A general approach to derive causally-consistent reversible semantics

Ivan Lanese Doriana Medić Giovanni Fabbretti Jean-Bernard Stefani

Work partially supported by French ANR project DCore ANR-18-CE25-0007 and by ALMArie CURIE 2021 project J45F21001470005

OPCT, June 26-30, 2023

Material from CONCUR 2020 and ICFEM 2022
Reversible computing

- already discussed in previous talks by Claudio M. and Irek, but in case you were distracted . . .

- allows one to execute programs not only forwards, but also backwards

- applied in low-power computing, biochemical modelling, simulation, robotics, debugging, etc.

- **sequential systems** - forward actions are undone in reverse order

- **concurrent systems** - identifying the last action is not immediate
Causally-consistent reversibility

- proposed by Danos & Krivine in their CONCUR 2004 paper
 - the paper has won the CONCUR 2023 test-of-time award

- any action can be reversed, provided that all its consequences have been reversed beforehand

- dependent actions must be reversed in reverse order, concurrent actions can be reversed in any order

- mainstream approach to reversibility in concurrent systems, albeit other approaches exist

• Claudio M. showed what a reversible timed process calculus looks like

• ... and causally-consistent extensions of many formalisms (CCS, pi, occurrence nets, event structures, Erlang, ...) exist

• ... but most of the constructions are ad hoc

• can we provide a general technique?
Our answer

- partially positive answer

- positive for systems with reduction semantics satisfying suitable conditions and causality based on resources produced and consumed

- a causally-consistent reversible semantics can be automatically produced

- it satisfies all the expected properties (cf. Irek’s talk)

- two case studies: (asynchronous) Higher-Order π-calculus and Core Erlang (also features not previously considered in the literature)

- approach implemented in Maude
The requirements on the forward model

The forward model needs to be structured in two levels:

- The lower level is composed of entities (processes, messages, resources) ranged over by P, Q.
 - No restrictions on the syntax of the lower level.
- The higher level is composed of the following operators:

 $$N ::= P \mid \text{op}_n(N_1, \ldots, N_n) \mid 0$$

 - $\text{op}_n(N_1, \ldots, N_n)$ stands for a family of operators;
 - parallel composition, $N_1 \mid N_2$, is assumed among the operators;
 - 0 represents the empty system.
The requirements on the forward model

The forward model needs to be structured in two levels:

- **The lower level** is composed of entities (processes, messages, resources) ranged over by P, Q.
 - No restrictions on the syntax of the lower level.
The requirements on the forward model

The forward model needs to be structured in two levels:

- The lower level is composed of entities (processes, messages, resources) ranged over by P, Q.
 - No restrictions on the syntax of the lower level.

- The higher level is composed of the following operators:

\[N ::= P \mid \text{op}_n(N_1, \ldots, N_n) \mid 0 \]

where

- $\text{op}_n(N_1, \ldots, N_n)$ stands for a family of operators;
- parallel composition, $N_1 \mid N_2$, is assumed among the operators;
- 0 represents the empty system.
Running example: the HO\(_\pi\)-calculus

- The syntax of the HO\(_\pi\)-calculus is:

\[
P ::= a\langle P \rangle \mid a(X) \triangleright P \mid (P_1 \mid P_2) \mid \nu a\ (P) \mid X \mid 0
\]

- we separate entities from systems;
- an entity \(Q\) is any HO\(_\pi\) process whose topmost operator is neither a parallel composition nor a restriction nor 0.
Running example: the HO\(_\pi\)-calculus

- The syntax of the HO\(_\pi\)-calculus is:

\[
P ::= a\langle P \rangle \mid a(X) \triangleright P \mid (P_1 \mid P_2) \mid \nu a(P) \mid X \mid 0
\]

- we separate entities from systems;
- an entity \(Q \) is any HO\(_\pi\) process whose topmost operator is neither a parallel composition nor a restriction nor 0.

- The syntax of systems is defined as:

\[
N ::= Q \mid (N_1 \mid N_2) \mid \nu a(N) \mid 0
\]

where:
- operators \(\mid \) and 0 are required by our framework;
- restriction is an infinite family of unary operators with one instance for each name \(a \).
A generic system can be represented as a term

\[T[P_1, \ldots, P_n] \]

where \(T[\bullet_1, \ldots, \bullet_n] \) is a context with \(n \) numbered holes.

