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Reversible compu

o already discussed in previous talks by Claudio M. and Irek, but in
case you were distracted ...

o allows one to execute programs not only forwards, but also
backwards

o applied in low-power computing, biochemical modelling, simulation,
robotics, debugging, etc.

o sequential systems - forward actions are undone in reverse order

o concurrent systems - identifying the last action is not immediate




Causally-consistent reversibility

o proposed by Danos & Krivine in their CONCUR 2004 paper
e the paper has won the CONCUR 2023 test-of-time award

o any action can be reversed, provided that all its consequences have
been reversed beforehand

o dependent actions must be reversed in reverse order, concurrent
actions can be reversed in any order

o mainstream approach to reversibility in concurrent systems, albeit
other approaches exist

[1] V. Danos and J. Krivine: Reversible communicating systems. In: CONCUR 2004.




Working on causally-consistent reversibility

(@]

Claudio M. showed what a reversible timed process calculus looks
like

o ...and causally-consistent extensions of many formalisms (CCS, pi,
occurrence nets, event structures, Erlang, ...) exist

o ...but most of the constructions are ad hoc

o

can we provide a general technique?




o partially positive answer

o positive for systems with reduction semantics satisfying suitable
conditions and causality based on resources produced and consumed

o a causally-consistent reversible semantics can be automatically
produced

o it satisfies all the expected properties (cf. Irek's talk)

o two case studies: (asynchronous) Higher-Order m-calculus and Core
Erlang (also features not previously considered in the literature)

o approach implemented in Maude
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The requirements on the forward model

The forward model needs to be structured in two levels:

o The lower level is composed of entities (processes, messages,
resources) ranged over by P, Q.
— No restrictions on the syntax of the lower level.

o The higher level is composed of the following operators:

N:=P | opn(Ni,...,N,) |0
where

o opy(Ny,...,N,) stands for a family of operators;

o parallel composition, N; | N, is assumed among the operators;

o 0 represents the empty system.




Running example: the HO7-calculus

o The syntax of the HOm-calculus is:
P:=a(P)|a(X)>P| (P1|P) |va(P)| X |0

— we separate entities from systems;

— an entity @ is any HOm process whose topmost operator is neither a
parallel composition nor a restriction nor 0.




Running example: the HO7-calculus

o The syntax of the HOm-calculus is:
P:=a(P)|a(X)>P| (P1|P) |va(P)| X |0

— we separate entities from systems;

— an entity @ is any HOm process whose topmost operator is neither a
parallel composition nor a restriction nor 0.

o The syntax of systems is defined as:
N:=Q[ (Ni|N2) [va(N)|O
where:

— operators | and O are required by our framework;

— restriction is an infinite family of unary operators with one instance
for each name a.
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Structural congruence

o A generic system can be represented as a term

T[P1,..., P

where T[eq,...,e,] is a context with n numbered holes.

- T is built from composition operators, possibly including parallel
composition and 0.

o Structural congruence is specified by axioms of the form:

T[Pi,...,P,|=T'[P;,...,Pl]

closed under contexts, reflexivity, symmetry and transitivity.

o Example: A sample HOw structural rule is:

(PARC) P|Q=Q|P

- it exploits contexts of the form e; | @5 and e, | e




The reduction semantics of the forward model

(ScMm-AcT)

Pi| ... |Po— T[Q,...,Qn]

N=N N—N N =N

(Eqv) N =N

N,>—>N,/
opn(Noy ..y Niy .oy Np) — opn(Noy ..., NIy 0 N,)

(ScM-OPN)

N — N
N|N1>—>N,|N1

(PAR)




Running example: the communication rule of HO7

© The communication rule (AcT) of HO7 is defined as:

(AcT)

a(Q) | a(X)> P — P{Q/X}




Running example: the communication rule of HOx

o The communication rule (AcT) of HOw is defined as:

(Act)
a(Q) | a(X)> P — P{Q/X}

o Gives rise to an infinite number of instances
o The number of entities in the resulting process may vary:

a(b(P) [ b(Y)> Y [ (@) | a(X)> X — b(P) | b(Y)> Y | c(Q)

- the resulting process has three entities b(P), b(Y) > Y and ¢(Q),
composed using a context T = e | e, | e3.




