
Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Causal-Consistent Replay Debugging
for Message Passing Programs

Ivan Lanese, Adrián Palacios & Germán Vidal

Università Bologna & Universitat Politècnica de València

(paper presented at FORTE 2019)

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Roadmap

Goal: debugging technique for concurrent programs

1 A simple (eager) functional language with
message-passing concurrency (subset of Erlang)

2 Logging semantics: records the order in which
messages are delivered to each process

3 Reversible semantics: allows us to explore back and
forth the recorded execution in a causal-consistent way
(i.e., an action cannot be undone until all the actions
that depend on it have already been undone)

4 Controlled (replay/rollback) semantics: where the user
can specify the actions to replay/undo→ CauDEr

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Roadmap

Goal: debugging technique for concurrent programs

1 A simple (eager) functional language with
message-passing concurrency (subset of Erlang)

2 Logging semantics: records the order in which
messages are delivered to each process

3 Reversible semantics: allows us to explore back and
forth the recorded execution in a causal-consistent way
(i.e., an action cannot be undone until all the actions
that depend on it have already been undone)

4 Controlled (replay/rollback) semantics: where the user
can specify the actions to replay/undo→ CauDEr

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Roadmap

Goal: debugging technique for concurrent programs

1 A simple (eager) functional language with
message-passing concurrency (subset of Erlang)

2 Logging semantics: records the order in which
messages are delivered to each process

3 Reversible semantics: allows us to explore back and
forth the recorded execution in a causal-consistent way
(i.e., an action cannot be undone until all the actions
that depend on it have already been undone)

4 Controlled (replay/rollback) semantics: where the user
can specify the actions to replay/undo→ CauDEr

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Roadmap

Goal: debugging technique for concurrent programs

1 A simple (eager) functional language with
message-passing concurrency (subset of Erlang)

2 Logging semantics: records the order in which
messages are delivered to each process

3 Reversible semantics: allows us to explore back and
forth the recorded execution in a causal-consistent way
(i.e., an action cannot be undone until all the actions
that depend on it have already been undone)

4 Controlled (replay/rollback) semantics: where the user
can specify the actions to replay/undo→ CauDEr

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Roadmap

Goal: debugging technique for concurrent programs

1 A simple (eager) functional language with
message-passing concurrency (subset of Erlang)

2 Logging semantics: records the order in which
messages are delivered to each process

3 Reversible semantics: allows us to explore back and
forth the recorded execution in a causal-consistent way
(i.e., an action cannot be undone until all the actions
that depend on it have already been undone)

4 Controlled (replay/rollback) semantics: where the user
can specify the actions to replay/undo→ CauDEr

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

The language

We consider a simple functional and concurrent
programming language similar to Erlang

• No shared memory, only message passing
(asynchronous communication)
• Each process has a local queue (mailbox)
• A system is a collection of processes

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sequential Erlang in 5 examples
append/2

append([H|T], L) −> [H|append(T,L)];
append([], L) −> L.

Variables start with an uppercase letter

Function names and atoms (i.e., constants) start with a
lowercase letter

Alternative definition:

append/2

append(A,B) −> case A of
[H|T] −> [H|append(T,L)];
[] −> L
end.

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sequential Erlang in 5 examples
append/2

append([H|T], L) −> [H|append(T,L)];
append([], L) −> L.

Variables start with an uppercase letter

Function names and atoms (i.e., constants) start with a
lowercase letter

Alternative definition:

append/2

append(A,B) −> case A of
[H|T] −> [H|append(T,L)];
[] −> L
end.

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sequential Erlang in 5 examples

toint/1
toint({s,N}) −> int(N) + 1;
toint(zero) −> 0.

E.g., toint({s, {s, {s,zero}}}) evaluates to 3

No user-defined algebraic data types (so we cannot write
s(s(s(zero))))

Main data types: numbers, atoms, lists, and tuples

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sequential Erlang in 5 examples

factorial/1

factorial(N) when N > 0 −> N ∗ factorial(N− 1);
factorial(1) −> 0.

Besides pattern matching, we can have guards

Only built-in functions are allowed in guards

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sequential Erlang in 5 examples

minmax/1
minmax(L) −> Min = lists : min(L),

Max = lists : max(L),
{Min,Max}.

Sequence e1, . . . ,en evaluates all expressions, returns the
evaluation of en

Equation pat = exp evaluates exp and perform pattern
matching with pat

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sequential Erlang in 5 examples

inclist/1

inclist(L) −> lists : map(fun(X) −> X+ 1 end,L).

