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What 1s reversibility?

The possibility of executing a computation
both in the standard, forward direction, and
in the backward direction, going back to a past state

® In some areas systems are naturally reversible: biology,
quantum computing, ...

® In other areas making systems reversible can be useful:
robotics, debugging, security, reliability, ...



Concurrent reversibility

® Reversibility in a sequential setting:
recursively undo the last action

® In concurrent systems there is no uniquely defined last
action

— Many choices are possible

® We follow causal-consistent reversibility é/ \b
[Danos & Krivine, CONCUR 2004]
® Causal dependencies must be respected \ /

— First reverse the consequences, then the causes

® Independent actions are reversed independently



Reversibility for debugging

® Debugging amounts to find the wrong line of code (bug)
causing a visible misbehavior

® The bug precedes and causes the misbehavior
— Quite natural to use reversibility to go back from the
misbehavior to the bug

® Sequential reversible debugging is well understood
— Gdb (since 2009), Microsoft time-travel debugger, ...

® Concurrent reversible debugging not so developed
— Most approaches just linearize the execution
— Causal information 1s lost

® Can we use causal-consistent reversibility?



Causal-consistent debugging

® Introduced in [Giachino, Lanese & Mezzina, FASE
2014] inside ANR project REVER

® Allows one to explore a concurrent computation back
and forward
— Any action can be undone provided its consequences
have been undone beforehand

® Which action to undo can be selected by the user or by a
scheduler

® But we can do better



Debugging and causality

® Standard debugging procedure:
1. Observing an unexpected behavior
2. Finding 1n the code the instruction that caused it
3. Correcting the instruction

® Causal-consistent reversibility includes lot of causal
information

® This information can be used to drive step 2 above

® Debugging strategy: follow causality links backward
from the misbehavior to the bug

® Which primitives do we need to enable such a strategy?
® We introduced the roll operator



Causal-consistent debugging: roll

® The roll operator allows one to undo a selected past

action, including al

1 and only 1ts consequences

® Minimal set of unc

0s needed to undo the selected action

in a causal-consistent way

® Many interfaces fo

rit:

— N actions 1n a given process

— Last assignment to a given variable

— Send of a given message

® Dual approach for
action (from a log)

forward execution: redo a future
including all and only its causes



Causal-consistent roll at work

® The programmer executes the program and finds some
unexpected behavior

® The roll allows him to find automatically the instruction
that immediately caused the misbehavior

® Two possibilities:
— The found 1nstruction 1s wrong: bug found

— The found 1nstruction gets wrong data from previous
Instructions:

® One can explore the tree of causes, navigating from one
process to the other



CauDEr

® Causal-consistent Debugger for Erlang
® Applies the approach outlined above to Erlang
— Functional and concurrent language

— Used 1n mainstream applications such as some
versions of Facebook chat

® Currently CauDEr moving to version 2 (almost there)
— From Core Erlang to Erlang
— New 1nterface
— https://github.com/mistupv/cauder-v2

® Mainly a collaboration between FOCUS and Universitat
Politecnica de Valeéncia


https://github.com/mistupv/cauder-v2

CauDEr v2

CauDEr
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Future directions

® Extending the supported fragment of the language
— Currently functional and concurrent features
— Error handling and distribution are under development

® Refine the causal approach

— What 1f analysis and causal compression

® Improving the efficiency
— Memory and time overhead due to history information
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