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Goal: debugging technique for concurrent programs

1 A simple (eager) functional language with
message-passing concurrency (subset of Erlang)

2 Logging semantics: records the order in which
messages are delivered to each process

3 Reversible semantics: allows us to explore back and
forth the recorded execution in a causal-consistent way
(i.e., an action cannot be undone until all the actions
that depend on it have already been undone)

4 Controlled (replay/rollback) semantics: where the user
can specify the actions to replay/undo→ CauDEr
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The language

We consider a simple functional and concurrent
programming language similar to Erlang

• No shared memory, only message passing
(asynchronous communication)
• Each process has a local queue (mailbox)
• A system is a collection of processes
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Sequential Erlang in 5 examples
append/2

append([H|T], L) −> [H|append(T,L)];
append([], L) −> L.

Variables start with an uppercase letter

Function names and atoms (i.e., constants) start with a
lowercase letter

Alternative definition:

append/2

append(A,B) −> case A of
[H|T] −> [H|append(T,L)];
[] −> L
end.
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Sequential Erlang in 5 examples

toint/1
toint({s,N}) −> int(N) + 1;
toint(zero) −> 0.

E.g., toint({s, {s, {s,zero}}}) evaluates to 3

No user-defined algebraic data types (so we cannot write
s(s(s(zero))))

Main data types: numbers, atoms, lists, and tuples
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Sequential Erlang in 5 examples

factorial/1

factorial(N) when N > 0 −> N ∗ factorial(N− 1);
factorial(1) −> 0.

Besides pattern matching, we can have guards

Only built-in functions are allowed in guards
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Sequential Erlang in 5 examples

minmax/1
minmax(L) −> Min = lists : min(L),

Max = lists : max(L),
{Min,Max}.

Sequence e1, . . . ,en evaluates all expressions, returns the
evaluation of en

Equation pat = exp evaluates exp and perform pattern
matching with pat
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Sequential Erlang in 5 examples

inclist/1

inclist(L) −> lists : map(fun(X) −> X+ 1 end,L).

Higher-order functions

Anonymous functions

No partial applications
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Concurrency features

• spawn/1 and spawn/3: creates a new process as a
side-effect and returns the pid of the new process
• self/0: returns the pid of the current process
• pid ! val: sends val to process pid as a side-effect and

returns val
• receive . . . end: waits for a message that matches

some pattern (otherwise, blocks execution) and returns
the expression in the selected branch
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Concurrent Erlang in 1 example

main() −> S = spawn(fun() −> server([ ]) end),
client(S).

client(S) −> S ! {self(), {add,paper}},
S ! {self(), {add,pencil}},
S ! {self(),take},
receive
X −> X
end.

server(L) −> receive
{_, {add,Item}} −> server([Item|L]);
{C,take} −> C ! hd(L), server(tl(L))
end.
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From Erlang to Core Erlang

Core Erlang is an intermediate representation used during
the compilation of Erlang programs

It is a convenient representation for defining analyses and
other tools

Not as readable as Erlang. . .
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From Erlang to Core Erlang

erlang

a(42) −> ok;
a(N) −> M = N+ 1,a(M).

core erlang
′a′/1 = fun(_@c0) −>

case _@c0 of
< 42 > when ′true′ −> ′ok′
< _@c2 > when ′true′ −> let < _@c3 >= call ′erlang′ :′+′(N,1)

in apply ′a′/1 (_@c3)
end

Essentially: one clause per function, case for pattern
matching, let for sequences, apply for function applications,
call for built-in calls, etc
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Core Erlang syntax

We consider a subset of Core Erlang with this syntax:

Module ::= module Atom = fun1, . . . , funn

fun ::= fname = fun (X1, . . . ,Xn) → expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | [ ]
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr , [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}
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Some preliminary definitions

Definition (process) //no local queue!
A process is a triple 〈p, θ, e〉 where
• p is the pid of the process
• θ is an environment
• e is the expression to be reduced

Definition (system)
A system is denoted by Γ ;Π, where
• Γ models the network & local queues (global mailbox)
• Π is a pool of processes

Γ is a multiset of triples (sender_pid , target_pid ,message)

We often use Γ ; 〈p, θ, e〉 & Π to denote an arbitrary system
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Core Erlang Semantics

Two-level (reduction) semantics:
• Semantics of expressions (sequential & concurrent)
• Semantics of systems

For concurrent actions, we face the following problems:
1 we don’t know the result of the actions (fresh variables)
2 we must perform side effects (labels)

Labels
• At expression level, transitions for concurrent actions

are labelled with enough information
• At system level, labels are used to perform the

associated actions
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Expression semantics:
sequential expressions

