
Towards a Taxonomy for Reversible

Computation Approaches

Ivan Lanese
Focus research group

University of Bologna/INRIA
Bologna, Italy

Joint work with Robert Glück, Claudio
Mezzina, Jaroslaw Miszczak, Iain Phillips, Irek

Ulidowski, and German Vidal

Initial discussions involved other members of the
COST Action IC1405

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Reversible debugging zoo

 Reversible computing has been used in a plethora of
settings, including hardware circuits, programming
languages, formal models, algorithms, …

 Reversible computing targets a plethora of application
areas: low-power computing, debugging, robotics,
simulation, …

 While the different definitions share some aspects, they
are not identical

How to put some order?

 Which are the commonalities and
differences between the existing approaches?

 Which are the ones closer to each other?
 Could we transfer concepts and techniques?

 We propose a taxonomy of the different approaches, as a
first step towards answering these questions

 Only a preliminary proposal, with no aim of being the
final word on the topic, neither of completeness

Taxonomy structure

 We consider six dimensions, and for each dimension
different positions

 In many dimensions, positions can be seen as ordered,
from more specific to more general

 The dimensions aim at capturing features of
reversibility, abstracting away from:

– the underlying model
– the target application area

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Dimension FOC: reversibility focus

 Functional behavior: a system is reversible if it
computes injective functions (Janus, circuits, Turing
machines, …)

 Reachable states: a system is reversible if it can go back
to past states (checkpointing, SVN, …)

 Undoing steps: a system is reversible if it can undo steps
(reversible calculi, reversible Erlang, Janus, ...)

Dimension RES: resources for reversibility

 None: the model is naturally reversible, and has no need
of additional resources (Janus, circuits, Turing
machines, …)

– One can compute backwards without computing
forwards first

 Inside the model: resources are needed, and are in the
same formalism as the original system (Petri nets, …)

 Outside the model: resources are needed, and one needs
to extend the model to represent them (reversible
calculi, reversible Erlang, …)

 Ordered, the position depends on the abstraction level

Dimension WHE: when reversibility is enabled

 Always: any action can be undone (Janus, RCCS, …)
 Sometimes: some actions can be undone, others cannot

(RCCS with irreversible actions, robotics, …)
 Ordered

Dimension ORD: order of undoing

 This dimension applies to models where there is a
notion of undoing (cf. dimension FOC)

 Reverse order: only the last action can be undone
(Janus, Turing machines, …)

– These models are backward deterministic
 Causal order: any action can be undone provided that its

consequences have been undone first (most calculi and
languages for concurrency, …)

 Out of causal order: there is no constraint on which
action can be undone (models for biology, ...)

 Ordered

Dimension STR: state reachability

 This dimension applies to models where there is a
notion of state (cf. dimension FOC)

 Only past states: only states in the past of the system
(Janus, Turing machines, …)

 Only past states up-to concurrency: states that could
have been reached by swapping the order of concurrent
actions (most calculi and languages for concurrency, …)

 Forward reachable states: states that are reachable by
going forward from the initial state (some Petri nets, …)

 Also states not forward reachable (models for
biology, ...)

 Ordered, roughly correspond to dimension ORD

Dimension PRE: preciseness of reversibility

 Precise: classical reversibility (Janus, Turing machines,
…)

– Captured by the Loop Lemma in concurrency
 With additional information: when going backwards one

keeps information on the undone actions (local search
with backtracking, …)

 Approximate: one goes back to a state close to the
original one (transactions with compensations,
robotics, ...)

 Ordered

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Janus (and traditional reversible models)

 Reversible and quantum circuits fit here as well
 Focus on injective functional behavior and possibility of

undoing actions (by computing backwards)
 Naturally reversible, no additional resources needed

– Obtained by restricting classical models
 All their components are reversible

 Backward execution in reverse order

 Only past states are reachable (but one can go before the
beginning of the computation)

 Reversibility is precise

RCCS (and formalisms for concurrency)

 Focus on possibility of executing back and forward
 Memory to remember past interactions and causality

– Outside the model: RCCS is not CCS, and it is not
even clear whether an encoding is possible

 All their components are reversible

 Backward execution in causal order

 Only past states up-to concurrency are reachable

 Reversibility is precise

 This approach takes the name of causal-consistent
reversibility

Petri nets

 Different works take different approaches to
reversibility

 Some focus on possibility of executing back and
forward, others on state reachability

 Some use additional places as memories or add reverse
transitions, others do not

 All their components are reversible
 All possible orders have been considered
 As a result, different approaches allow to reach different

states
 Reversibility is precise

Sagas (and transactions with compensations)

 Actions are undone by executing ad-hoc compensations
 Focus on possibility of executing back and forward
 Information on the past is kept inside the model
 Sagas allow for irreversible actions
 Backward execution in causal order
 Compensations can bring to states not forward reachable
 Reversibility is approximate

– Ideally compensations are approximate undos, even
if there is no precise characterization of this

SVN and GIT

 Focus on possibility of recovering past states
 Information on the past is kept inside the model
 All (saved) past states are reachable
 Order of undoing is not meaningful, since there is no

notion of undoing
 Only past states can be reached

– … but merges are possible in case of contrasting
futures

 Reversibility is precise

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Summary

 First taxonomy of approaches to reversibility
 Mainly tailored to formal models and languages, due to

the expertise of the authors
 We tried to stress-test the taxonomy by considering

approaches outside classical reversibility (like Sagas)
 Some positions ensure some properties

– Loop Lemma, backward determinism

Future directions

 Refining the taxonomy
 Applying it to other models
 Is it possible to give an axiomatic characterization of

(part of) the taxonomy?
 Can we use Petri nets as a single setting to contrast

different approaches?
– Some works already consider a few possibilities

Finally

Thanks!

Questions?

	Diapositiva 1
	Roadmap
	Diapositiva 3
	Why debugging?
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Future work
	Finally