- \(T \) is built from composition operators, possibly including parallel composition and 0.
A generic system can be represented as a term

\[T[P_1, \ldots, P_n] \]

where \(T[\bullet_1, \ldots, \bullet_n] \) is a context with \(n \) numbered holes.

- \(T \) is built from composition operators, possibly including parallel composition and 0.

Structural congruence is specified by axioms of the form:

\[T[P_1, \ldots, P_n] \equiv T'[P'_1, \ldots, P'_n] \]

closed under contexts, reflexivity, symmetry and transitivity.
Structural congruence

- A generic system can be represented as a term
 \[T[P_1, \ldots, P_n] \]
 where \(T[\bullet_1, \ldots, \bullet_n] \) is a context with \(n \) numbered holes.
 - \(T \) is built from composition operators, possibly including parallel composition and 0.

- Structural congruence is specified by axioms of the form:
 \[T[P_1, \ldots, P_n] \equiv T'[P'_1, \ldots, P'_n] \]
 closed under contexts, reflexivity, symmetry and transitivity.

- **Example:** A sample HO\(\pi\) structural rule is:
 \[(\text{ParC}) \ P | Q \equiv Q | P \]
 - it exploits contexts of the form \(\bullet_1 | \bullet_2 \) and \(\bullet_2 | \bullet_1 \)
The reduction semantics of the forward model

\[(\text{Scm-Act})\]
\[P_1 | \ldots | P_n \rightarrow T[Q_1, \ldots, Q_m]\]

\[(\text{Eqv})\]
\[N \equiv N' \quad N \rightarrow N_1 \quad N_1 \equiv N_1' \quad \frac{}{N' \rightarrow N_1'}\]

\[(\text{Scm-Opn})\]
\[N_i \rightarrow N_i' \quad \frac{}{\text{op}_n(N_0, \ldots, N_i, \ldots, N_n) \rightarrow \text{op}_n(N_0, \ldots, N_i', \ldots, N_n)}\]

\[(\text{Par})\]
\[N \rightarrow N' \quad \frac{}{N | N_1 \rightarrow N' | N_1}\]
The communication rule \((\text{Act})\) of \(\text{HO}\pi\) is defined as:

\[
(\text{Act}) \quad \frac{a\langle Q\rangle \mid a(X) \triangleright P \rightarrow P\{Q/X\}}{}
\]
Running example: the communication rule of HO_π

- The communication rule (Act) of HO_π is defined as:

\[
\begin{align*}
(\text{Act}) & \quad a\langle Q \rangle \mid a(X) \triangleright P \mapsto P\{Q/X\} \\
& \quad \text{Gives rise to an infinite number of instances} \\
& \quad \text{The number of entities in the resulting process may vary:}
\end{align*}
\]

\[
\begin{align*}
& \quad a\langle b\langle P \rangle \mid b(Y) \triangleright Y \mid c\langle Q \rangle \rangle \mid a(X) \triangleright X \mapsto b\langle P \rangle \mid b(Y) \triangleright Y \mid c\langle Q \rangle \\
& \quad \text{- the resulting process has three entities } b\langle P \rangle, \ b(Y) \triangleright Y \text{ and } c\langle Q \rangle, \text{ composed using a context } T = \bullet_1 \mid \bullet_2 \mid \bullet_3.
\end{align*}
\]
The syntax of reversible configurations R is:

$$
R ::= k : P \mid op_n(R_1, \ldots, R_n) \mid 0 \mid [R; C] \\
C ::= T[k_1 : \bullet_1, \ldots, k_m : \bullet_m]
$$

where:

