
A general approach to derive

causally-consistent reversible semantics

Ivan Lanese Doriana Medić Giovanni Fabbretti Jean-Bernard Stefani

Work partially supported by French ANR project DCore ANR-18-CE25-0007 and

by ALMArie CURIE 2021 project J45F21001470005

OPCT, June 26-30, 2023

Material from CONCUR 2020 and ICFEM 2022



Reversible computing

◦ already discussed in previous talks by Claudio M. and Irek, but in

case you were distracted . . .

◦ allows one to execute programs not only forwards, but also

backwards

◦ applied in low-power computing, biochemical modelling, simulation,

robotics, debugging, etc.

◦ sequential systems - forward actions are undone in reverse order

◦ concurrent systems - identifying the last action is not immediate

1



Causally-consistent reversibility

◦ proposed by Danos & Krivine in their CONCUR 2004 paper

� the paper has won the CONCUR 2023 test-of-time award

◦ any action can be reversed, provided that all its consequences have

been reversed beforehand

◦ dependent actions must be reversed in reverse order, concurrent

actions can be reversed in any order

◦ mainstream approach to reversibility in concurrent systems, albeit

other approaches exist

[1] V. Danos and J. Krivine: Reversible communicating systems. In: CONCUR 2004.

2



Working on causally-consistent reversibility

◦ Claudio M. showed what a reversible timed process calculus looks

like

◦ . . . and causally-consistent extensions of many formalisms (CCS, pi,

occurrence nets, event structures, Erlang, . . . ) exist

◦ . . . but most of the constructions are ad hoc

◦ can we provide a general technique?

3



Our answer

◦ partially positive answer

◦ positive for systems with reduction semantics satisfying suitable

conditions and causality based on resources produced and consumed

◦ a causally-consistent reversible semantics can be automatically

produced

◦ it satisfies all the expected properties (cf. Irek’s talk)

◦ two case studies: (asynchronous) Higher-Order π-calculus and Core

Erlang (also features not previously considered in the literature)

◦ approach implemented in Maude

4



The requirements on the forward model

The forward model needs to be structured in two levels:

◦ The lower level is composed of entities (processes, messages,

resources) ranged over by P,Q.

− No restrictions on the syntax of the lower level.

◦ The higher level is composed of the following operators:

N ::= P | opn(N1, . . . ,Nn) | 0

where

• opn(N1, . . . ,Nn) stands for a family of operators;

• parallel composition, N1 | N2, is assumed among the operators;

• 0 represents the empty system.

5



The requirements on the forward model

The forward model needs to be structured in two levels:

◦ The lower level is composed of entities (processes, messages,

resources) ranged over by P,Q.

− No restrictions on the syntax of the lower level.

◦ The higher level is composed of the following operators:

N ::= P | opn(N1, . . . ,Nn) | 0

where

• opn(N1, . . . ,Nn) stands for a family of operators;

• parallel composition, N1 | N2, is assumed among the operators;

• 0 represents the empty system.

5



The requirements on the forward model

The forward model needs to be structured in two levels:

◦ The lower level is composed of entities (processes, messages,

resources) ranged over by P,Q.

− No restrictions on the syntax of the lower level.

◦ The higher level is composed of the following operators:

N ::= P | opn(N1, . . . ,Nn) | 0

where

• opn(N1, . . . ,Nn) stands for a family of operators;

• parallel composition, N1 | N2, is assumed among the operators;

• 0 represents the empty system.

5



Running example: the HOπ-calculus

◦ The syntax of the HOπ-calculus is:

P ::= a〈P〉 | a(X ) . P | (P1 | P2) | νa (P) | X | 0

− we separate entities from systems;

− an entity Q is any HOπ process whose topmost operator is neither a

parallel composition nor a restriction nor 0.

◦ The syntax of systems is defined as:

N := Q | (N1 | N2) | νa (N) | 0

where:

− operators | and 0 are required by our framework;

− restriction is an infinite family of unary operators with one instance

for each name a.

