A Modular Formalization of Reversibility for Concurrent Models and Languages

Ivan Lanese
Computer Science Department
University of Bologna/INRIA
Italy

Joint work with Alexis Bernadet
Map of the talk

- Reversibility
- A simple case
- Label refinement
- Conclusion
Map of the talk

- Reversibility
- A simple case
- Label refinement
- Conclusion
What is reversibility?

The possibility of executing a computation both in the standard, forward direction, and in the backward direction, going back to past states

- Reversibility everywhere
 - chemistry/biology
 - quantum computing
 - state space exploration
 - debugging
 - optimistic simulation
 - low-power computing
 - ...

Reversing execution of a sequential program

- Recursively undo the last action
 - Computations are undone in reverse order
 - To reverse A;B first reverse B, then reverse A

- We want the Loop Lemma to hold
 - From state S, doing A and then undoing A should lead back to S
 - From state S, undoing A (if A is in the past) and then redoing A should lead back to S
Avoiding loss of information

● Undoing computational actions may not be easy
 − Computational actions may cause loss of information
 − \(X = 5 \) causes the loss of the past value of \(X \)

● Restrict to languages that never lose information
 − \(X = X + 1 \) does not lose information

● Take languages that would lose information, and save this information
 − \(X = 5 \) becomes reversible by recording the old value of \(X \)
Reversibility and concurrency

- The sequential definition, recursively undo the last action, is no more applicable

- Which is the last action in a concurrent setting?
 - Executions of many actions may overlap
 - For sure, if an action A caused an action B, A could not be the last one

- **Causal-consistent reversibility**: recursively undo any action whose consequences (if any) have already been undone
Causal-consistent reversibility in practice

- Two sequential actions should be undone in reverse order

- Two concurrent actions can be undone in any order
 - Choosing an interleaving for them is an arbitrary choice
 - It should have no impact on the possible reverse behaviors
Our aim

- Many causal-consistent reversible extensions of specific concurrent languages (CCS, π-calculus, klaim, ...) exist in the literature
- Very little on how to define the extension, given a language
- We look for a general and modular way of doing this
- We prefer simplicity and correctness by construction over memory or time efficiency
Map of the talk

- Reversibility
- A simple case
- Label refinement
- Conclusion
A simple case

- Take a system represented by an LTS with transitions $M \xrightarrow{\alpha} M'$
- Assume the LTS is
 - Deterministic: given M and α there is a unique M'
 - Codeterministic: given M' and α there is a unique M
- Each computation is fully described by its final state M_n and its sequence of labels $\alpha_1, \ldots, \alpha_n$
A simple case: reversible LTS

- Configurations: \((L,M)\) where \(L\) is a sequence of labels such that there exists \(M'\) with \(M' \xrightarrow{L} M\)

- Forward transitions: \((L,M) \xrightarrow{\alpha} ((L,\alpha),M')\) if \(M \xrightarrow{\alpha} M'\)

- Backward transitions: \(((L,\alpha),M') \xrightarrow{\alpha^{-1}} (L,M)\) if \(M \xrightarrow{\alpha} M'\)
Properties

- The Loop Lemma holds: $(L,M) \xrightarrow{\alpha} (L',M')$ iff $(L',M') \xrightarrow{\alpha^{-1}} (L,M)$

- The reversible LTS is a conservative extension of the given one

- This is not causal-consistent reversibility, just sequential reversibility
 - Only the last action can be undone

- In many relevant cases the starting LTS is not deterministic and/or not codeterministic
Adding concurrency

- We need to know which actions are concurrent
 - The same formalism may have different concurrency models

- We require a symmetric independence \perp relation on labels

- Independent actions should satisfy the co-diamond property
 If $M_1 \xrightarrow{\alpha} M_2$, $M_2 \xrightarrow{\beta} M_3$ and $\alpha \perp \beta$ then there exists M'_2 such that $M_1 \xrightarrow{\beta} M'_2$ and $M'_2 \xrightarrow{\alpha} M_3$

- Standard labels may not contain enough information to define \perp in order to capture the desired concurrency model
 - In CCS $a.b + b.a$ and $a|b$ have the same labels
A causal-consistent reversible LTS

- **Configurations:** $([L],M)$ where
 1. L is a sequence of labels such that there exists M' with $M' \xrightarrow{L} M$
 2. $[L]$ is the equivalence class of L w.r.t. a relation allowing one to swap independent actions

- **Forward transitions:** $([L],M) \xrightarrow{\alpha} ([L,u],M')$ if $M \xrightarrow{\alpha} M'$