Higher-order functions

Anonymous functions

No partial applications

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Concurrency features

• spawn/1 and spawn/3: creates a new process as a
side-effect and returns the pid of the new process
• self/0: returns the pid of the current process
• pid ! val: sends val to process pid as a side-effect and

returns val
• receive . . . end: waits for a message that matches

some pattern (otherwise, blocks execution) and returns
the expression in the selected branch

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Concurrent Erlang in 1 example

main() −> S = spawn(fun() −> server([]) end),
client(S).

client(S) −> S ! {self(), {add,paper}},
S ! {self(), {add,pencil}},
S ! {self(),take},
receive
X −> X
end.

server(L) −> receive
{_, {add,Item}} −> server([Item|L]);
{C,take} −> C ! hd(L), server(tl(L))
end.

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

From Erlang to Core Erlang

Core Erlang is an intermediate representation used during
the compilation of Erlang programs

It is a convenient representation for defining analyses and
other tools

Not as readable as Erlang. . .

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

From Erlang to Core Erlang

erlang

a(42) −> ok;
a(N) −> M = N+ 1,a(M).

core erlang
′a′/1 = fun(_@c0) −>

case _@c0 of
< 42 > when ′true′ −> ′ok′
< _@c2 > when ′true′ −> let < _@c3 >= call ′erlang′ :′+′(N,1)

in apply ′a′/1 (_@c3)
end

Essentially: one clause per function, case for pattern
matching, let for sequences, apply for function applications,
call for built-in calls, etc

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

From Erlang to Core Erlang

erlang

a(42) −> ok;
a(N) −> M = N+ 1,a(M).

core erlang
′a′/1 = fun(_@c0) −>

case _@c0 of
< 42 > when ′true′ −> ′ok′
< _@c2 > when ′true′ −> let < _@c3 >= call ′erlang′ :′+′(N,1)

in apply ′a′/1 (_@c3)
end

Essentially: one clause per function, case for pattern
matching, let for sequences, apply for function applications,
call for built-in calls, etc

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Core Erlang syntax

We consider a subset of Core Erlang with this syntax:

Module ::= module Atom = fun1, . . . , funn

fun ::= fname = fun (X1, . . . ,Xn) → expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | []
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr , [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Core Erlang syntax

We consider a subset of Core Erlang with this syntax:

Module ::= module Atom = fun1, . . . , funn

fun ::= fname = fun (X1, . . . ,Xn) → expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | []
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr , [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Some preliminary definitions

Definition (process) //no local queue!
A process is a triple 〈p, θ, e〉 where
• p is the pid of the process
• θ is an environment
• e is the expression to be reduced

Definition (system)
A system is denoted by Γ ;Π, where
• Γ models the network & local queues (global mailbox)
• Π is a pool of processes

Γ is a multiset of triples (sender_pid , target_pid ,message)

We often use Γ ; 〈p, θ, e〉 & Π to denote an arbitrary system

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Some preliminary definitions

Definition (process) //no local queue!
A process is a triple 〈p, θ, e〉 where
• p is the pid of the process
• θ is an environment
• e is the expression to be reduced

Definition (system)
A system is denoted by Γ ;Π, where
• Γ models the network & local queues (global mailbox)
• Π is a pool of processes

Γ is a multiset of triples (sender_pid , target_pid ,message)

We often use Γ ; 〈p, θ, e〉 & Π to denote an arbitrary system

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Core Erlang Semantics

Two-level (reduction) semantics:
• Semantics of expressions (sequential & concurrent)
• Semantics of systems

For concurrent actions, we face the following problems:
1 we don’t know the result of the actions (fresh variables)
2 we must perform side effects (labels)

Labels
• At expression level, transitions for concurrent actions

are labelled with enough information
• At system level, labels are used to perform the

associated actions

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Core Erlang Semantics

Two-level (reduction) semantics:
• Semantics of expressions (sequential & concurrent)
• Semantics of systems

For concurrent actions, we face the following problems:
1 we don’t know the result of the actions (fresh variables)
2 we must perform side effects (labels)

Labels
• At expression level, transitions for concurrent actions

are labelled with enough information
• At system level, labels are used to perform the

associated actions

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Expression semantics:
sequential expressions

(Var)
θ, X τ−→ θ, θ(X)

(Tuple)
θ, ei

`−→ θ′, e′i

θ, {v1,i−1, ei , ei+1,n}
`−→ θ′, {v1,i−1, e′i , ei+1,n}

(List1)
θ, e1

`−→ θ′, e′1

θ, [e1|e2]
`−→ θ′, [e′1|e2]

