
1

Causal-Consistent 
Reversible Debugging

Ivan Lanese
Focus research group

University of Bologna/INRIA



What is reversibility?

The possibility of executing a computation 
both in the standard, forward direction, and 

in the backward direction, going back to a past state

 In some areas systems are naturally reversible: biology, 
quantum computing, …

 In other areas making systems reversible can be useful: 
robotics, debugging, security, reliability, ...



Concurrent reversibility

 Reversibility in a sequential setting: 
recursively undo the last action

 In concurrent systems there is no uniquely defined last 
action

– Many choices are possible 
 We follow causal-consistent reversibility 

[Danos & Krivine, CONCUR 2004]
 Causal dependencies must be respected

– First reverse the consequences, then the causes
 Independent actions are reversed independently

a

a

b

b



Reversibility for debugging

 Debugging amounts to find the wrong line of code (bug) 
causing a visible misbehavior

 The bug precedes and causes the misbehavior
– Quite natural to use reversibility to go back from the 

misbehavior to the bug 
 Sequential reversible debugging is well understood

– Gdb (since 2009), Microsoft time-travel debugger, ... 
 Concurrent reversible debugging not so developed

– Most approaches just linearize the execution
– Causal information is lost

 Can we use causal-consistent reversibility?



Causal-consistent debugging

 Introduced in [Giachino, Lanese & Mezzina, FASE 
2014] inside ANR project REVER

 Allows one to explore a concurrent computation back 
and forward

– Any action can be undone provided its consequences 
have been undone beforehand

 Which action to undo can be selected by the user or by a 
scheduler

 But we can do better



Debugging and causality

 Standard debugging procedure:
1. Observing an unexpected behavior

2. Finding in the code the instruction that caused it

3. Correcting the instruction
 Causal-consistent reversibility includes lot of causal 

information
 This information can be used to drive step 2 above
 Debugging strategy: follow causality links backward 

from the misbehavior to the bug
 Which primitives do we need to enable such a strategy?
 We introduced the roll operator



Causal-consistent debugging: roll

 The roll operator allows one to undo a selected past 
action, including all and only its consequences

 Minimal set of undos needed to undo the selected action 
in a causal-consistent way

 Many interfaces for it:
– N actions in a given process
– Last assignment to a given variable
– Send of a given message

 Dual approach for forward execution: redo a future 
action (from a log) including all and only its causes



Causal-consistent roll at work

 The programmer executes the program and finds some 
unexpected behavior

 The roll allows him to find automatically the instruction 
that immediately caused the misbehavior

 Two possibilities:

– The found instruction is wrong: bug found

– The found instruction gets wrong data from previous 
instructions: iterate

 One can explore the tree of causes, navigating from one 
process to the other 



CauDEr

 Causal-consistent Debugger for Erlang
 Applies the approach outlined above to Erlang

– Functional and concurrent language
– Used in mainstream applications such as some 

versions of Facebook chat
 Currently CauDEr moving to version 2 (almost there)

– From Core Erlang to Erlang
– New interface
– https://github.com/mistupv/cauder-v2

 Mainly a collaboration between FOCUS and Universitat 
Politècnica de València

https://github.com/mistupv/cauder-v2


CauDEr v2



Future directions

 Extending the supported fragment of the language
– Currently functional and concurrent features
– Error handling and distribution are under development

 Refine the causal approach
– What if analysis and causal compression

 Improving the efficiency
– Memory and time overhead due to history information 




	Diapositiva 1
	What is reversibility?
	Concurrent reversibility
	Reversibility for debugging
	Causal-consistent debugging: trivial approach
	Debugging and causality
	Diapositiva 7
	Causal-consistent primitives at work
	μOz
	CaReDeb: a causal-consistent debugger
	Future work
	Finally