6



Running example: the HOπ-calculus

◦ The syntax of the HOπ-calculus is:

P ::= a〈P〉 | a(X ) . P | (P1 | P2) | νa (P) | X | 0

− we separate entities from systems;

− an entity Q is any HOπ process whose topmost operator is neither a

parallel composition nor a restriction nor 0.

◦ The syntax of systems is defined as:

N := Q | (N1 | N2) | νa (N) | 0

where:

− operators | and 0 are required by our framework;

− restriction is an infinite family of unary operators with one instance

for each name a.
6



Structural congruence

◦ A generic system can be represented as a term

T [P1, . . . ,Pn]

where T [•1, . . . , •n] is a context with n numbered holes.

- T is built from composition operators, possibly including parallel

composition and 0.

◦ Structural congruence is specified by axioms of the form:

T [P1, . . . ,Pn] ≡ T ′[P ′
1, . . . ,P

′
n]

closed under contexts, reflexivity, symmetry and transitivity.

◦ Example: A sample HOπ structural rule is:

(ParC) P | Q ≡ Q | P

- it exploits contexts of the form •1 | •2 and •2 | •1

7



Structural congruence

◦ A generic system can be represented as a term

T [P1, . . . ,Pn]

where T [•1, . . . , •n] is a context with n numbered holes.

- T is built from composition operators, possibly including parallel

composition and 0.

◦ Structural congruence is specified by axioms of the form:

T [P1, . . . ,Pn] ≡ T ′[P ′
1, . . . ,P

′
n]

closed under contexts, reflexivity, symmetry and transitivity.

◦ Example: A sample HOπ structural rule is:

(ParC) P | Q ≡ Q | P

- it exploits contexts of the form •1 | •2 and •2 | •1

7



Structural congruence

◦ A generic system can be represented as a term

T [P1, . . . ,Pn]

where T [•1, . . . , •n] is a context with n numbered holes.

- T is built from composition operators, possibly including parallel

composition and 0.

◦ Structural congruence is specified by axioms of the form:

T [P1, . . . ,Pn] ≡ T ′[P ′
1, . . . ,P

′
n]

closed under contexts, reflexivity, symmetry and transitivity.

◦ Example: A sample HOπ structural rule is:

(ParC) P | Q ≡ Q | P

- it exploits contexts of the form •1 | •2 and •2 | •1
7



The reduction semantics of the forward model

(Scm-Act)
P1 | . . . | Pn � T [Q1, . . . ,Qm]

(Eqv)
N ≡ N ′ N � N1 N1 ≡ N ′

1

N ′ � N ′
1

(Scm-Opn)
Ni � N ′

i

opn(N0, . . . ,Ni , . . . ,Nn) � opn(N0, . . . ,N
′
i , . . . ,Nn)

(Par)
N � N ′

N | N1 � N ′ | N1

8



Running example: the communication rule of HOπ

◦ The communication rule (Act) of HOπ is defined as:

(Act)
a〈Q〉 | a(X ) . P � P{Q/X}

◦ Gives rise to an infinite number of instances

◦ The number of entities in the resulting process may vary:

a〈b〈P〉 | b(Y ) . Y | c〈Q〉〉 | a(X ) . X � b〈P〉 | b(Y ) . Y | c〈Q〉

- the resulting process has three entities b〈P〉, b(Y ) . Y and c〈Q〉,
composed using a context T = •1 | •2 | •3.

9



Running example: the communication rule of HOπ

◦ The communication rule (Act) of HOπ is defined as:

(Act)
a〈Q〉 | a(X ) . P � P{Q/X}

◦ Gives rise to an infinite number of instances

◦ The number of entities in the resulting process may vary:

a〈b〈P〉 | b(Y ) . Y | c〈Q〉〉 | a(X ) . X � b〈P〉 | b(Y ) . Y | c〈Q〉

- the resulting process has three entities b〈P〉, b(Y ) . Y and c〈Q〉,
composed using a context T = •1 | •2 | •3.

9



Definition of the reversible configuration

◦ The syntax of reversible configurations R is:

R ::= k :P | opn(R1, . . . ,Rn) | 0 | [R;C ] C ::= T [k1 : •1, . . . , km : •m]

where:

• k denotes a key identifying each entity of a system;

• opn are the same as in the forward system;

• T is a context composed of operators opn and 0;

• •i are numbered holes, to be filled by the processes with keys ki ;

• [R;C ] is a memory (R is the configuration which gave rise to the

forward step and C is the context of the resulting configuration).

