
Introduction
Background

Distributed CauDEr
Future work

Causal-Consistent Debugging of Distributed
Erlang Programs

Giovanni Fabbretti 1, Ivan Lanese 2, Jean-Bernard Stefani 1

1SPADES Team, INRIA

2University of Bologna/FOCUS Team, INRIA

Reversible Computation, 07-07-2021

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr
Motivation
Erlang
Notion of Reversibility
Contribution

Introduction

CauDEr is a reversible causal-consistent debugger for the Erlang
programming language.

Distinctive features of CauDEr:

Reversibility of systems composed by several processes

Causal-consistent rollback

Our goal: extend CauDEr with support for distribution

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr
Motivation
Erlang
Notion of Reversibility
Contribution

Motivations

Concurrent and distributed systems are everywhere and both are
well know for their intrinsic difficulties.

Hence we need effective tools while writing code.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr
Motivation
Erlang
Notion of Reversibility
Contribution

The Erlang language

Erlang, developed in 1986 by Ericsson, is a concurrent, distributed,
functional programming language, based on message passing.

It is probably the most popular programming language that
implements the actor model.

Erlang owes its success to three aspects: the support of
concurrency and distribution, the facilities to do error-handling and
the OTP libraries.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr
Motivation
Erlang
Notion of Reversibility
Contribution

Reversibility

Causal Consistency: before undoing an action we must ensure that
all of its consequences, if any, have been undone.

Each process embeds a memory that contains information about
past states of its computation.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr
Motivation
Erlang
Notion of Reversibility
Contribution

Our contribution

CauDEr, in its first version, addressed the functional and
concurrent fragment of the Erlang language.

This work extends CauDEr and the theory behind it with the
support for distributed programs.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr’s Components
Causal Dependencies

Table of Contents

1 Introduction

2 Background

3 Distributed CauDEr

4 Future work

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr’s Components
Causal Dependencies

A deeper look inside CauDEr

CauDEr implements three semantics:

a forward semantics that defines Erlang’s behavior and stores
information in the history

a backward semantics that ensures that we undo only actions whose
consequences have been already undone

a rollback semantics which automatically undoes all the
consequences of an action

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr’s Components
Causal Dependencies

Semantics structure

Definition (System)

A system is defined as Γ; Π where

Γ is the global mailbox

Π is a pool of processes

Definition

A process is defined as: 〈p, h, θ, e, q〉 where

p is the process id

h is the process history

θ is the process environment

e is the expression to evaluate

q is the local mailbox

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

CauDEr’s Components
Causal Dependencies

Causal dependencies

We say that there is a dependency between two actions in two cases:

they cannot be executed in the opposite order

by executing them in the opposite order the result would change

(A simplification of) The dependencies that rose in the functional and
concurrent fragment of the language are that a receive of a message
depends on its send.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Table of Contents

1 Introduction

2 Background

3 Distributed CauDEr

4 Future work

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

The distributed primitives

The three primitives for distributed computing that we support are the
following:

slave:start/{1,2} starts a slave node

erlang:node/0 returns the name of the local node

erlang:nodes/0 returns the names of the connected nodes

With the introduction of nodes we also updated the spawn, which now
takes an extra parameter that represents the node where it must be
performed.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Causal dependencies

Informally, one could summarise the causal dependencies of the
distributed primitives as follow:

1 every action of process p depends on the (successful) spawn of p;

2 a (successful) spawn on node nid depends on the start of nid ;

3 a (successful) start of node nid depends on previous failed spawns
on the same node, if any (if we swap the order, the spawn will
succeed);

4 a failed start of node nid depends on its (successful) start;

5 a nodes reading a set Ω depends on the start of all nids in Ω, if any.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Semantics structure

Definition

A system is defined as Γ; Π; Ω where

Ω is the set of connected nodes

the other elements are as before

Definition

A process is defined as: 〈nid , p, h, θ, e, q〉 where

nid is the id of the node where the process is running

the other elements are as before

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Extended forward and backward semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Extended forward and backward semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Extended forward and backward semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Extended forward and backward semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}

↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Extended forward and backward semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Extended forward and backward semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Rollback Semantics

The rollback semantics allows us to reach a past state of the
computation of the system, such past state is specified as an action
performed by a process.

Some of the considered requests are:

{p, λ⇓}: the receive of the message uniquely identified by λ;

{p, stnid}: the successful start of node nid ;

{p, spp′}: the spawn of process p′.

A system in rollback mode is denoted as ddSeeΨ

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Rollback Semantics

S ↽p,r,Ψ′ S′ ∧ ψ ∈ Ψ′

ddSee{p,ψ}:Ψ ddS′eeΨ

S ↽p,r,Ψ′ S′ ∧ ψ 6∈ Ψ′

ddSee{p,ψ}:Ψ ddS′ee{p,ψ}:Ψ

S = Γ; 〈nid , p, h, θ, e〉 | Π; Ω ∧ S 6↽p,r,Ψ′ ∧ {p′, ψ′} = bwd dep(〈nid , p, h, θ, e〉,S)

ddSee{p,ψ}:Ψ ddS′ee{p′,ψ′}:{p,ψ}:Ψ

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Distributed Primitives and Causal Dependencies
Reversible Semantics
Rollback Semantics

Rollback semantics: dependencies operator

The dependencies operator does pattern matching on the history item
and given the system computes the request to undo the consequences.

bwd dep(< , , nodes(, ,Ω′) : h, , >, ; Π; {nid ′} ∪ Ω) = {parent(nid ′,Π), stnid′}
where nid ′ /∈ Ω′

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Table of Contents

1 Introduction

2 Background

3 Distributed CauDEr

4 Future work

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

Future work

Still many features of Erlang that are to be covered (monitors, links,
errors, etc.) to have a debugger that can be used on real programs.

Another line of research worth being investigated is the study of
automatic ways to derive a reversible semantics starting from a
non-reversible one.

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

Introduction
Background

Distributed CauDEr
Future work

The end

Thank you for the attention!

Giovanni Fabbretti , Ivan Lanese , Jean-Bernard Stefani Causal-Consistent Debugging of Distributed Erlang Programs

	Introduction
	CauDEr
	Motivation
	Erlang
	Notion of Reversibility
	Contribution

	Background
	CauDEr's Components
	Causal Dependencies

	Distributed CauDEr
	Distributed Primitives and Causal Dependencies
	Reversible Semantics
	Rollback Semantics

	Future work

