= [x 7→ x, y 7→ x] and [x 7→ A] 6 •= [x 7→
B]. In general, if ρ and ρ′ are injective renamings that always return variables

then ρ
•
= ρ′. The requirements of

•
= are stronger for actor names: in this case

the two renamings should be identical. We also notice that renamings never

apply to free variables of the main process and never return free variables of
the main processes. This because these variables are possibly stored in fields
of actors and their renamings might change the behaviours of actors in a way
that breaks the upward compatibility of the following relation � and −→ (c.f.
proof of Theorem 3, part (2)). We finally notice that the above renamings do
not change the main process (because they do not apply to its free variables).

We denote by Pρ the result of the application of ρ to P .
Next, let ' be the least relation on terms m(U1, · · · , Un) and on processes

such that

ρ
•
= ρ′

m(ρ(x1), · · · , ρ(xk)) ' m(ρ′(x1), · · · , ρ′(xk))

ρ
•
= ρ′

Pρ ' Pρ′

For example, it is easy to verify that m(x, y) ' m(x′, y′) and that [x =
A]y!m(x,A, y) ' [z = A]y′!m(z,A, y′). On the contrary [x = A]B!m(x,A,B) 6'
[z = A]y′!m(z,A, y′). The rationale behind ' is that we are identifying pro-
cesses that “behave in similar ways”, namely they enqueue “similar invocations”
in the same actor queue. Method invocations m(U1, · · · , Un) of a given actor are
identified if the processes they trigger “behave in similar ways”.

Lemma 1. Let T be either a process or a method invocation m(U1, · · · , Un) of
a program in Actorba (and therefore in Actorroba). Let T = {Tρ1, Tρ2, Tρ3, · · · }
be such that i 6= j implies Tρi 6' Tρj. Then T is finite.

In order to define a well-quasi ordering on states, we consider the following
embedding relation ≤ on queues (except the part about ', it is almost stan-
dard [11]):

there exist i1 < i2 < · · · < ik ≤ h such that , for j ∈ 1..k, mj(Ũj) ' nij (Ṽij)

m1(Ũ1) . . .mk(Ũk) ≤ n1(Ṽ1) . . . nh(Ṽh)

Then we define the following relation on states:

Pi ' P ′i and qi ≤ q′i for i ∈ 1..`

A1 . (P1, ϕ1, q1), · · · , A` . (P`, ϕ`, q`) � A1 . (P ′1, ϕ1, q
′
1), · · · , A` . (P ′` , ϕ`, q

′
`)

It is worth to notice that the relation � constraints corresponding elements
A . (P,ϕ, q) and A . (P ′, ϕ, q′) to have the same states. In fact these states are
defined by the main process using either its free variables or the actor names
that it has created.

Theorem 3. Let (S,−→) be a transition system of a program of Actorroba. Then
(S,−→,�) is a well-structured transition system.

We notice that the well-structured transition system (S,−→,�) has transi-
tive and stuttering compatibility (see [11], pp 9, 10). Additionally, (S,−→,�)
has decidable algorithms for computing � and for computing the next states.
Then decidability of termination follows directly from Theorems 4.6 in [11].

Theorem 4. In Actorroba termination is decidable.

As discussed in Section 2, the transition systems of the actor language are
not finite branching. This is also the case for programs in Actorroba (due to the
presence of fresh variables in method body instantiations). However, in this case,
the sets Succ(S) and Pred(S) are finite if we reason up-to the well-quasi ordering
relation �.

Lemma 2. Let (S,−→,�) be a well-structured transition system of a program
in Actorroba, and let S ∈ S. Then there is a finite set X ⊆ Pred(S) such that, for
every S′ ∈ Pred(S), there is T ∈ X with T � S′. X can be effectively computed.

Lemma 2 and Theorem 4.8 in [11] allow us to decide the so-called control-
state reachability problem: given two states S and T of a well-structured transition
system with well-quasi ordering �, decide whether there is T′ � T such that
S −→∗ T′.
Theorem 5. In Actorroba process reachability is decidable.