- k denotes a key identifying each entity of a system;
- op_n are the same as in the forward system;
- T is a context composed of operators op_n and 0;
- \bullet_i are numbered holes, to be filled by the processes with keys k_i;
- $[R; C]$ is a memory (R is the configuration which gave rise to the forward step and C is the context of the resulting configuration).
The syntax of the reversible HO\(\pi\)-calculus is defined as:

\[R ::= k : Q \mid (R_1 \mid R_2) \mid \nu a(R) \mid 0 \mid [R; C] \]

where \(Q\) are the entities as in the underlying calculus.
For each axiom:

\[T[P_1, \ldots, P_n] \equiv T'[P'_1, \ldots, P'_n] \]

let us define a corresponding axiom:

\[T[k_1 : P_1, \ldots, k_n : P_n] \equiv_k T'[k'_1 : P'_1, \ldots, k'_n : P'_n] \]

- entities are labelled with keys and keys on both sides are the same.
- **NOT WORKING**, since it is not able to deal with memories
 - E.g., we cannot apply commutativity of parallel composition to swap memories
Structural congruence in the reversible calculus: refined approach

\[T[k_1 : P_1, \ldots, k_n : P_n] \equiv_k T'[k_1 : P'_1, \ldots, k_n : P'_n] \]

We apply the axioms to a flat representation of the configuration

\[R_1 \equiv_c R_2 \text{ iff there are } R'_1, R'_2, S \text{ such that} \]
\[\text{proj}(R_1) = (R'_1, S) \land R'_1 \equiv_k R'_2 \land \text{proj}(R_2) = (R'_2, S) \]

where:

- \(\text{proj}([R; C]) = (R, \{(\text{key}(R), C)\}) \)
- projection is defined homomorphically on the other operators;
- old configurations \(R \) are freed in the current configuration;
- \(\{(\text{key}(R), C)\} \) remembers information on what was in the memories.
Applying the refined structural congruence

\[R = \nu a \left(j_1 : P_1 \mid j_2 : P_2 \mid [k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X ; T[j_1 : \bullet_1, j_2 : \bullet_2]] \right) \]

\[\text{proj} (R) = (\nu a \left(j_1 : P_1 \mid j_2 : P_2 \mid k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X , \right. \] \[\left. \{((\{k_1, k_2\}, T[j_1 : \bullet_1, j_2 : \bullet_2])\} \right) \]

\[\text{proj} (R') = (\nu b \left(j_1 : P_1 \mid j_2 : P_2 \mid k_1 : b\langle P_1 \mid P_2 \rangle \mid k_2 : b(X) \triangleright X , \right. \] \[\left. \{((\{k_1, k_2\}, T[j_1 : \bullet_1, j_2 : \bullet_2])\} \right) \]

\[R' = \nu b \left(j_1 : P_1 \mid j_2 : P_2 \mid [k_1 : b\langle P_1 \mid P_2 \rangle \mid k_2 : b(X) \triangleright X ; T[j_1 : \bullet_1, j_2 : \bullet_2]] \right) \]

- each structural axiom needs to satisfy some coherence conditions;
- essentially content of the memories should not enable new transitions;
- satisfied for most structural axioms (e.g., HO\(\pi\) axioms).
The reversible semantics

- The forward rules of the uncontrolled reversible semantics are:

\[\begin{align*}
(F-Scm-Act) & \quad P_1 \mid \ldots \mid P_n \rightarrow T[Q_1, \ldots, Q_m] \quad j_1, \ldots, j_m \text{ are fresh keys} \\
& \quad k_1 : P_1 \mid \ldots \mid k_n : P_n \rightarrow T[j_1 : Q_1, \ldots, j_m : Q_m] \\
& \quad [k_1 : P_1 \mid \ldots \mid k_n : P_n; T[j_1 : \bullet_1, \ldots, j_m : \bullet_m]]
\end{align*} \]

\[\begin{align*}
(F-Scm-Opn) & \quad R_i \rightarrow R'_i \quad (\text{key}(R'_i) \setminus \text{key}(R_i)) \cap (\text{key}(R_0, \ldots, R_{i-1}, R_{i+1}, \ldots, R_n) = \emptyset \\
& \quad op_n(R_0, \ldots, R_i, \ldots, R_n) \rightarrow op_n(R_0, \ldots, R'_i, \ldots, R_n)
\end{align*} \]

\[\begin{align*}
(F-Eqv) & \quad R \equiv_c R' \quad R \rightarrow R_1 \quad R_1 \equiv_c R'_1 \\
& \quad R' \rightarrow R'_1
\end{align*} \]
The reversible semantics

