Causal-Consistent
Reversible Debugging

lvan Lanese
Focus research group
University of Bologna/INRIA

CcoskE - ._ |-R
ELROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY h .
) V4
[wd &Z 7.
DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA ERLANG lmm

1

What 1s reversibility?

The possibility of executing a computation
both in the standard, forward direction, and
in the backward direction, going back to a past state

® In some areas systems are naturally reversible: biology,
quantum computing, ...

® In other areas making systems reversible can be useful:
robotics, debugging, security, reliability, ...

Concurrent reversibility

® Reversibility in a sequential setting:
recursively undo the last action

® In concurrent systems there is no uniquely defined last
action

— Many choices are possible

® We follow causal-consistent reversibility é/ \b
[Danos & Krivine, CONCUR 2004]
® Causal dependencies must be respected \ /

— First reverse the consequences, then the causes

® Independent actions are reversed independently

Reversibility for debugging

® Debugging amounts to find the wrong line of code (bug)
causing a visible misbehavior

® The bug precedes and causes the misbehavior
— Quite natural to use reversibility to go back from the
misbehavior to the bug

® Sequential reversible debugging is well understood
— Gdb (since 2009), Microsoft time-travel debugger, ...

® Concurrent reversible debugging not so developed
— Most approaches just linearize the execution
— Causal information 1s lost

® Can we use causal-consistent reversibility?

Causal-consistent debugging

® Introduced in [Giachino, Lanese & Mezzina, FASE
2014] inside ANR project REVER

® Allows one to explore a concurrent computation back
and forward
— Any action can be undone provided its consequences
have been undone beforehand

® Which action to undo can be selected by the user or by a
scheduler

® But we can do better

Debugging and causality

® Standard debugging procedure:
1. Observing an unexpected behavior
2. Finding 1n the code the instruction that caused it
3. Correcting the instruction

® Causal-consistent reversibility includes lot of causal
information

® This information can be used to drive step 2 above

® Debugging strategy: follow causality links backward
from the misbehavior to the bug

® Which primitives do we need to enable such a strategy?
® We introduced the roll operator

Causal-consistent debugging: roll

® The roll operator allows one to undo a selected past

action, including al

1 and only 1ts consequences

® Minimal set of unc

0s needed to undo the selected action

in a causal-consistent way

® Many interfaces fo

rit:

— N actions 1n a given process

— Last assignment to a given variable

— Send of a given message

® Dual approach for
action (from a log)

forward execution: redo a future
including all and only its causes

Causal-consistent roll at work

® The programmer executes the program and finds some
unexpected behavior

® The roll allows him to find automatically the instruction
that immediately caused the misbehavior

® Two possibilities:
— The found 1nstruction 1s wrong: bug found

— The found 1nstruction gets wrong data from previous
Instructions:

® One can explore the tree of causes, navigating from one
process to the other

CauDEr

® Causal-consistent Debugger for Erlang
® Applies the approach outlined above to Erlang
— Functional and concurrent language

— Used 1n mainstream applications such as some
versions of Facebook chat

® Currently CauDEr moving to version 2 (almost there)
— From Core Erlang to Erlang
— New 1nterface
— https://github.com/mistupv/cauder-v2

® Mainly a collaboration between FOCUS and Universitat
Politecnica de Valeéncia

https://github.com/mistupv/cauder-v2

CauDEr v2

CauDEr

File Edit View Run Help

Code — — . Actions

120 {read,Pid} -> Pid!val end, Process

(21 varManager(Val).

22 & PID: 99 - meViolation:incrementer/2 W
23 incrementer{MePid,XPid) ->

24 MePid!{request,self(}}. | =l
25 receive answer -= Manual =~ Automatic Replay Rollback

26 [APid!{read,self()},

27 receive X -> ~

28 XPid!{write,X+1}, Steps: |1 Roll steps
29 MePid!{release} end end.

PID: Roll spawn

98 | {read, 99} Msg. Uid: | 3 Roll send

Procgsslnfo Msg. Uid:
Bindings - - Stack

receive
meViolation:incrementer/2

Roll receive

| Name Value var. Roll variable
MePid a7
#Pid a8 System Info
Mail z
Dest. Value uiD

|97 {request, 100} 2

Log History

send(3) reclanswer,1)

rec(4) send({request,99},0)
send(5)

send(6)

Trace RollLog

Roll send from Proc. 99 of {release} to Proc. 97 (6)
Roll send from Proc. 97 of answer to Proc. 1080 (7)

Rolled back sending of message with UID: 3 Ln 26, Col1 Alive 4, Dead 1

Future directions

® Extending the supported fragment of the language
— Currently functional and concurrent features
— Error handling and distribution are under development

® Refine the causal approach

— What 1f analysis and causal compression

® Improving the efficiency
— Memory and time overhead due to history information

Causal-consistent reversible debugging

Causal-consistent

reversibility, Danos

& Krivine, CONCUR
2004

31/8/04

2004 2006 2008

CauDEr, Lanese, Nishida,
Palacios & Vidal, FLOPS

2018
9/5/18
Causal-consistent
debugging, Giachino,
Lanese & Mezzina, FASE
2014
5/4/14
]
2010 ‘ 2012] 2014 ‘ 2016 | 2018 \ 2020 2022
A
Today
ANR DCore
31/3/2019 - 29/9/2023
ANR REVER
48 months

1/12/2011 - 30/11/2015

COST Action on Reversible Computation

46 months
? 1/7/2015 - 30/4/2019

	Diapositiva 1
	What is reversibility?
	Concurrent reversibility
	Reversibility for debugging
	Causal-consistent debugging: trivial approach
	Debugging and causality
	Diapositiva 7
	Causal-consistent primitives at work
	μOz
	CaReDeb: a causal-consistent debugger
	Future work
	Finally