Definition of the reversible configuration

o The syntax of reversible configurations R is:

R:=k:P|opp(Ri,...,Rs) | 0| [R; C] Cu=Tlky: o1, ... km: op]

where:
o k denotes a key identifying each entity of a system;
e op, are the same as in the forward system;

T is a context composed of operators op, and 0;

o o, are numbered holes, to be filled by the processes with keys k;;

[R; C] is a memory (R is the configuration which gave rise to the
forward step and C is the context of the resulting configuration).




Running example: syntax of reversible HOx

o The syntax of the reversible HO7-calculus is defined as:

Ri=k:Q| (Ri|R) |va(R)|0][R;C]

where Q are the entities as in the underlying calculus.




Structural congruence in the reversible calculus: naive approach

o For each axiom:
TIPi,...,P|=T'[Pi,...,P/]
let us define a corresponding axiom:

Tlky: Piy..o ko Pol =k T'lk1: Py, ... kn: Pl]

o entities are labelled with keys and keys on both sides are the same.

o NOT WORKING, since it is not able to deal with memories

e E.g., we cannot apply commutativity of parallel composition to swap

memories




Structural congruence in the reversible calculus: refined approach

Tlky: Pry.. ko Pol =k T'lk1: Py, ... kn: Pl]

We apply the axioms to a flat representation of the configuration

R; =¢ Ry iff there are R{, R}, S such that
proj(R1) = (R, S) A Ry =« Ry Aproj(Re) = (R3, S)

where:

e proj([R; C]) = (R, {(key(R), C)})
e projection is defined homomorphically on the other operators;
e old configurations R are freed in the current configuration;

e {(key(R), C)} remembers information on what was in the memories.




Applying the refined structural congruence

R=va (_/1 . P1 |_j2 : P2 | [k1 : 8<P1 | P2> ‘ k2 . a(X)DX; TIJl : 01,j2 : 02]])

pI‘OJ(R) = (l/a (jl:Pl |j2:P2|k1:a(P1| P2> |k2:3(X)I>X),
{({ki, ko}, Tlja : 01,42 : 02])})

pI‘Oj(R/) = (I/b(_jlipl |_j2:P2|k1:b<P1| P2> |k2b(X)l>X),
{({ki, ko}, T[j1 : @1,)2 : ®2])})
R/ =vb (.jl 5 Pl |_j2 5 P2 | [k1 5 b<P1 | P2> | k2 a b(X)DX, T[]l . 017_1.2 . 02]])
e each structural axiom needs to satisfy some coherence conditions;

o essentially content of the memories should not enable new
transitions;

o satisfied for most structural axioms (e.g., HO7 axioms).




The reversible semantics

o The forward rules of the uncontrolled reversible semantics are:

Pi|...| Ppr— T[Q1,. .., Qm] Ji,--.,Jm are fresh keys
(F-Scm-Act) : -
ki:Pi|...|kn:Pn— Tl1: Qiy-.yjm: Qm] |
[ki:Pi| .| kn:PniTl1:o1,...,jm:om]]

Ri » R (key(R;) \ key(Ri)) N (key(Ro, .-, Ri—1, Riy1, ., R) = 0
Opn(R07...,R,',...,Rn)—» opn(R01~“7Rf/7"‘aRn)

(F-SoM-OPN)

R=cR R—R R =R]

F-EqQv
(F-Eqv) -




The reversible semantics

o The forward rules of the uncontrolled reversible semantics are:

Pi|...| Ppr— T[Q1,. .., Qm] Ji,--.,Jm are fresh keys
(F-Scm-Act) : -
ki:Pi|...|kn:Pn— Tl1: Qiy-.yjm: Qm] |
[ki:Pi| .| kn:PniTl1:o1,...,jm:om]]

Ri » R (key(R;) \ key(Ri)) N (key(Ro, .-, Ri—1, Riy1, ., R) = 0
Opn(R07...,R,',...,Rn)—» opn(R01~“7Rf/7"‘aRn)

(F-SoM-OPN)

R=.R R—R R =R,

F-EqQv
(F-Eqv) RO R

o The backward rules are symmetric w.r.t. the forward ones.
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o consider system R = ki : a(Py | P2) | ko : a(X) > X.
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Running example: sample HO7 reduction

o consider system R = ki : a(Py | P2) | ko : a(X) > X.

e forward step:

k1:a<P1 | P2> | kgia(X)DX —»jl . P1 ‘_jz o P2 | [R, TU11.17j2102]]




Running example: sample HO7 reduction

o consider system R = ki : a(Py | P2) | ko : a(X) > X.

e forward step:
kl . a<P1 | P2> | k2 . a(X)1>X —»jl . P1 ‘_jz o P2 | [R, TL/l : 01,_['2 : 02]]

where T = ey | o5.