In addition to the above decidability results, the process reachability problem
– see Definition 1 – is decidable in the sublanguage of the present section. In
fact, in order to verify whether a configuration A. (P ′, ϕ, q), S is reachable with
P ′ equal to P up-to renaming of variables and actor names, we proceed as
follows. First, consider a configuration T reachable after the complete execution
of the main process. Therefore, in T, every possible actor has been created (with
the corresponding initialization performed). Let T = A1 . (P1, ϕ1, q1), · · · , A` .
(P`, ϕ`, q`). If this part of the computation already traverses a configuration with
a term A.(P ′, ϕ, q), then the reply is positive. Otherwise, we check control-state
reachability from T to at least one of the states in the following finite set:

S = { A1 . (Q1, ϕ1, ε), · · · , A` . (Q`, ϕ`, ε) |
for every 1 ≤ i ≤ `, Qi is a suffix of a method definition and
there exists 1 ≤ j ≤ ` such that Qj is equal to P up-to renaming }

We conclude this section by observing that we have already proved the unde-
cidability of termination in programs with finitely many actors and field updates.
If we remove the constraint of finite actor names then the relation � is not a
well-quasi ordering anymore. Consider for instance, the configuration Sn defined
as follows:

Sn
def
= A1 . (0,∅, ε) , · · · , An . (0,∅, ε)

The infinite sequence S1, S2, S3, · · · is such that, for every i < j, Si 6� Sj . This
trivial counterexample seems to suggest the following patch of �:

S �′ T def
= there exists S′ ⊆ T such that S � S′

However, the infinite sequence S2, S3, S4, · · · where Sn is defined as

Sn
def
= A0 . (0,∅,m(An−1, A1)) , A1 . (0,∅,m(An, A2)) ,⋃

i∈2..n−1Ai . (0,∅,m(Ai−2, Ai+1)) , An . (0,∅,m(An−2, A0))

is such that, for every i < j, Si 6�′ Sj .

5 Decidability results for Actorsl

We prove that in Actorsl termination and process reachability are decidable,
too. As discussed at the end of Section 4, we have not succeeded in demonstrat-
ing these decidability results by patching the definition of � in Section 4. The
reason is that Actorsl programs may produce unboundedly many actor names.
Therefore, in order to compute an upper bound to the instances of method bod-
ies, which is the basic argument for the model of Section 4 to be a well-structured
transition system, we need to abstract from the identity of these names – as we
have done with variables. However, in case of actor names, the abstractions we
have devised all break the delivering of messages. Therefore we decided to apply
our arguments to an abstraction of the operational model where the delivery of
messages is inexact: it may be enqueued in every actor of the same class. Yet,
this abstract model allows us to derive interesting decidability properties for the
original language.

Since we need a model with inexact message deliveries, we change the oper-
ational semantics in Table 1 in order to decouple the evaluation of the body of
a method from the actor name of that method. Let S −→α S′ be the abstract
transition relation defined as S −→ S′ in Table 1 except the two rules (invk)
and (invk-a) for method invocation and the rule (inst) for the instantiation of
method bodies, which are replaced by the following ones:

(ink-sa)

Ẽ
ϕ
 Ũ ; S A,A′ ∈ C

A . (A′!m(Ẽ).P,ϕ, q) −→α A . (P,ϕ, q ·m(Ũ , A′)), S

(invk-a)

Ẽ
ϕ
 Ũ ; S A′, A′′ ∈ C

A . (A′!m(Ẽ).P, ϕ, q), A′′ . (P ′, ϕ′, q′) −→α A . (P,ϕ, q), A′′ . (P ′, ϕ′, q′ ·m(Ũ , A′)), S
(inst-a)

A′ ∈ C C.m(x̃) = P ỹ = free(P) \ x̃ ỹ′ = fresh(ỹ)

A . (0, ϕ,m(Ũ , A′) · q) −→α A . (P [A
′
/this][ỹ

′
/ỹ][Ũ/x̃], ϕ, q)

In the abstract transition relation, an item m(Ũ) is added in a queue of an
actor name nondeterministically selected among those names belonging to the
same class of the target actor. The item m(Ũ) is enqueued with an additional
argument – the actor name of the target actor. This additional argument is
used when a method body is instantiated. In fact it replaces the variable this,
thus making the execution of a body invariant regardless the actor that actually
performs it.