(List2)
θ, e2

`−→ θ′, e′2

θ, [v1|e2]
`−→ θ′, [v1|e′2]

(Let1)
θ, e1

`−→ θ′, e′1

θ, let X = e1 in e2
`−→ θ′, let X = e′1 in e2

(Let2)
θ, let X = v in e τ−→ θ[X 7→ v], e

(Case1)
θ, e `−→ θ′, e′

θ, case e of cl1; . . . ; cln end
`−→ θ′, case e′ of cl1; . . . ; cln end

(Case2)
match(v, cl1, . . . , cln) = 〈θi , ei 〉

θ, case v of cl1; . . . ; cln end τ−→ θθi , ei

(Apply1)
θ, ei

`−→ θ′, e′i i ∈ {1, . . . , n}

θ, apply a/n (v1,i−1, ei , ei+1,n)
`−→ θ′, apply a/n (v1,i−1, e′i , ei+1,n)

(Apply2)
µ(a/n) = fun (X1, . . . , Xn)→ e

θ, apply a/n (v1, . . . , vn)
τ−→ {X1 7→ v1, . . . , Xn 7→ vn}, e

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sending a message

(expression semantics)

(Send1)
θ,e1

`−→ θ′,e′1
θ,e1 ! e2

`−→ θ′,e′1 ! e2

θ,e2
`−→ θ′,e′2

θ, v1 ! e2
`−→ θ′, v1 ! e′2

(Send2)
θ, v1 ! v2

send(v1,v2)−→ θ, v2

(system semantics)

(Send)
θ,e

send(p′,v)−→ θ′,e′

Γ ; 〈p, θ, e〉&Π ↪→ Γ ∪ {(p,p′, v)}; 〈p, θ′,e′〉&Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Sending a message

(expression semantics)

(Send1)
θ,e1

`−→ θ′,e′1
θ,e1 ! e2

`−→ θ′,e′1 ! e2

θ,e2
`−→ θ′,e′2

θ, v1 ! e2
`−→ θ′, v1 ! e′2

(Send2)
θ, v1 ! v2

send(v1,v2)−→ θ, v2

(system semantics)

(Send)
θ,e

send(p′,v)−→ θ′,e′

Γ ; 〈p, θ, e〉&Π ↪→ Γ ∪ {(p,p′, v)}; 〈p, θ′,e′〉&Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Spawning a process

(expression semantics)
(Spawn)

θ, spawn(a/n, [v1, . . . , vn])
spawn(κ,a/n,[vn])−→ θ, κ

(system semantics)

(Spawn)
θ,e

spawn(κ,a/n,[vn])−→ θ′,e′ p′ is a fresh pid
Γ ; 〈p, θ, e〉&Π ↪→ Γ ; 〈p, θ′,e′{κ 7→ p′}〉&

〈p′, θ′,apply a/n (vn)〉&Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Spawning a process

(expression semantics)
(Spawn)

θ, spawn(a/n, [v1, . . . , vn])
spawn(κ,a/n,[vn])−→ θ, κ

(system semantics)

(Spawn)
θ,e

spawn(κ,a/n,[vn])−→ θ′,e′ p′ is a fresh pid
Γ ; 〈p, θ, e〉&Π ↪→ Γ ; 〈p, θ′,e′{κ 7→ p′}〉&

〈p′, θ′,apply a/n (vn)〉&Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Receiving a message

(expression semantics)
(Receive)

θ, receive cl1; . . . ; cln end
rec(κ,cln)−→ θ, κ

(system semantics)

(Receive)
θ,e

rec(κ,cln)−→ θ′,e′ matchrec(θ, cln, v) = (θi ,ei)

Γ∪{(p′,p, v)}; 〈p, θ, e〉&Π ↪→ Γ ; 〈p, θ′θi ,e′{κ 7→ ei}〉&Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Receiving a message

(expression semantics)
(Receive)

θ, receive cl1; . . . ; cln end
rec(κ,cln)−→ θ, κ

(system semantics)

(Receive)
θ,e

rec(κ,cln)−→ θ′,e′ matchrec(θ, cln, v) = (θi ,ei)

Γ∪{(p′,p, v)}; 〈p, θ, e〉&Π ↪→ Γ ; 〈p, θ′θi ,e′{κ 7→ ei}〉&Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Logging semantics

In concurrent languages, replaying a particular computation
might be difficult (even impossible) given the
nondeterminism of the language