(Var)
θ, X τ−→ θ, θ(X)

(Tuple)
θ, ei

`−→ θ′, e′i

θ, {v1,i−1, ei , ei+1,n}
`−→ θ′, {v1,i−1, e′i , ei+1,n}

(List1)
θ, e1

`−→ θ′, e′1

θ, [e1|e2]
`−→ θ′, [e′1|e2]

(List2)
θ, e2

`−→ θ′, e′2

θ, [v1|e2]
`−→ θ′, [v1|e′2]

(Let1)
θ, e1

`−→ θ′, e′1

θ, let X = e1 in e2
`−→ θ′, let X = e′1 in e2

(Let2)
θ, let X = v in e τ−→ θ[X 7→ v ], e

(Case1)
θ, e `−→ θ′, e′

θ, case e of cl1; . . . ; cln end
`−→ θ′, case e′ of cl1; . . . ; cln end

(Case2)
match(v, cl1, . . . , cln) = 〈θi , ei 〉

θ, case v of cl1; . . . ; cln end τ−→ θθi , ei

(Apply1)
θ, ei

`−→ θ′, e′i i ∈ {1, . . . , n}

θ, apply a/n (v1,i−1, ei , ei+1,n)
`−→ θ′, apply a/n (v1,i−1, e′i , ei+1,n)

(Apply2)
µ(a/n) = fun (X1, . . . , Xn)→ e

θ, apply a/n (v1, . . . , vn)
τ−→ {X1 7→ v1, . . . , Xn 7→ vn}, e
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Sending a message

(expression semantics)

(Send1)
θ,e1

`−→ θ′,e′1
θ,e1 ! e2

`−→ θ′,e′1 ! e2

θ,e2
`−→ θ′,e′2

θ, v1 ! e2
`−→ θ′, v1 ! e′2

(Send2)
θ, v1 ! v2

send(v1,v2)−→ θ, v2

(system semantics)

(Send)
θ,e

send(p′,v)−→ θ′,e′

Γ ; 〈p, θ, e〉&Π ↪→ Γ ∪ {(p,p′, v)}; 〈p, θ′,e′〉&Π
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Spawning a process

(expression semantics)
(Spawn)

θ, spawn(a/n, [v1, . . . , vn])
spawn(κ,a/n,[vn])−→ θ, κ

(system semantics)

(Spawn)
θ,e

spawn(κ,a/n,[vn])−→ θ′,e′ p′ is a fresh pid
Γ ; 〈p, θ, e〉&Π ↪→ Γ ; 〈p, θ′,e′{κ 7→ p′}〉&

〈p′, θ′,apply a/n (vn)〉&Π
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Receiving a message

(expression semantics)
(Receive)

θ, receive cl1; . . . ; cln end
rec(κ,cln)−→ θ, κ

(system semantics)

(Receive)
θ,e

rec(κ,cln)−→ θ′,e′ matchrec(θ, cln, v) = (θi ,ei)

Γ∪{(p′,p, v)}; 〈p, θ, e〉&Π ↪→ Γ ; 〈p, θ′θi ,e′{κ 7→ ei}〉&Π
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Logging semantics

In concurrent languages, replaying a particular computation
might be difficult (even impossible) given the
nondeterminism of the language

We tag messages with unique identifiers

v 7→ {v , `}, where ` is fresh

A log L(d) of a derivation d is a sequence of items
spawn(p), send(`) or rec(`) for each process in d

(logs are local to each process)
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(Seq)
θ, e τ−→ θ′, e′

Γ ; 〈p, θ, e〉 |Π ↪→p,seq Γ ; 〈p, θ′, e′〉 |Π

(Send)

θ, e
send(p′,v)−−−−−−→ θ′, e′ and ` is a fresh symbol

Γ ; 〈p, θ, e〉 |Π ↪→p,send(`) Γ ∪ {(p, p′, {v , `})}; 〈p, θ′, e′〉 |Π

(Receive)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi , ei )

Γ ∪ {(p′, p, {v , `})}; 〈p, θ, e〉 |Π ↪→p,rec(`) Γ ; 〈p, θ′θi , e′{κ 7→ ei}〉 |Π

(Spawn)

θ, e
spawn(κ,a/n,[vn ])−−−−−−−−−−−→ θ′, e′ and p′ is a fresh pid

Γ ; 〈p, θ, e〉 |Π ↪→p,spawn(p′) Γ ; 〈p, θ′, e′{κ 7→ p′}〉 | 〈p′, id , apply a/n (vn)〉 |Π

(Self )