- **Backward transitions:** $([L,\alpha],M') \xrightarrow{\alpha^{-1}} ([L],M)$ if $M \xrightarrow{\alpha} M'$
Properties

- The Loop Lemma holds
- The Causal Consistency theorem holds
 - It characterizes causal-consistent reversibility
- The reversible LTS is a conservative extension of the given one
- In many relevant cases the starting LTS is not deterministic and/or not codeterministic
- We may not have enough information in the labels to define the independence relation as desired
Causal Consistency theorem

- **Causal equivalence** is an equivalence relation on computations allowing one to:
 - Swap independent actions
 - Simplify inverse actions

- Causal Consistency theorem: two computations are coinitial and cofinal iff they are causal equivalent
 - Causal equivalent computations lead to the same state
 - Have the same backward behavior
 - Computations which are not causal equivalent produce different history/causal information
 - Have different backward behavior
Map of the talk

- Reversibility
- A simple case
- Label refinement
- Conclusion
Label refinement

- The LTS may be not deterministic or not codeterministic
- We may not have enough information to define the desired independence relation
- We solve both the problems at once: we refine the labels so to have enough information
- Adding too much information to the labels may forbid some concurrency model
 - It may not be possible to preserve the labels when swapping independent actions (co-diamond property)
Label refinement: definition

- We want
 - a new set of labels u
 - an LTS with the same terms M but labels u which is deterministic and codeterministic
 - an interpretation $[[u]]=\alpha$ such that $M \xrightarrow{u} M'$ iff $M \xrightarrow{\alpha} M'$ (correctness)

- We can now apply the construction to our reversible LTS
Label refinement: example

- Refinement is always possible

- For each $\alpha : M \rightarrow M'$ take $u = (M, \alpha, M')$

- … but not always useful: transitions can (almost) never commute preserving labels
Label refinement in general

- No automatic way of finding a good refinement
- We should add enough information to be deterministic, codeterministic, and distinguish independent actions
- We should not add too much information to allow independent actions to commute without changing labels
- We will see action refinement for CCS
- The paper also discusses action refinement for concurrent X-machines
The case of CCS

- Standard CCS semantics
 - is not deterministic
 - is not codeterministic
 - does not provide enough information to define independence

- We consider a label refinement close to the causal semantics of Boudol and Castellani
Label refinement for CCS

- We define the following refined labels:
 \[u,v ::= ((\alpha_j,P_j)_{j \in I},i) | (u\cdot) | (\cdot|u) | (u|v) | va.u | \text{recX.P} \]

- Action interpretation is as follows:
 \[
 \begin{align*}
 [[((\alpha_j,P_j)_{j \in I},i)]] &= \alpha_i \\
 [[\text{recX.P}]] &= \tau \\
 [[[u\cdot]]] &= [[[u]]] \\
 [[[u|v]]] &= \tau \\
 [[[va.u]]] &= [[[u]]]
 \end{align*}
 \]

- Labels are independent if originated from different threads
 - E.g., \((u\cdot) \perp (\cdot|v)\)
An example

- \(a.b.0|b.c.0 \xrightarrow{(a,b.0),1|\cdot} b.0|b.c.0 \xrightarrow{1|(b,c.0),1} b.0|c.0 \)

 The two actions can be reversed in any order since
 \(((a,b.0),1|\cdot), (\cdot|(b,c.0),1) \) and \((\cdot|(b,c.0),1,)(a,b.0),1|\cdot) \) are equivalent.

- \(a.b.0|b.c.0 \xrightarrow{(a,b.0),1|\cdot} b.0|b.c.0 \xrightarrow{(b,0),1|(b,c.0),1} 0|c.0 \)

 The two actions need to be reversed in any order since they are causally dependent.
The final recipe

- Define a suitable refinement of the given LTS
- Choose an independence relation
- Apply the construction to get a causal-consistent reversible LTS extending the given one
- Get for free many relevant properties
 - Loop Lemma and Causal-Consistency theorem
Map of the talk

- Reversibility
- A simple case
- Label refinement
- Conclusion
Summary

- We presented a modular way to define a causal-consistent semantics of a given formalism
 - It ensures by construction the Loop Lemma and the Causal Consistency theorem
- We instantiated it on two case studies
 - CCS
 - Concurrent X-machines
Future work

- Applying our framework to other formalisms

- Defining a causal-consistent reversible semantics for a mainstream language

- Find fully automatic ways for defining a causal-consistent reversible semantics given a forward one
Thanks!

Questions?