
Towards a Taxonomy for Reversible

Computation Approaches

Ivan Lanese
Focus research group

University of Bologna/INRIA
Bologna, Italy

Joint work with Robert Glück, Claudio
Mezzina, Jaroslaw Miszczak, Iain Phillips, Irek

Ulidowski, and German Vidal

Initial discussions involved other members of the
COST Action IC1405

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Reversible debugging zoo

 Reversible computing has been used in a plethora of
settings, including hardware circuits, programming
languages, formal models, algorithms, …

 Reversible computing targets a plethora of application
areas: low-power computing, debugging, robotics,
simulation, …

 While the different definitions share some aspects, they
are not identical

How to put some order?

 Which are the commonalities and
differences between the existing approaches?

 Which are the ones closer to each other?
 Could we transfer concepts and techniques?

 We propose a taxonomy of the different approaches, as a
first step towards answering these questions

 Only a preliminary proposal, with no aim of being the
final word on the topic, neither of completeness

Taxonomy structure

 We consider six dimensions, and for each dimension
different positions

 In many dimensions, positions can be seen as ordered,
from more specific to more general

 The dimensions aim at capturing features of
reversibility, abstracting away from:

– the underlying model
– the target application area

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Dimension FOC: reversibility focus

 Functional behavior: a system is reversible if it
computes injective functions (Janus, circuits, Turing
machines, …)

 Reachable states: a system is reversible if it can go back
to past states (checkpointing, SVN, …)

 Undoing steps: a system is reversible if it can undo steps
(reversible calculi, reversible Erlang, Janus, ...)

Dimension RES: resources for reversibility

 None: the model is naturally reversible, and has no need
of additional resources (Janus, circuits, Turing
machines, …)

– One can compute backwards without computing
forwards first

 Inside the model: resources are needed, and are in the
same formalism as the original system (Petri nets, …)

 Outside the model: resources are needed, and one needs
to extend the model to represent them (reversible
calculi, reversible Erlang, …)

 Ordered, the position depends on the abstraction level

Dimension WHE: when reversibility is enabled

 Always: any action can be undone (Janus, RCCS, …)
 Sometimes: some actions can be undone, others cannot

(RCCS with irreversible actions, robotics, …)
 Ordered

Dimension ORD: order of undoing

 This dimension applies to models where there is a
notion of undoing (cf. dimension FOC)

 Reverse order: only the last action can be undone
(Janus, Turing machines, …)

– These models are backward deterministic
 Causal order: any action can be undone provided that its

consequences have been undone first (most calculi and
languages for concurrency, …)

 Out of causal order: there is no constraint on which
action can be undone (models for biology, ...)

 Ordered

Dimension STR: state reachability

 This dimension applies to models where there is a
notion of state (cf. dimension FOC)

 Only past states: only states in the past of the system
(Janus, Turing machines, …)

 Only past states up-to concurrency: states that could
have been reached by swapping the order of concurrent
actions (most calculi and languages for concurrency, …)

 Forward reachable states: states that are reachable by
going forward from the initial state (some Petri nets, …)

 Also states not forward reachable (models for
biology, ...)

 Ordered, roughly correspond to dimension ORD

Dimension PRE: preciseness of reversibility

 Precise: classical reversibility (Janus, Turing machines,
…)

– Captured by the Loop Lemma in concurrency
 With additional information: when going backwards one

keeps information on the undone actions (local search
with backtracking, …)

 Approximate: one goes back to a state close to the
original one (transactions with compensations,
robotics, ...)

 Ordered

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Janus (and traditional reversible models)

 Reversible and quantum circuits fit here as well
 Focus on injective functional behavior and possibility of

undoing actions (by computing backwards)
 Naturally reversible, no additional resources needed

– Obtained by restricting classical models
 All their components are reversible

 Backward execution in reverse order

 Only past states are reachable (but one can go before the
beginning of the computation)

 Reversibility is precise

RCCS (and formalisms for concurrency)

 Focus on possibility of executing back and forward
 Memory to remember past interactions and causality

– Outside the model: RCCS is not CCS, and it is not
even clear whether an encoding is possible

 All their components are reversible

 Backward execution in causal order

 Only past states up-to concurrency are reachable

 Reversibility is precise

 This approach takes the name of causal-consistent
reversibility

Petri nets

 Different works take different approaches to
reversibility

 Some focus on possibility of executing back and
forward, others on state reachability

 Some use additional places as memories or add reverse
transitions, others do not

 All their components are reversible
 All possible orders have been considered
 As a result, different approaches allow to reach different

states
 Reversibility is precise

Sagas (and transactions with compensations)

 Actions are undone by executing ad-hoc compensations
 Focus on possibility of executing back and forward
 Information on the past is kept inside the model
 Sagas allow for irreversible actions
 Backward execution in causal order
 Compensations can bring to states not forward reachable
 Reversibility is approximate

– Ideally compensations are approximate undos, even
if there is no precise characterization of this

SVN and GIT

 Focus on possibility of recovering past states
 Information on the past is kept inside the model
 All (saved) past states are reachable
 Order of undoing is not meaningful, since there is no

notion of undoing
 Only past states can be reached

– … but merges are possible in case of contrasting
futures

 Reversibility is precise

Roadmap

 Why a taxonomy?
 The six dimensions
 Some examples
 Conclusion

Summary

 First taxonomy of approaches to reversibility
 Mainly tailored to formal models and languages, due to

the expertise of the authors
 We tried to stress-test the taxonomy by considering

approaches outside classical reversibility (like Sagas)
 Some positions ensure some properties

– Loop Lemma, backward determinism

Future directions

 Refining the taxonomy
 Applying it to other models
 Is it possible to give an axiomatic characterization of

(part of) the taxonomy?
 Can we use Petri nets as a single setting to contrast

different approaches?
– Some works already consider a few possibilities

Finally

Thanks!

Questions?

	Diapositiva 1
	Roadmap
	Diapositiva 3
	Why debugging?
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Future work
	Finally