- The forward rules of the uncontrolled reversible semantics are:

\[(F\text{-SCM-Act})\quad P_1 | \ldots | P_n \Rightarrow T[Q_1, \ldots, Q_m] \quad j_1, \ldots, j_m \text{ are fresh keys} \]

\[k_1 : P_1 | \ldots | k_n : P_n \Rightarrow T[j_1 : Q_1, \ldots, j_m : Q_m] | \]

\[k_1 : P_1 | \ldots | k_n : P_n; T[j_1 : \bullet_1, \ldots, j_m : \bullet_m] \]

\[(F\text{-SCM-OPN})\quad R_i \rightarrow R'_i \quad \text{(key}(R'_i) \setminus \text{key}(R_i)) \cap \text{key}(R_0, \ldots, R_{i-1}, R_{i+1}, \ldots, R_n) = \emptyset \]

\[op_n(R_0, \ldots, R_i, \ldots, R_n) \rightarrow op_n(R_0, \ldots, R'_i, \ldots, R_n) \]

\[(F\text{-EQV})\quad R \equiv_c R' \quad R \rightarrow R_1 \quad R_1 \equiv_c R'_1 \]

\[R' \rightarrow R'_1 \]

- The backward rules are symmetric w.r.t. the forward ones.
consider system $R = k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$.
Running example: sample HO_π reduction

- consider system $R = k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$.

 - forward step:

 $$k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X \rightarrow$$
Running example: sample HOπ reduction

- consider system $R = k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$.

- forward step:

 $k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X \rightarrow j_1 : P_1 \mid j_2 : P_2 \mid$
Running example: sample $\text{HO}\pi$ reduction

- consider system $R = k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$.

- **forward step:**

 \[
 k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X \rightarrow j_1 : P_1 \mid j_2 : P_2 \mid [R; T[j_1 : \bullet_1, j_2 : \bullet_2]]
 \]
Running example: sample HO_{\pi} reduction

- consider system $R = k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$.

 - forward step:

 $k_1 : a\langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X \rightarrow j_1 : P_1 \mid j_2 : P_2 \mid [R; T[j_1 : \bullet_1, j_2 : \bullet_2]]$

where $T = \bullet_1 \mid \bullet_2$.
Running example: sample HOπ reduction

- consider system $R = k_1 : a(P_1 | P_2) | k_2 : a(X) \triangleright X$.

 - forward step:

 $k_1 : a(P_1 | P_2) | k_2 : a(X) \triangleright X \rightarrow j_1 : P_1 | j_2 : P_2 | [R; T[j_1 : \bullet_1, j_2 : \bullet_2]]$

 where $T = \bullet_1 | \bullet_2$.

 - backward step:

 $j_1 : P_1 | j_2 : P_2 | [R; T[j_1 : \bullet_1, j_2 : \bullet_2]] \xrightarrow{\sim \sim \sim}$
Running example: sample HO$$\pi$$ reduction

- consider system $R = k_1 : a \langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$.

- forward step:

 $k_1 : a \langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X \twoheadrightarrow j_1 : P_1 \mid j_2 : P_2 \mid [R; T[j_1 : \bullet_1, j_2 : \bullet_2]]$

 where $T = \bullet_1 \mid \bullet_2$.

- backward step:

 $j_1 : P_1 \mid j_2 : P_2 \mid [R; T[j_1 : \bullet_1, j_2 : \bullet_2]] \rightsquigarrow k_1 : a \langle P_1 \mid P_2 \rangle \mid k_2 : a(X) \triangleright X$
Concurrent transitions

- to discuss the properties of our semantics we need a notion of concurrency (or, dually, causality)
- we extract the definition of concurrency from the reversible syntax
- transitions t of a system R are defined as:

$$t : R \xrightarrow{\mu} R'$$

where μ is the memory created by the transition, if it is forward, or consumed by it, if it is backward

- the function $\text{key}(\cdot)$ computes the set of keys of a given system.