Running example: sample HO7 reduction

o consider system R = ki : a(Py | P2) | ko : a(X) > X.

e forward step:
ki:a(Pi| P2) | ka:a(X)>X = ji:Prlja:Pa|[R; T[jx:e1,jo: ]

where T = ey | o5.

e backward step:

1Pt Pa|[Ry Tl e1,)o: @] v




Running example: sample HO7 reduction

o consider system R = ki : a(Py | P2) | ko : a(X) > X.

e forward step:
ki:a(Pi| P2) | ka:a(X)>X = ji:Prlja:Pa|[R; T[jx:e1,jo: ]

where T = ey | o5.

e backward step:

_jl : Pl |_/2 : P2 | [R, T[jl:.l,_j2202]]’\/\’_’k1:a<P1 ‘ P2> | k2 : a(X)|>X




Concurrent transitions

o to discuss the properties of our semantics we need a notion of
concurrency (or, dually, causality)

o we extract the definition of concurrency from the reversible syntax
o transitions t of a system R are defined as:

t:R5H R
where (1 is the memory created by the transition, if it is forward, or
consumed by it, if it is backward
o the function key(-) computes the set of keys of a given system.
Definition (Concurrent transitions)

Two coinitial transitions t' : R 5 R’ and t" : R “— R” are
concurrent if key(u') Nkey(u”) = 0.




o our framework fits the axiomatic meta-model described in Irek’s talk
[1], hence it enjoys a number of relevant properties, such as:

[1] I. Lanese, I. C. C. Phillips and I. Ulidowski: An axiomatic approach to reversible
computation. In FOSSACS 2020.




o our framework fits the axiomatic meta-model described in Irek’s talk
[1], hence it enjoys a number of relevant properties, such as:

e Loop Lemma - every action can be undone;

e Parabolic Lemma - each reversible computation can be rearranged as
a backward computation, followed by a forward one;

o Causal Consistency - the correct history and causality information is
stored;
o Causal Safety - an action cannot be reversed until all actions caused

by it have been reversed;

e Causal Liveness - actions can be reversed in any order consistent
with Causal Safety.

[1] I. Lanese, I. C. C. Phillips and I. Ulidowski: An axiomatic approach to reversible
computation. In FOSSACS 2020.
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o Core Erlang is Erlang stripped of syntactic sugar (it was used as
intermediate step in Erlang compilation)

o A Core Erlang system [1] is defined as:

E:=(p.0,e)|(p,p,v)| (Er|E2)
where
e (p,0,e) - a process with a pid p evaluating expression e in
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o (p,p’,v) - a message carrying value v sent by the process with pid p
to the one with pid p’.




Case study: Core Erlang

o Core Erlang is Erlang stripped of syntactic sugar (it was used as
intermediate step in Erlang compilation)

o A Core Erlang system [1] is defined as:
E:=(p.0,e)|(p,p,v)| (E|E)
where

e (p,0,e) - a process with a pid p evaluating expression e in
environment 6;

o (p,p’,v) - a message carrying value v sent by the process with pid p
to the one with pid p’.

o From our approach we get that a reversible Core Erlang configuration is
defined as:

Ri=k:(p,0,e) | k:(p,p/sv) | (Ri|Ro)|[R:C]




Sample Core Erlang reduction

o Rule (SEND) of Core Erlang semantics:

(p,0,p"15) = (p,0,5) | (p,p’,5)

20



Sample Core Erlang reduction

o Rule (SEND) of Core Erlang semantics:

(p,0,p"15) = (p,0,5) | (p,p’,5)

o Forward rule (F-SEND) of the reversible semantics for Erlang:

k :(p,0,p'15) —

20



Sample Core Erlang reduction

o Rule (SEND) of Core Erlang semantics:

(p,0,p"15) = (p,0,5) | (p,p’,5)

o Forward rule (F-SEND) of the reversible semantics for Erlang:

k <P79,Pll5> — ki 3<P,975> | ko :(pv p/75) |

20



Sample Core Erlang reduction

o Rule (SEND) of Core Erlang semantics:

(p,0,p"15) = (p,0,5) | (p,p’,5)

o Forward rule (F-SEND) of the reversible semantics for Erlang:

k <P79,Pll5> — ki 3<P,975> | ko 3(P7 p/75) | [k : <pu97p1|5>1k1 o Ofl | ko .2]

20



Sample Core Erlang reduction

o Rule (SEND) of Core Erlang semantics:

(p,0,p"15) = (p,0,5) | (p,p’,5)

o Forward rule (F-SEND) of the reversible semantics for Erlang:

k <P70,Pll5> — ki 3<P,675> | ko 3(P7 p/75) | [k : <Pa97Pl'5>vk1 o Ofl | ko .2]

o Backward rule (B-SEND) of the reversible semantics for Erlang:

kl o <p,9,5> ‘ k2 o (p7 p/,5) | [k 5 (p,@,p'!5>;kl L0 | k2 : .2] M
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Sample Core Erlang reduction

o Rule (SEND) of Core Erlang semantics:

(p,0,p"15) = (p,0,5) | (p,p’,5)

o Forward rule (F-SEND) of the reversible semantics for Erlang:

k <P70,Pll5> — ki 3<P,675> | ko 3(P7 p/75) | [k : <Pa97Pl'5>vk1 o Ofl | ko .2]

o Backward rule (B-SEND) of the reversible semantics for Erlang:

ki : (p,0,5) | ka: (p,p’,5) | [k:{(p,0,p''5); ki :e1 | ky: @] > k:{(p,0,p'5)

20



Correspondence between two reversible semantics for Erlan

o Our semantics is equivalent to the one in [1]:

Theorem (Causal correspondence)

Two coinitial transitions t; and t, of our reversible Core Erlang
semantics are concurrent according to [1] iff they are concurrent
according to our definition.

Theorem (Bisimulation)

The reversible semantics of Core Erlang in [1] and our reversible
semantics of Core Erlang are strong back and forth barbed bisimilar.

o ...but we can deal with additional constructs, e.g., for error

propagation.

[1] I. Lanese, A. Palacios, G. Vidal: Causal-Consistent Replay Reversible Semantics for
Message Passing Concurrent Programs. Fundam. Informaticae 178(3), 2021

21



Maude implementation

e we implemented a Maude program which takes as input a Maude
semantics with a suitable structure and computes the corresponding
reversible semantics;

e main conceptual issue: how to give a finite representation for the
infinite sets of rules;

o rules are generated from schemas with side conditions;

o the same side conditions are used in the forward semantics, no side
conditions are needed in the backward one.

22



Maude: Erlang send

crl [sys-send]
< P | exp: EXSEQ, env-stack: ENV, ASET > =>
< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||
< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=
< req-gen, ENV, EXSEQ >

23




Maude: forward and backward Erlang send

crl [fwd sys-send]:
< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) =>

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||
< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||
[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;
@: key(0 L) || @: key(1 L)]
if < DEST ! GVALUE, ENV’, EXSEQ’ > :=
< req-gen, ENV, EXSEQ > .

24




Maude: forward and backward Erlang send

crl [fwd sys-send]:
< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) =>
< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||
< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||
[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;
@: key(0 L) || @: key(1 L)]
if < DEST ! GVALUE, ENV’, EXSEQ’ > :=
< req-gen, ENV, EXSEQ >

crl [bwd sys-send]:
< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||
[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0O L) || @: key(1 L)] =>
< P | ASET, exp: EXSEQ, env-stack: ENV > x key(L)

24



Conclusion and open problems

o to summarise:

e a fully automatic method to extend a given forward model to a
causally-consistent reversible one;

o for our case studies, the obtained reversible semantics are equivalent
to the ones in the literature;

o the approach has been implemented in Maude.

o open problems:

o dealing with control mechanisms such as irreversible actions or
rollback operators;

o extend the approach to handle other concurrency models
e to deal with (atomic) imperative variables we need to be able to read
a resource without consuming it;
e what about general data structures such as sets or user-defined
types?

25



Thank you for attention ©

Questions?

26