The next proposition formalizes the correspondence between −→ and −→α

(for stateless programs). We first introduce few notations:

– Let α() be a map from “concrete” to “abstract” configurations: given a
configuration S, we denote with α(S) the configuration obtained from S by
replacing each of its actor A.(P,∅, q) with A.(P,∅, q′) where q′ is obtained
from q by adding to each of its method invocations the parameter A.

– We use M, M′ to denote multisets of terms m(Ũ). We extend ' to such
multisets: M ' M′ iff there exists a bijection ρ from M to M′ such that
m(Ũ) ' ρ(m(Ũ)).

– Let S
M−−→ S′ be the least relation such that

S
∅−→ S

S
M−−→ S′ (S′ −→ S′′ proved without (invk) or (invk-s))

S
M−−→ S′′

S
M−−→ A . (P,∅, q), S′ A . (P,∅, q), S′ −→ A . (P ′,∅, q ·m(Ũ)), S′′

S
M]{m(Ũ,A)}−−−−−−−−−→ A . (P ′,∅, q ·m(Ũ)), S′′

Namely, this transition S
M−−→ S′ collects in M all the method invocations

that have been performed during the computation S −→ S′. These method
invocations are extended with the target actor name as last parameter.

– Let S
M−−→α S′ be the least relation such that

S
∅−→α S

S
M−−→α S′ (S′ −→α S′′ proved without (invk-a) or (invk-sa))

S
M−−→α S′′

S
M−−→α A . (P,∅, q), S′ A . (P,∅, q), S′ −→α A . (P ′,∅, q ·m(Ũ)), S′′

S
M]{m(Ũ)}−−−−−−−→α A . (P ′,∅, q ·m(Ũ)), S′′

Note that in this case the additional argument A is not explicitly added as
it is already introduced as argument by the transition system −→α.

Proposition 1. Let S be a state of a transition system of a program in Actorsl.

– S terminates in the concrete transition system if and only if α(S) terminates
in the abstract transition system;

– given a process P , there exist A′, q′, and S′ such that S −→∗ A′ .(P,∅, q′), S′
if and only if there exist A′′, q′′, and S′′ such that α(S) −→∗α A′′.(P,∅, q′′), S′′.

We now move to the definition of �α, a variant of the ordering � defined in
the previous section, such that (S,−→α,�α) turns out to be a well-structured
transition system (for configurations of stateless programs). To this aim, we
redefine the notions of Section 4. Let

–
•
=α be the least relation such that

ρ
•
=α ρ

′ def
= for every x, y :

(i) ρ(x) = ρ(y) if and only if ρ′(x) = ρ′(y)
(ii) ρ(x) ∈ C if and only if ρ′(x) ∈ C

Differently from the definition of
•
=,
•
=α does not care of the identity of actor

names. Moreover,
•
=α identifies two renamings that “have matching types”,

letting the type of variable being distinct from those of class actors.
– 'α be the relation defined as ' in Section 4, with

•
=α instead of

•
=.

– ≤α be the relation defined as ≤ in Section 4, with 'α instead of '.
– �α be the ordering:

Ai, A
′
ji
∈ Ci Pi 'α P ′ji and qi ≤ q′ji for i ∈ 1..`, 1 ≤ j1 < j2 < · · · < j` ≤ κ

A1 . (P1,∅, q1), · · · , A` . (P`,∅, q`) ≤α A′1 . (P ′1,∅, q′1), · · · , A′κ . (P ′κ,∅, q′κ)

Next, we observe that Lemma 1 can be adapted to the case of unbounded
actors by using 'α instead of '. Let T be either a process or a method invocation
m(U1, · · · , Un) of a stateless program and let T = {Tρ1, Tρ2, Tρ3, · · · } be such
that i 6= j implies Tρi 6'α Tρj . By proceeding as in the proof of Lemma 1, we
prove that T is finite.

Theorem 6. Let (S,−→α) be the abstract transition system of a program in
Actorsl. Then (S,−→α,�α) is a well-structured transition system.

In the light of Theorem 6, it is possible to decide the termination for the
abstract transition system of a stateless program. As termination is preserved
by the abstract semantics (see Proposition 1) we can conclude that termination
is also decidable for the concrete transition system of a stateless program.