Definition (Concurrent transitions)

Two coinitial transitions $t' : R \xrightarrow{\mu'} R'$ and $t'' : R \xrightarrow{\mu''} R''$ are **concurrent** if $\text{key}(\mu') \cap \text{key}(\mu'') = \emptyset$.
Properties

- our framework fits the axiomatic meta-model described in Irek’s talk [1], hence it enjoys a number of relevant properties, such as:

 - Loop Lemma - every action can be undone;
 - Parabolic Lemma - each reversible computation can be rearranged as a backward computation, followed by a forward one;
 - Causal Consistency - the correct history and causality information is stored;
 - Causal Safety - an action cannot be reversed until all actions caused by it have been reversed;
 - Causal Liveness - actions can be reversed in any order consistent with Causal Safety.

Properties

- our framework fits the axiomatic meta-model described in Irek’s talk [1], hence it enjoys a number of relevant properties, such as:

 - **Loop Lemma** - every action can be undone;
 - **Parabolic Lemma** - each reversible computation can be rearranged as a backward computation, followed by a forward one;
 - **Causal Consistency** - the correct history and causality information is stored;
 - **Causal Safety** - an action cannot be reversed until all actions caused by it have been reversed;
 - **Causal Liveness** - actions can be reversed in any order consistent with Causal Safety.

Case study: Core Erlang

- Core Erlang is Erlang stripped of syntactic sugar (it was used as intermediate step in Erlang compilation)

$E ::= ⟨p, θ, e⟩ | (p, p', v) | (E_1 | E_2) \quad \text{where}$

- $⟨p, θ, e⟩$ a process with a pid p evaluating expression e in environment $θ$;
- (p, p', v) a message carrying value v sent by the process with pid p to the one with pid p'.

- From our approach we get that a reversible Core Erlang configuration is defined as:

$R ::= k: ⟨p, θ, e⟩ | k: (p, p', v) | (R_1 | R_2) | [R; C]$
Case study: Core Erlang

○ Core Erlang is Erlang stripped of syntactic sugar (it was used as intermediate step in Erlang compilation)
○ A Core Erlang system [1] is defined as:

\[E := \langle p, \theta, e \rangle | \]

where

- \(\langle p, \theta, e \rangle \) - a process with a pid \(p \) evaluating expression \(e \) in environment \(\theta \);
Case study: Core Erlang

○ Core Erlang is Erlang stripped of syntactic sugar (it was used as intermediate step in Erlang compilation)
○ A Core Erlang system [1] is defined as:

\[E := \langle p, \theta, e \rangle \mid (p, p', v) \mid \]

where

- \(\langle p, \theta, e \rangle \) - a process with a pid \(p \) evaluating expression \(e \) in environment \(\theta \);
- \((p, p', v) \) - a message carrying value \(v \) sent by the process with pid \(p \) to the one with pid \(p' \).
Case study: Core Erlang

- Core Erlang is Erlang stripped of syntactic sugar (it was used as intermediate step in Erlang compilation)
- A Core Erlang system [1] is defined as:

\[E := \langle p, \theta, e \rangle \mid (p, p' , v) \mid (E_1 \mid E_2) \]

where

- \langle p, \theta, e \rangle - a process with a pid \(p \) evaluating expression \(e \) in environment \(\theta \);
- \((p, p', v) \) - a message carrying value \(v \) sent by the process with pid \(p \) to the one with pid \(p' \).
Case study: Core Erlang

- Core Erlang is Erlang stripped of syntactic sugar (it was used as intermediate step in Erlang compilation)
- A Core Erlang system [1] is defined as:

\[E ::= \langle p, \theta, e \rangle \mid (p, p', v) \mid (E_1 \mid E_2) \]

where

- \(\langle p, \theta, e \rangle \) - a process with a pid \(p \) evaluating expression \(e \) in environment \(\theta \);
- \((p, p', v) \) - a message carrying value \(v \) sent by the process with pid \(p \) to the one with pid \(p' \).