10



Running example: syntax of reversible HOπ

◦ The syntax of the reversible HOπ-calculus is defined as:

R ::= k :Q | (R1 | R2) | νa (R) | 0 | [R;C ]

where Q are the entities as in the underlying calculus.

11



Structural congruence in the reversible calculus: naive approach

◦ For each axiom:

T [P1, . . . ,Pn] ≡ T ′[P ′
1, . . . ,P

′
n]

let us define a corresponding axiom:

T [k1 : P1, . . . , kn : Pn] ≡k T ′[k1 : P ′
1, . . . , kn : P ′

n]

• entities are labelled with keys and keys on both sides are the same.

• NOT WORKING, since it is not able to deal with memories

� E.g., we cannot apply commutativity of parallel composition to swap

memories

12



Structural congruence in the reversible calculus: refined approach

T [k1 : P1, . . . , kn : Pn] ≡k T ′[k1 : P ′
1, . . . , kn : P ′

n]

We apply the axioms to a flat representation of the configuration

R1 ≡c R2 iff there are R ′
1,R

′
2,S such that

proj(R1) = (R ′
1,S) ∧ R ′

1 ≡k R ′
2 ∧ proj(R2) = (R ′

2,S)

where:

� proj([R;C ]) = (R, {(key(R),C )})
� projection is defined homomorphically on the other operators;

� old configurations R are freed in the current configuration;

� {(key(R),C )} remembers information on what was in the memories.

13



Applying the refined structural congruence

R = νa (j1 : P1 | j2 : P2 | [k1 : a〈P1 | P2〉 | k2 : a(X ).X ;T [j1 : •1, j2 : •2]])

proj(R) = (νa (j1 : P1 | j2 : P2 | k1 : a〈P1 | P2〉 | k2 : a(X ) . X ),

{({k1, k2},T [j1 : •1, j2 : •2])})

proj(R ′) = (νb (j1 : P1 | j2 : P2 | k1 : b〈P1 | P2〉 | k2 : b(X ) . X ),

{({k1, k2},T [j1 : •1, j2 : •2])})

R ′ = νb (j1 : P1 | j2 : P2 | [k1 : b〈P1 | P2〉 | k2 : b(X ).X ;T [j1 : •1, j2 : •2]])

• each structural axiom needs to satisfy some coherence conditions;

• essentially content of the memories should not enable new

transitions;

• satisfied for most structural axioms (e.g., HOπ axioms).

14



The reversible semantics

◦ The forward rules of the uncontrolled reversible semantics are:

(F-Scm-Act)
P1 | . . . | Pn � T [Q1, . . . ,Qm] j1, . . . , jm are fresh keys

k1 : P1 | . . . | kn : Pn � T [j1 : Q1, . . . , jm : Qm] |
[k1 : P1 | . . . | kn : Pn;T [j1 : •1, . . . , jm : •m]]

(F-Scm-Opn)
Ri � R′i (key(R′i ) \ key(Ri )) ∩ (key(R0, . . . ,Ri−1,Ri+1, . . . ,Rn) = ∅

opn(R0, . . . ,Ri , . . . ,Rn) � opn(R0, . . . ,R
′
i , . . . ,Rn)

(F-Eqv)
R ≡c R′ R � R1 R1 ≡c R′1

R′ � R′1

◦ The backward rules are symmetric w.r.t. the forward ones.

15



The reversible semantics

◦ The forward rules of the uncontrolled reversible semantics are:

(F-Scm-Act)
P1 | . . . | Pn � T [Q1, . . . ,Qm] j1, . . . , jm are fresh keys

k1 : P1 | . . . | kn : Pn � T [j1 : Q1, . . . , jm : Qm] |
[k1 : P1 | . . . | kn : Pn;T [j1 : •1, . . . , jm : •m]]

(F-Scm-Opn)
Ri � R′i (key(R′i ) \ key(Ri )) ∩ (key(R0, . . . ,Ri−1,Ri+1, . . . ,Rn) = ∅

opn(R0, . . . ,Ri , . . . ,Rn) � opn(R0, . . . ,R
′
i , . . . ,Rn)

(F-Eqv)
R ≡c R′ R � R1 R1 ≡c R′1

R′ � R′1

◦ The backward rules are symmetric w.r.t. the forward ones.