We complete this section by demonstrating the decidability of control-state
reachability for the well-structured transition system (S,−→α,�α) of a stateless
program (see the definition after Lemma 2). The proof is similar to the one of
Theorem 5, with the difference that it is needed a more sophisticated algorithm
for computing the predecessors of a configuration.

Lemma 3. Let (S,−→α,�α) be a well-structured transition system of a program
in Actorsl, and let S ∈ S. Then there is a finite set X such that, for every S′ �α S

and S′′ ∈ Pred(S′), there is T ∈ X with T �α S′′. X can be effectively computed.

It turns out that control-state reachability is decidable for the abstract tran-
sition system of Actorsl. This entails the decidability of process reachability. In
fact, given a process P , the reachability of a configuration A . (P ′, ϕ, q), S with
P ′ equal to P up-to renaming of variables and actor names can be solved in
the abstract transition system simply by checking the control-state reachability
of at least one of the following states. Let C1, . . . , Cn be the actor classes of the
considered actor system and let A1, · · · , An be such that Ai ∈ Ci. We consider
the following finite set of states:

S = { Ai . (Qi,∅, ε) | 1 ≤ i ≤ n, Qi is a suffix of a method definition
in the class Ci and it is equal to P up-to renaming }

From the decidability of the process reachability problem for the abstract tran-
sition system we can conclude its decidability for the concrete semantics. By
Proposition 1, this problem is preserved by the abstract semantics. Note that
control-state reachability is not preserved by the abstract semantics. In fact, the
abstract transition system is guaranteed to execute the same method invoca-
tions, but this can be done in a different order and also by different actors.

6 Conclusions

To the best of our knowledge this paper contains a first systematic study on the
computational power of Actor-based languages. We have focussed on the pure
asynchronous queueing and dequeuing of method calls between actors in the
context of a nominal calculus which features the dynamic creation of variable
names that can be passed around.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS, pages 313–321. IEEE, 1996.

2. G. Agha. The structure and semantics of actor languages. In REX Workshop,
pages 1–59, 1990.

3. G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1–72, 1997.

4. J. Armstrong. Erlang. Communications of ACM, 53(9):68–75, 2010.
5. P.-H. Chang and G. Agha. Supporting reconfigurable object distribution for cus-

tomized web applications. In SAC, pages 1286–1292, 2007.
6. P.-H. Chang and G. Agha. Towards context-aware web applications. In DAIS,

pages 239–252, 2007.
7. E. Cheong, E. A. Lee, and Y. Zhao. Viptos: a graphical development and simulation

environment for tinyos-based wireless sensor networks. In SenSys, pages 302–302,
2005.

8. F. de Boer, M. Jaghoori, C. Laneve, and G. Zavattaro. Decidability Problems for
Actor Systems. Technical report, 2012. Available at cs.unibo.it/˜laneve.

9. F. S. de Boer, I. Grabe, and M. Steffen. Termination detection for active objects.
Journal of Logic and Algebraic Programming, 2012.

10. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256:63–92, 2001.

11. E. Giachino and C. Laneve. Analysis of deadlocks in object groups. In FMOOD-
S/FORTE, pages 168–182, 2011.

12. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, 2009.

13. C. Hewitt. Procedural embedding of knowledge in planner. In Proc. the 2nd
International Joint Conference on Artificial Intelligence, pages 167–184, 1971.

14. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and System Modeling, 6(1):39–58, 2007.

15. R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for the jvm platform: a
comparative analysis. In PPPJ, pages 11–20. ACM, 2009.

16. E. A. Lee, X. Liu, and S. Neuendorffer. Classes and inheritance in actor-oriented
design. ACM Transactions in Embedded Computing Systems, 8(4), 2009.

17. E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

18. R. Meyer. On boundedness in depth in the pi-calculus. In IFIP TCS, volume 273
of IFIP, pages 477–489. Springer, 2008.

19. M. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.
20. T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded

processes. In FOSSACS, volume 6014 of LNCS, pages 94–108. Springer, 2010.

cs.unibo.it/~laneve

	Decidability Problems for Actor Systems

