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Reversible computation

Reversible computation allows computation to proceed not only in
the standard, forward direction, but also backwards, recovering past
states.

Applications in different areas:

• low-power computing (Landauer 1961)
• optimistic parallel simulation (Carothers et al 1999)
• error recovery in robot assembly operations (Laursen et al 2015)
• debugging (GDB since 2009, WinDbg)
• . . .
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Reversible calculi and languages

In many of these areas, concurrent systems are of interest.

Reversible extensions of concurrent formalisms and languages have
been proposed

Seminal one, RCCS (Danos & Krivine 2004) is a reversible form of
CCS (Milner 1980)

Reversible extensions of π-calculus, Petri Nets, Erlang and others
exist

Main idea: add memories so that computations can be reversed

4



Outline

Reversible computation

Axiomatic approach

Case studies

5



Our research question

Observation: in all the settings, similar properties are proved.
Techniques are similar but ad hoc.

Can we develop a general theory and then instantiate it on different
formalisms?

Advantages:

• prove results once and for all
• encourages automatic proof checking

• highlight similarities and differences among approaches
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Abstraction

We abstract away the syntax of the formalisms

We just consider their (reversible) labelled transition system (LTS):

Forward transition: P a→ Q

Backward transition: Q a→ P

Forward or backward transition: t : P α→ Q

Inverse of t always exists (Loop Lemma): t : Q α→ P
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Reversibility and concurrency

In a sequential setting actions are undone in reverse order:

P a→ Q b→ R R b→ Q a→ P

In concurrent systems, the total order of actions is not relevant and
may not even exist.
Causal-consistent reversibility (Danos & Krivine 2004)
An action can be reversed iff all its consequences (if any) have
been already reversed.

If P a→ Q causes Q b→ R then cannot reverse a before b.

But if P a→ Q and Q b→ R are independent (concurrent) we can have

P a→ Q b→ R R a→ Q′ b→ P

Here Q′ was not visited going forwards, but could have been:

P b→ Q′ a→ R
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Causal equivalence

We need some preliminary notions.

Paths r, s are sequences of transitions t1t2 . . . tn.

Causal equivalence on paths: r ≈ s iff s can be obtained from r by

1. swapping adjacent independent transitions
2. adding/removing pairs of do/undo or undo/redo: tt = tt = ϵ

To do this, one has to fix a notion of independence.
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Causal Consistency

Causal-consistent reversibility has been mostly charaterised in
terms of the following property

Causal Consistency (CC - Danos & Krivine 2004)
If r and s are coinitial and cofinal paths then r ≈ s.

It captures the fact that the information in memory is compatible
with the notion of causal equivalence.

• non causal equivalent computations produce different
memories

• causal equivalent computations produce the same memory

Proofs are quite lengthy but mostly take a similar approach.

The relation with the intuitive definition seems not clear, and has
not been much discussed in the literature

10



Our approach

Our idea
We want to show that properties such as CC follow from a small
set of axioms. Proving the axioms should be easier than proving
the properties directly.

We use abstract labelled transition systems with independence
(LTSIs).

Related to the occurrence LTSIs of Sassone et al (1996).

• We treat reverse transitions as first-class citizens
• We adopt a minimal set of axioms and add more as needed

11



Classical proof of CC

Usual proof of CC goes through the Parabolic Lemma (PL)

PL: every path is causal equivalent to a backward path followed by a
forward path

P

Q

PL quite useful also beyond the proof of CC.
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Basic axioms

1. Coinitial backward transitions are independent (BTI):

P

a

b

Q

R

(generalizes backward determinism from sequential reversibility)

2. Square property (SP): If transitions are coinitial and independent
then we can close the diamond:

a

b b

P Q

R S

a

3. Well-foundedness (WF): no infinite reverse path

· · · an+1→ Pn
an→ · · · a2→ P1

a1→ P0

Cannot reverse to before starting point.
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First results

Theorem
If BTI and SP then PL.

Theorem
If WF and PL then CC.

• Proof much shorter than existing proofs
• Success for the axiomatic approach
• Shows that CC is not much stronger than PL
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Beyond CC

If CC is weaker than thought, how should we characterise
causal-consistent reversibility?

Split its informal definition into:

• Causal Safety: if we can reverse t, then all events after t are
independent of t (consequences have been undone)

• Causal Liveness: if all events after t are independent of t, then
we can reverse t
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Formalising CS and CL

We give three definitions of CS/CL:

• via independence of transitions (P a→ Q ι Q1
c→ Q2)

• via independence of events ([P a→ Q] ci [Q1
c→ Q2])

• via ordering of events ([P a→ Q] ̸< [Q1
c→ Q2])

With minimal axioms these are all different, but with our full set of
axioms they become equivalent.
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But what are events?

Events are equivalence classes of transitions.

Equate transitions representing the same action executed at
different points in the computation.

a

b

P Q

R S

a

b

If coinitial transitions in the square are independent then we let

P α→ Q ∼ R α→ S P β→ R ∼ Q β→ S

Get two events [P α→ Q] and [P β→ R] as equivalence classes.

Lift independence to events: [t1] ci [t2] if the two classes have
representatives t′1 and t′2 which are coinitial and independent.
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Axioms

1. SP: square property
2. BTI: backward transitions are independent
3. WF: well-founded
4. CPI: coinitial propagation of independence (around a square)

a

b

P Q

R S

a

b

5. IRE: independence respects events (if t ∼ t′ ι u then t ι u)
6. IEC: independence of events is coinitial (if t ι u then [t] ci [u])

You can find other properties that can be proved from such axioms
in the paper, as well as some criteria ensuring that some of the
axioms hold.
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CC does not imply CS or CL

Satisfies all axioms so far, hence PL+CC, both with and without
dashed dransitions:

a a a

b c R

P S

Q

b c

Q’

P’

Independence: by BTI and CPI.

CS fails on abca, with dashed transitions.

CL fails on abc, without dashed transitions, and adding
P a→ Q ι Q′ c→ R.

We provide further axioms from which CS and CL can be deduced.
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RCCS

Independence coincides with concurrency.

All the axioms are satisfied. Mostly proved in the original paper or
trivial. CPI and IRE easy since independence is defined on labels.

We get for free PL, CC, CS and CL (and other minor results).
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ρπ and Erlang

Similar to RCCS, the main difference is that they have a reduction
semantics. However, richer labels have been defined using the
memories involved in the transition.

We get for free PL, CC, CS and CL (and other minor results).
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Summary

• We presented basic axioms which are satisfied by RCCS and
other reversible formalisms.

• Verifying these axioms is easier than verifying the properties
directly.

• Causal Consistency provides limited information, and should be
supplemented by Causal Safety and Causal Liveness.

• Our abstract proofs should be relatively easy to formalise in a
proof assistant.
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