θ, e
self(κ)−−−−→ θ′, e′

Γ ; 〈p, θ, e〉 |Π ↪→p,self Γ ; 〈p, θ′, e′{κ 7→ p}〉 |Π

(implemented by a program instrumentation)
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Causally equivalent derivations

t1 = (s1 ↪→p1,r1 s′
1) happened before t2 = (s2 ↪→p2,r2 s′

2), in
symbols t1 ; t2, if one of the following conditions holds:

• p1 = p2 and t1 comes before t2;

• r1 = spawn(p) and p2 = p;

• r1 = send(`) and r2 = rec(`).

t1 and t2 are independent if t1 6; t2 and t2 6; t1

d1 and d2 are causally equivalent (d1 ≈ d2) if d1 can be obtained
from d2 by switching consecutive independent transitions

Given (coinitial) derivations d1 and d2,
�� ��L(d1) = L(d2) iff d1 ≈ d2
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Reversible Semantics

Processes have the form 〈p, ω, h, θ, e〉
with ω a log and h a history

A history h is a sequence of terms headed by constructors
seq, send, rec, spawn, and self, and whose arguments are
the information required to (deterministically) undo the step
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Uncontrolled forward semantics

(Send)

θ, e
send(p′,v)−−−−−−→ θ′, e′

Γ ; 〈p, send(`) :ω, h, θ, e〉 |Π
⇀p,send(`),{s,`⇑} Γ ∪ {(p, p′, {v , `})};

〈p, ω, send(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
(Receive)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi , ei )

Γ ∪ {(p′, p, {v , `})}〈p, rec(`) :ω, h, θ, e〉 |Π
⇀p,rec(`),{s,`⇓} Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′θi , e′{κ 7→ ei}〉 |Π

(Spawn)

θ, e
spawn(κ,a/n,[vn ])−−−−−−−−−−−→ θ′, e′ and ω′ = trace(d , p′)

Γ ; 〈p, spawn(p′) :ω, h, θ, e〉 |Π
⇀p,spawn(p′),{s,spp′} Γ ; 〈p, ω, spawn(θ, e, p′) :h, θ′, e′{κ 7→ p′}〉

| 〈p′, ω′, [ ], id , apply a/n (vn)〉 |Π
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Uncontrolled backward
semantics

(Send)
Γ ∪ {(p, p′, {v , `})}; 〈p, ω, send(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
↽p,send(`),{s,`⇑} Γ ; 〈p, send(`) :ω, h, θ, e〉 |Π

(Receive)
Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
↽p,rec(`),{s,`⇓}∪V Γ ∪ {(p′, p, {v , `})}; 〈p, rec(`) :ω, h, θ, e〉 |Π

where V = Dom(θ′)\Dom(θ)

(Spawn)
Γ ; 〈p, ω, spawn(θ, e, p′) :h, θ′, e′〉 | 〈p′, ω′, [ ], id , e′′〉 |Π
↽p,spawn(p′),{s,spp′} Γ ; 〈p, spawn(p′) :ω, h, θ, e〉 |Π
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Uncontrolled backward
semantics

(Receive)
Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
↽p,rec(`),{s,`⇓}∪V Γ ∪ {(p′, p, {v , `})}; 〈p, rec(`) :ω, h, θ, e〉 |Π

where V = Dom(θ′)\Dom(θ)
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Some results...

Coinitial derivations are cofinal
iff they are causally equivalent

Misbehaviors are preserved
by all causally equivalent derivations
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Controlled replay/rollback
semantics

We allow the user to start a replay/rollback until a particular
action is performed, e.g.,
• {p, s}: one step backward/forward of process p
• {p, `⇑}: a backward/forward derivation of process p up

to the sending of the message tagged with `
• {p, `⇓}: a backward/forward derivation of process p up

to the reception of the message tagged with `
• {p, spp′}: a backward/forward derivation of process p

up to the spawning of the process with pid p′

• {p,X}: a backward derivation of process p up to the
introduction of variable X
• . . .
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Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack



Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack



Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack



Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack



Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Reversible debugging

Two components: code instrumentation (logging)
+ causal-consistent reversible debugger (CauDEr)

https://github.com/mistupv/tracer

https://github.com/mistupv/cauder/tree/replay
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A Note on the implementation

Current prototypes show good potential, but more
implementation effort is still required:
• move from Core Erlang to Erlang (or add pretty printing)
• graphical representation of traces
• consider more Erlang features: links, monitors,

built-in’s, input/output, behaviours, etc
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Conclusions & future work

Promising approach for (causal-consistent) reversible
debugging of message passing concurrent programs

Most ideas are applicable to other concurrent languages

Some ideas for future work:
• deal with (partially) unknown modules, trusted

components, etc
• combine it with program slicing / automatic bug location
• keep improving the implementation
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Thanks for your attention!

Questions?
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