We tag messages with unique identifiers

v 7→ {v , `}, where ` is fresh

A log L(d) of a derivation d is a sequence of items
spawn(p), send(`) or rec(`) for each process in d

(logs are local to each process)

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Logging semantics

In concurrent languages, replaying a particular computation
might be difficult (even impossible) given the
nondeterminism of the language

We tag messages with unique identifiers

v 7→ {v , `}, where ` is fresh

A log L(d) of a derivation d is a sequence of items
spawn(p), send(`) or rec(`) for each process in d

(logs are local to each process)

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

(Seq)
θ, e τ−→ θ′, e′

Γ ; 〈p, θ, e〉 |Π ↪→p,seq Γ ; 〈p, θ′, e′〉 |Π

(Send)

θ, e
send(p′,v)−−−−−−→ θ′, e′ and ` is a fresh symbol

Γ ; 〈p, θ, e〉 |Π ↪→p,send(`) Γ ∪ {(p, p′, {v , `})}; 〈p, θ′, e′〉 |Π

(Receive)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi , ei)

Γ ∪ {(p′, p, {v , `})}; 〈p, θ, e〉 |Π ↪→p,rec(`) Γ ; 〈p, θ′θi , e′{κ 7→ ei}〉 |Π

(Spawn)

θ, e
spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and p′ is a fresh pid

Γ ; 〈p, θ, e〉 |Π ↪→p,spawn(p′) Γ ; 〈p, θ′, e′{κ 7→ p′}〉 | 〈p′, id , apply a/n (vn)〉 |Π

(Self)

θ, e
self(κ)−−−−→ θ′, e′

Γ ; 〈p, θ, e〉 |Π ↪→p,self Γ ; 〈p, θ′, e′{κ 7→ p}〉 |Π

(implemented by a program instrumentation)

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Causally equivalent derivations

t1 = (s1 ↪→p1,r1 s′
1) happened before t2 = (s2 ↪→p2,r2 s′

2), in
symbols t1 ; t2, if one of the following conditions holds:

• p1 = p2 and t1 comes before t2;

• r1 = spawn(p) and p2 = p;

• r1 = send(`) and r2 = rec(`).

t1 and t2 are independent if t1 6; t2 and t2 6; t1

d1 and d2 are causally equivalent (d1 ≈ d2) if d1 can be obtained
from d2 by switching consecutive independent transitions

Given (coinitial) derivations d1 and d2,
�� ��L(d1) = L(d2) iff d1 ≈ d2

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Causally equivalent derivations

t1 = (s1 ↪→p1,r1 s′
1) happened before t2 = (s2 ↪→p2,r2 s′

2), in
symbols t1 ; t2, if one of the following conditions holds:

• p1 = p2 and t1 comes before t2;

• r1 = spawn(p) and p2 = p;

• r1 = send(`) and r2 = rec(`).

t1 and t2 are independent if t1 6; t2 and t2 6; t1

d1 and d2 are causally equivalent (d1 ≈ d2) if d1 can be obtained
from d2 by switching consecutive independent transitions

Given (coinitial) derivations d1 and d2,
�� ��L(d1) = L(d2) iff d1 ≈ d2

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Reversible Semantics

Processes have the form 〈p, ω, h, θ, e〉
with ω a log and h a history

A history h is a sequence of terms headed by constructors
seq, send, rec, spawn, and self, and whose arguments are
the information required to (deterministically) undo the step

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Uncontrolled forward semantics

(Send)

θ, e
send(p′,v)−−−−−−→ θ′, e′

Γ ; 〈p, send(`) :ω, h, θ, e〉 |Π
⇀p,send(`),{s,`⇑} Γ ∪ {(p, p′, {v , `})};

〈p, ω, send(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
(Receive)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi , ei)

Γ ∪ {(p′, p, {v , `})}〈p, rec(`) :ω, h, θ, e〉 |Π
⇀p,rec(`),{s,`⇓} Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′θi , e′{κ 7→ ei}〉 |Π

(Spawn)

θ, e
spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and ω′ = trace(d , p′)

Γ ; 〈p, spawn(p′) :ω, h, θ, e〉 |Π
⇀p,spawn(p′),{s,spp′} Γ ; 〈p, ω, spawn(θ, e, p′) :h, θ′, e′{κ 7→ p′}〉

| 〈p′, ω′, [], id , apply a/n (vn)〉 |Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Uncontrolled forward semantics

(Receive)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi , ei)