- From our approach we get that a reversible Core Erlang configuration is defined as:

\[R ::= k : \langle p, \theta, e \rangle \mid k : (p, p', v) \mid (R_1 \mid R_2) \mid [R; C] \]

Sample Core Erlang reduction

- Rule (SEND) of Core Erlang semantics:

\[\langle p, \theta, p'!5 \rangle \leftrightarrow \langle p, \theta, 5 \rangle | (p, p', 5) \]
Sample Core Erlang reduction

- Rule (SEND) of Core Erlang semantics:

$$
\langle p, \theta, p'!5 \rangle \leftrightarrow \langle p, \theta, 5 \rangle | (p, p', 5)
$$

- Forward rule (F-SEND) of the reversible semantics for Erlang:

$$
k : \langle p, \theta, p'!5 \rangle \rightarrow
$$
Rule \((\text{SEND})\) of Core Erlang semantics:

\[
\langle p, \theta, p'!5 \rangle \leftrightarrow \langle p, \theta, 5 \rangle \mid (p, p', 5)
\]

Forward rule \((\text{F-SEND})\) of the reversible semantics for Erlang:

\[
k : \langle p, \theta, p'!5 \rangle \rightarrow k_1 : \langle p, \theta, 5 \rangle \mid k_2 : (p, p', 5) \mid
\]
Sample Core Erlang reduction

- Rule (SEND) of Core Erlang semantics:

$$\langle p, \theta, p'!5 \rangle \leftrightarrow \langle p, \theta, 5 \rangle \mid (p, p', 5)$$

- Forward rule (F-SEND) of the reversible semantics for Erlang:

$$k : \langle p, \theta, p'!5 \rangle \rightarrow k_1 : \langle p, \theta, 5 \rangle \mid k_2 : (p, p', 5) \mid [k : \langle p, \theta, p'!5 \rangle ; k_1 : \bullet_1 \mid k_2 : \bullet_2]$$
Sample Core Erlang reduction

- **Rule (SEND)** of Core Erlang semantics:

\[
\langle p, \theta, p'!5 \rangle \leftrightarrow \langle p, \theta, 5 \rangle \mid (p, p', 5)
\]

- **Forward** rule (F-SEND) of the reversible semantics for Erlang:

\[
k : \langle p, \theta, p'!5 \rangle \rightarrow k_1 : \langle p, \theta, 5 \rangle \mid k_2 : (p, p', 5) \mid [k : \langle p, \theta, p'!5 \rangle; k_1 : \bullet_1 \mid k_2 : \bullet_2]
\]

- **Backward** rule (B-SEND) of the reversible semantics for Erlang:

\[
k_1 : \langle p, \theta, 5 \rangle \mid k_2 : (p, p', 5) \mid [k : \langle p, \theta, p'!5 \rangle; k_1 : \bullet_1 \mid k_2 : \bullet_2] \rightarrow
\]

Sample Core Erlang reduction

○ Rule \((\text{SEND})\) of Core Erlang semantics:

\[
\langle p, \theta, p'!5 \rangle \rightarrow \langle p, \theta, 5 \rangle \mid (p, p', 5)
\]

○ Forward rule \((\text{F-SEND})\) of the reversible semantics for Erlang:

\[
k : \langle p, \theta, p'!5 \rangle \rightarrow k_1 : \langle p, \theta, 5 \rangle \mid k_2 : (p, p', 5) \mid [k : \langle p, \theta, p'!5 \rangle; k_1 : \bullet_1 \mid k_2 : \bullet_2]
\]

○ Backward rule \((\text{B-SEND})\) of the reversible semantics for Erlang:

\[
k_1 : \langle p, \theta, 5 \rangle \mid k_2 : (p, p', 5) \mid [k : \langle p, \theta, p'!5 \rangle; k_1 : \bullet_1 \mid k_2 : \bullet_2] \sim \rightarrow k : \langle p, \theta, p'!5 \rangle
\]
Correspondence between two reversible semantics for Erlang

- Our semantics is equivalent to the one in [1]:

Theorem (Causal correspondence)

Two coinitial transitions t_1 and t_2 of our reversible Core Erlang semantics are concurrent according to [1] iff they are concurrent according to our definition.

Theorem (Bisimulation)

The reversible semantics of Core Erlang in [1] and our reversible semantics of Core Erlang are strong back and forth barbed bisimilar.