15



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X � j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]] k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X �

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]] k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X � j1 : P1 | j2 : P2 |

[R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]] k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X � j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]] k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X � j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]] k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X � j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Running example: sample HOπ reduction

◦ consider system R = k1 : a〈P1 | P2〉 | k2 : a(X ) . X .

• forward step:

k1 : a〈P1 | P2〉 | k2 : a(X ) . X � j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]]

where T = •1 | •2.

• backward step:

j1 : P1 | j2 : P2 | [R;T [j1 : •1, j2 : •2]] k1 : a〈P1 | P2〉 | k2 : a(X ) . X

16



Concurrent transitions

◦ to discuss the properties of our semantics we need a notion of

concurrency (or, dually, causality)

◦ we extract the definition of concurrency from the reversible syntax

◦ transitions t of a system R are defined as:

t : R
µ−→ R ′

where µ is the memory created by the transition, if it is forward, or

consumed by it, if it is backward

◦ the function key(·) computes the set of keys of a given system.

Definition (Concurrent transitions)

Two coinitial transitions t ′ : R
µ′

−→ R ′ and t ′′ : R
µ′′

−−→ R ′′ are

concurrent if key(µ′) ∩ key(µ′′) = ∅.

17



Properties

◦ our framework fits the axiomatic meta-model described in Irek’s talk

[1], hence it enjoys a number of relevant properties, such as:

• Loop Lemma - every action can be undone;

• Parabolic Lemma - each reversible computation can be rearranged as

a backward computation, followed by a forward one;

• Causal Consistency - the correct history and causality information is

stored;

• Causal Safety - an action cannot be reversed until all actions caused

by it have been reversed;

• Causal Liveness - actions can be reversed in any order consistent

with Causal Safety.

[1] I. Lanese, I. C. C. Phillips and I. Ulidowski: An axiomatic approach to reversible

computation. In FOSSACS 2020.

18



Properties

◦ our framework fits the axiomatic meta-model described in Irek’s talk

[1], hence it enjoys a number of relevant properties, such as:

• Loop Lemma - every action can be undone;

• Parabolic Lemma - each reversible computation can be rearranged as

a backward computation, followed by a forward one;

• Causal Consistency - the correct history and causality information is

stored;

• Causal Safety - an action cannot be reversed until all actions caused

by it have been reversed;

• Causal Liveness - actions can be reversed in any order consistent

with Causal Safety.

[1] I. Lanese, I. C. C. Phillips and I. Ulidowski: An axiomatic approach to reversible

computation. In FOSSACS 2020.

18



Case study: Core Erlang

◦ Core Erlang is Erlang stripped of syntactic sugar (it was used as

intermediate step in Erlang compilation)

◦ A Core Erlang system [1] is defined as:

E := 〈p, θ, e〉 | (p, p′, v) | (E1 | E2)

where

• 〈p, θ, e〉 - a process with a pid p evaluating expression e in

environment θ;

• (p, p′, v) - a message carrying value v sent by the process with pid p

to the one with pid p′.

◦ From our approach we get that a reversible Core Erlang configuration is

defined as:

R ::= k : 〈p, θ, e〉 | k : (p, p′, v) | (R1 | R2) | [R;C ]

[1] I. Lanese, A. Palacios and G. Vidal (2019): Causal-consistent replay debugging for

message passing programs. In: Technical report, DSIC, Universitat Politecnica de

Valencia

19



Case study: Core Erlang

◦ Core Erlang is Erlang stripped of syntactic sugar (it was used as

intermediate step in Erlang compilation)

◦ A Core Erlang system [1] is defined as:

E := 〈p, θ, e〉 |

(p, p′, v) | (E1 | E2)

where

• 〈p, θ, e〉 - a process with a pid p evaluating expression e in

environment θ;

• (p, p′, v) - a message carrying value v sent by the process with pid p

to the one with pid p′.