Γ ∪ {(p′, p, {v , `})}〈p, rec(`) :ω, h, θ, e〉 |Π
⇀p,rec(`),{s,`⇓} Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′θi , e′{κ 7→ ei}〉 |Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Uncontrolled backward
semantics

(Send)
Γ ∪ {(p, p′, {v , `})}; 〈p, ω, send(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
↽p,send(`),{s,`⇑} Γ ; 〈p, send(`) :ω, h, θ, e〉 |Π

(Receive)
Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
↽p,rec(`),{s,`⇓}∪V Γ ∪ {(p′, p, {v , `})}; 〈p, rec(`) :ω, h, θ, e〉 |Π

where V = Dom(θ′)\Dom(θ)

(Spawn)
Γ ; 〈p, ω, spawn(θ, e, p′) :h, θ′, e′〉 | 〈p′, ω′, [], id , e′′〉 |Π
↽p,spawn(p′),{s,spp′} Γ ; 〈p, spawn(p′) :ω, h, θ, e〉 |Π

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Uncontrolled backward
semantics

(Receive)
Γ ; 〈p, ω, rec(θ, e, p′, {v , `}) :h, θ′, e′〉 |Π
↽p,rec(`),{s,`⇓}∪V Γ ∪ {(p′, p, {v , `})}; 〈p, rec(`) :ω, h, θ, e〉 |Π

where V = Dom(θ′)\Dom(θ)

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Some results...

Coinitial derivations are cofinal
iff they are causally equivalent

Misbehaviors are preserved
by all causally equivalent derivations

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled replay/rollback
semantics

We allow the user to start a replay/rollback until a particular
action is performed, e.g.,
• {p, s}: one step backward/forward of process p
• {p, `⇑}: a backward/forward derivation of process p up

to the sending of the message tagged with `
• {p, `⇓}: a backward/forward derivation of process p up

to the reception of the message tagged with `
• {p, spp′}: a backward/forward derivation of process p

up to the spawning of the process with pid p′

• {p,X}: a backward derivation of process p up to the
introduction of variable X
• . . .

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Controlled semantics takes a stack of requests (initially one)

It is defined as a layer on top of the uncontrolled semantics:
• If a process can perform a step satisfying the request

on top of the stack→ do it and remove the request
• If a process can perform a step but it doesn’t satisfy the

request→ update the system but keep the request
• If a step on the process is not possible→ track

dependencies and add new requests on top of the stack

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Reversible debugging

Two components: code instrumentation (logging)
+ causal-consistent reversible debugger (CauDEr)

https://github.com/mistupv/tracer

https://github.com/mistupv/cauder/tree/replay

 0

 10000

 20000

 30000

 40000

 50000

 60000

bang big gens. para. ran seri. time.

Ti
m

e
(µ

s)

Benchmark

Time for instrumentation

Standard compilation
Instrumentation + compilation

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10R
un

tim
e:

 in
st

ru
m

en
te

d/
st

an
da

rd
 ra

tio

Input size

Execution overhead

bang
big

genstress
parallel

ran
serialmsg

timer_wheel

https://github.com/mistupv/tracer
https://github.com/mistupv/cauder/tree/replay

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

A Note on the implementation

Current prototypes show good potential, but more
implementation effort is still required:
• move from Core Erlang to Erlang (or add pretty printing)
• graphical representation of traces
• consider more Erlang features: links, monitors,

built-in’s, input/output, behaviours, etc

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Conclusions & future work

Promising approach for (causal-consistent) reversible
debugging of message passing concurrent programs

Most ideas are applicable to other concurrent languages

Some ideas for future work:
• deal with (partially) unknown modules, trusted

components, etc
• combine it with program slicing / automatic bug location
• keep improving the implementation

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Conclusions & future work

Promising approach for (causal-consistent) reversible
debugging of message passing concurrent programs

Most ideas are applicable to other concurrent languages

Some ideas for future work:
• deal with (partially) unknown modules, trusted

components, etc
• combine it with program slicing / automatic bug location
• keep improving the implementation

Causal-
Consistent

Replay
Debugging

PROLE’19

Roadmap

The
Language
Syntax (sequential)

Syntax (concurrent)

Core Erlang

Semantics

Logging
Semantics

Reversible
Semantics
Uncontrolled

Controlled

Reversible
Debugging

Conclusions

Thanks for your attention!

Questions?

	Roadmap
	The Language
	Syntax (sequential)
	Syntax (concurrent)
	Core Erlang
	Semantics

	Logging Semantics
	Reversible Semantics
	Uncontrolled
	Controlled

	Reversible Debugging
	Conclusions