- ... but we can deal with additional constructs, e.g., for error propagation.

• we implemented a Maude program which takes as input a Maude semantics with a suitable structure and computes the corresponding reversible semantics;

• main conceptual issue: how to give a finite representation for the infinite sets of rules;

• rules are generated from schemas with side conditions;

• the same side conditions are used in the forward semantics, no side conditions are needed in the backward one.
Maude: Erlang send

crl [sys-send] :
< P | exp: EXSEQ, env-stack: ENV, ASET > =>
< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||
< sender: P, receiver: DEST, payload: GVALUE >
if < DEST ! GVALUE, ENV’, EXSEQ’ > :=
< req-gen, ENV, EXSEQ > .
crl [fwd sys-send]:
 \(< P \ | \ \text{ASET}, \ \text{exp}: \ \text{EXSEQ}, \ \text{env-stack}: \ \text{ENV} > \ * \ \text{key}(L) \Rightarrow \)
 \(< \text{sender}: \ P, \ \text{receiver}: \ \text{DEST}, \ \text{payload}: \ \text{GVALUE} > \ * \ \text{key}(0 \ L) \ || \)
 \(< P \ | \ \text{exp}: \ \text{EXSEQ}', \ \text{env-stack}: \ \text{ENV}', \ \text{ASET} > \ * \ \text{key}(1 \ L) \ || \)
 \[\langle P \ | \ \text{ASET}, \ \text{exp}: \ \text{EXSEQ}, \ \text{env-stack}: \ \text{ENV} > \ * \ \text{key}(L) ; \]
 \(\text{@: key}(0 \ L) \ || \ \text{@: key}(1 \ L) \]
 \(\text{if} < \text{DEST} ! \ \text{GVALUE}, \ \text{ENV}', \ \text{EXSEQ}' > := \)
 \(< \text{req-gen}, \ \text{ENV}, \ \text{EXSEQ} > . \)
Maude: forward and backward Erlang send

\[
\text{crl [fwd sys-send]}:
\begin{align*}
&< P \mid \text{ASET}, \text{exp: EXSEQ}, \text{env-stack: ENV} > \ast \text{key}(L) \Rightarrow \\
&< \text{sender: } P, \text{receiver: DEST, payload: GVALUE} > \ast \text{key}(0 \ L) || \\
&< P \mid \text{exp: EXSEQ'}, \text{env-stack: ENV'}, \text{ASET} > \ast \text{key}(1 \ L) || \\
&[< P \mid \text{ASET, exp: EXSEQ, env-stack: ENV} > \ast \text{key}(L); \\
&\quad \ast: \text{key}(0 \ L) || \ast: \text{key}(1 \ L)] \\
\text{if } < \text{DEST} ! \text{GVALUE, ENV'}, \text{EXSEQ'} > := \\
&< \text{req-gen, ENV, EXSEQ} > .
\end{align*}
\]

\[
\text{crl [bwd sys-send]}:
\begin{align*}
&< \text{sender: } P, \text{receiver: DEST, payload: GVALUE} > \ast \text{key}(0 \ L) || \\
&< P \mid \text{exp: EXSEQ'}, \text{env-stack: ENV'}, \text{ASET} > \ast \text{key}(1 \ L) || \\
&[< P \mid \text{ASET, exp: EXSEQ, env-stack: ENV} > \ast \text{key}(L); \\
&\quad \ast: \text{key}(0 \ L) || \ast: \text{key}(1 \ L)] \Rightarrow \\
&< P \mid \text{ASET, exp: EXSEQ, env-stack: ENV} > \ast \text{key}(L)
\end{align*}
\]
Conclusion and open problems

○ to summarise:
 • a fully automatic method to extend a given forward model to a causally-consistent reversible one;
 • for our case studies, the obtained reversible semantics are equivalent to the ones in the literature;
 • the approach has been implemented in Maude.

○ open problems:
 • dealing with control mechanisms such as irreversible actions or rollback operators;
 • extend the approach to handle other concurrency models
 • to deal with (atomic) imperative variables we need to be able to read a resource without consuming it;
 • what about general data structures such as sets or user-defined types?
Thank you for attention 😊

Questions?