◦ From our approach we get that a reversible Core Erlang configuration is

defined as:

R ::= k : 〈p, θ, e〉 | k : (p, p′, v) | (R1 | R2) | [R;C ]

[1] I. Lanese, A. Palacios and G. Vidal (2019): Causal-consistent replay debugging for

message passing programs. In: Technical report, DSIC, Universitat Politecnica de

Valencia

19



Case study: Core Erlang

◦ Core Erlang is Erlang stripped of syntactic sugar (it was used as

intermediate step in Erlang compilation)

◦ A Core Erlang system [1] is defined as:

E := 〈p, θ, e〉 | (p, p′, v) |

(E1 | E2)

where

• 〈p, θ, e〉 - a process with a pid p evaluating expression e in

environment θ;

• (p, p′, v) - a message carrying value v sent by the process with pid p

to the one with pid p′.

◦ From our approach we get that a reversible Core Erlang configuration is

defined as:

R ::= k : 〈p, θ, e〉 | k : (p, p′, v) | (R1 | R2) | [R;C ]

[1] I. Lanese, A. Palacios and G. Vidal (2019): Causal-consistent replay debugging for

message passing programs. In: Technical report, DSIC, Universitat Politecnica de

Valencia

19



Case study: Core Erlang

◦ Core Erlang is Erlang stripped of syntactic sugar (it was used as

intermediate step in Erlang compilation)

◦ A Core Erlang system [1] is defined as:

E := 〈p, θ, e〉 | (p, p′, v) | (E1 | E2)

where

• 〈p, θ, e〉 - a process with a pid p evaluating expression e in

environment θ;

• (p, p′, v) - a message carrying value v sent by the process with pid p

to the one with pid p′.

◦ From our approach we get that a reversible Core Erlang configuration is

defined as:

R ::= k : 〈p, θ, e〉 | k : (p, p′, v) | (R1 | R2) | [R;C ]

[1] I. Lanese, A. Palacios and G. Vidal (2019): Causal-consistent replay debugging for

message passing programs. In: Technical report, DSIC, Universitat Politecnica de

Valencia

19



Case study: Core Erlang

◦ Core Erlang is Erlang stripped of syntactic sugar (it was used as

intermediate step in Erlang compilation)

◦ A Core Erlang system [1] is defined as:

E := 〈p, θ, e〉 | (p, p′, v) | (E1 | E2)

where

• 〈p, θ, e〉 - a process with a pid p evaluating expression e in

environment θ;

• (p, p′, v) - a message carrying value v sent by the process with pid p

to the one with pid p′.

◦ From our approach we get that a reversible Core Erlang configuration is

defined as:

R ::= k : 〈p, θ, e〉 | k : (p, p′, v) | (R1 | R2) | [R;C ]

[1] I. Lanese, A. Palacios and G. Vidal (2019): Causal-consistent replay debugging for

message passing programs. In: Technical report, DSIC, Universitat Politecnica de

Valencia

19



Sample Core Erlang reduction

◦ Rule (Send) of Core Erlang semantics:

〈p, θ, p′!5〉 ↪→ 〈p, θ, 5〉 | (p, p′, 5)

◦ Forward rule (F-Send) of the reversible semantics for Erlang:

k :〈p, θ, p′!5〉� k1 :〈p, θ, 5〉 | k2 :(p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

◦ Backward rule (B-Send) of the reversible semantics for Erlang:

k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2] k : 〈p, θ, p′!5〉

20



Sample Core Erlang reduction

◦ Rule (Send) of Core Erlang semantics:

〈p, θ, p′!5〉 ↪→ 〈p, θ, 5〉 | (p, p′, 5)

◦ Forward rule (F-Send) of the reversible semantics for Erlang:

k :〈p, θ, p′!5〉�

k1 :〈p, θ, 5〉 | k2 :(p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

◦ Backward rule (B-Send) of the reversible semantics for Erlang:

k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2] k : 〈p, θ, p′!5〉

20



Sample Core Erlang reduction

◦ Rule (Send) of Core Erlang semantics:

〈p, θ, p′!5〉 ↪→ 〈p, θ, 5〉 | (p, p′, 5)

◦ Forward rule (F-Send) of the reversible semantics for Erlang:

k :〈p, θ, p′!5〉� k1 :〈p, θ, 5〉 | k2 :(p, p′, 5) |

[k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

◦ Backward rule (B-Send) of the reversible semantics for Erlang:

k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2] k : 〈p, θ, p′!5〉

20



Sample Core Erlang reduction

◦ Rule (Send) of Core Erlang semantics:

〈p, θ, p′!5〉 ↪→ 〈p, θ, 5〉 | (p, p′, 5)

◦ Forward rule (F-Send) of the reversible semantics for Erlang:

k :〈p, θ, p′!5〉� k1 :〈p, θ, 5〉 | k2 :(p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

◦ Backward rule (B-Send) of the reversible semantics for Erlang:

k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2] k : 〈p, θ, p′!5〉

20



Sample Core Erlang reduction

◦ Rule (Send) of Core Erlang semantics:

〈p, θ, p′!5〉 ↪→ 〈p, θ, 5〉 | (p, p′, 5)

◦ Forward rule (F-Send) of the reversible semantics for Erlang:

k :〈p, θ, p′!5〉� k1 :〈p, θ, 5〉 | k2 :(p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

◦ Backward rule (B-Send) of the reversible semantics for Erlang:

k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

k : 〈p, θ, p′!5〉

20



Sample Core Erlang reduction

◦ Rule (Send) of Core Erlang semantics:

〈p, θ, p′!5〉 ↪→ 〈p, θ, 5〉 | (p, p′, 5)

◦ Forward rule (F-Send) of the reversible semantics for Erlang:

k :〈p, θ, p′!5〉� k1 :〈p, θ, 5〉 | k2 :(p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2]

◦ Backward rule (B-Send) of the reversible semantics for Erlang:

k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉; k1 : •1 | k2 : •2] k : 〈p, θ, p′!5〉

20



Correspondence between two reversible semantics for Erlang

◦ Our semantics is equivalent to the one in [1]:

Theorem (Causal correspondence)

Two coinitial transitions t1 and t2 of our reversible Core Erlang

semantics are concurrent according to [1] iff they are concurrent

according to our definition.

Theorem (Bisimulation)

The reversible semantics of Core Erlang in [1] and our reversible

semantics of Core Erlang are strong back and forth barbed bisimilar.

◦ . . . but we can deal with additional constructs, e.g., for error

propagation.

[1] I. Lanese, A. Palacios, G. Vidal: Causal-Consistent Replay Reversible Semantics for

Message Passing Concurrent Programs. Fundam. Informaticae 178(3), 2021

21



Maude implementation

• we implemented a Maude program which takes as input a Maude

semantics with a suitable structure and computes the corresponding

reversible semantics;

• main conceptual issue: how to give a finite representation for the

infinite sets of rules;

• rules are generated from schemas with side conditions;

• the same side conditions are used in the forward semantics, no side

conditions are needed in the backward one.

22



Maude: Erlang send

crl [sys-send] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||

< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

23



Maude: forward and backward Erlang send

crl [fwd sys-send]:

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) =>

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)]

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

crl [bwd sys-send]:

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)] =>

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L)

24



Maude: forward and backward Erlang send

crl [fwd sys-send]:

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) =>

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)]

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

crl [bwd sys-send]:

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)] =>

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L)

24



Conclusion and open problems

◦ to summarise:

• a fully automatic method to extend a given forward model to a

causally-consistent reversible one;

• for our case studies, the obtained reversible semantics are equivalent

to the ones in the literature;

• the approach has been implemented in Maude.

◦ open problems:

• dealing with control mechanisms such as irreversible actions or

rollback operators;

• extend the approach to handle other concurrency models

� to deal with (atomic) imperative variables we need to be able to read

a resource without consuming it;

� what about general data structures such as sets or user-defined

types?

25



Thank you for attention ©

Questions?

26


