ReVEl;_sifbie_;* Tt ; T t

i
- 3 1 - 9
o ¢ __.‘- ab }E‘-’ ,.,I

,i S 5
systems [7 A g

lvan Lanese

Computer Science and Engineering Departme{nt
Focus research group ¢

University of Bologna/INRIA A

GNCS project
Sistemi Reversibili Concorrenti:
dai Modelli ai Linguaggi

Roadmap

® Reversible computing
® Debugging Erlang programs
® Petri nets vs event structures

® Conclusion

Roadmap

® Reversible computing

What 1s reversibility?

The possibility of executing a computation
both in the standard, forward direction, and
in the backward direction, going back to a past state

® In some areas systems are naturally reversible: biology,
quantum computing, ...

® In other areas making systems reversible can be useful
— Undo option in text editors

— Debugging, robotics, ...

Reversibility in concurrent systems

® Reversibility in a sequential setting:
recursively undo the last action

® In concurrent systems execution of different actions
may overlap in time
— No uniquely defined last action

— Actions form a partial order, not necessarily a total
order

® Different approaches to reversibility exist

® We follow causal-consistent reversibility
[Danos & Krivine, CONCUR 2004]

Causal-consistent reversibility

® Based on causality instead of time

® Causal dependencies must be respected
— First reverse the consequences, then the causes

® Independent actions are reversed independently

(5

Reversibility 1n our project

® We considered many aspects of reversibility, both
foundational and applicative

® Tn the talk I will focus on two contributions

— How to apply causal-consistent reversibility to the
debugging of Erlang programs?

* Ongoing effort since many years
* By myself, C. Sacerdoti Coen, G. Vidal, ...

— How to extend the relation between event structures
and Petr1 nets to the reversible setting?

* By C. A. Mezzina, G. M. Pinna, E. Melgratti, 1.
Ulidowski

Roadmap

® Debugging Erlang programs

Y vz 5= T “/v0 7037 g3 0%
JJeo s = ong 9.0
Debuggin i
233y Pro 2. 1i0yaGyrs
& 2
b-L 033 J

® Debugging amounts to find the wrong ™ & 8 “0§
line of code (bug) causing a visible AT T

misbehavior
® The bug precedes and causes the misbehavior

— Quite natural to use reversibility to go back from the
misbehavior to the bug

Reversible debugging

® Sequential reversible debugging is well understood
— Gdb (since 2009), Microsoft time-travel debugger, ...

® Concurrent reversible debugging not so developed
— Most approaches just linearize the execution
— Causal information 1s lost

® Can we use causal-consistent reversibility?

Causal-consistent debugging

® Introduced in [Giachino, Lanese & Mezzina, FASE
2014]

® Allows one to explore a concurrent computation back
and forward
— Any action can be undone provided its consequences
have been undone beforehand

® Which action to undo can be selected by the user or by a
scheduler

® But we can do better

Debugging and causality

® Standard debugging procedure:
1. Observing an unexpected behavior
2. Finding in the code the instruction that caused it
3. Correcting the instruction

® Causal-consistent reversibility naturally tracks lot of
causal information

® This information can be used to drive step 2 above

® Debugging strategy: follow causality links backward
from the misbehavior to the bug

® We can use the roll operator to this end

Causal-consistent debugging: roll

® The roll operator allows one to undo a selected past
action, including all and only its consequences

® Minimal set of undos needed to undo the selected action
in a causal-consistent way

® Many interfaces for it:
— N actions 1n a given process
— Last assignment to a given variable

— Send of a given message

Causal-consistent roll at work

® The programmer executes the program and finds some
unexpected behavior

® The roll allows him to find automatically the instruction
that immediately caused the misbehavior

® Two possibilities:

— The found instruction 1s wrong: bug found

— The found 1nstruction gets wrong data from previous
instructions:

® One can explore the tree of causes, navigating from one
process to the other

CauDE =
auDEr L']

® Causal-consistent Debugger for Erlang

® Applies the approach outlined above to a fragment of
Erlang

— Functional and concurrent language
— Based on message passing

— Used 1n mainstream applications such as some
versions of Facebook chat

® https://github.com/mistupv/cauder-v2

® Support for further (non trivial) constructs in Erlang has
been added during the project

https://github.com/mistupv/cauder-v2

CauDEr interface

CauDEr

File Edit View Run Help

Code —— ~ Actions

|28 {read,Pid} -> Pid!val end, Process

21 varManager(val).

22 X PID: 99 - meViolation:incrementer/2 ~

23 incrementer(MePid,XPid} -»

24 MePid!{request,self(}}. [=
25 receive answer -= Manual =~ Automatic = Replay Rollback

26 [XPid!{read,self({)},

27 receive X -= 21

28 ¥Pid!{write,X+1}, Steps: 1 Roll steps
29 MePid!{release} end end.

PID: Roll spawn

98 | {read, 99} Msg. Uid: | 3 Roll send

Procgsslnfo Msg. Uid:
Bindings - Stack

receive

meViolation:incrementer/2

Roll receive

Name Value var. Roll variable

MePid 97
XPid 98 system Info
Mail - :
Dest. Value uID

|97 {request, 100} p)

Log History

send(3) rec{answer,1)

rec(4) send({request,99},0)
send(5)

send(6)

Trace RollLog

Roll send from Proc. 99 of {release} to Proc. 97 (6)
Roll send from Proc. 97 of answer to Proc. 100 (7)

Rolled back sending of message with UID: 3 Ln 26, Col1 Alive 4, Dead 1

Roadmap

® Petri nets vs event structures

Petr1 nets

® Operational model for concurrency
® Based on tokens that enable transitions

® The one in figure is actually an ?
occurrence net (ON) a
— No cycles and max 1 token per place 3283 o
— It 1s always clear where a token] r/O
comes from b :
— Plays well with reversibility 1O O

— Can represent any net via unfolding

Event structures

® Denotational model for concurrency
® Based on events and relations among them
® These are actually prime event structures (PES)

— Only causation and conflict relations b and c are
.) in conflict
— Variants have other relations ¢
® Prime event structures correspond to b NN\ C

occurrence nets
a causes b

— Classical result by Winskel

Reversible PES

® Extend PES with reversibility

— Not only causal-consistent
® Not all the events need to be reversible
® Tntroduce:

— Reverse causality <: a forward event 1s a cause of a
backward one

— Prevention >: a forward event forbids a backward
one

From ON to reversible ON

® Adding reverse transitions in ON gives rise to causal-
consistent reversibility

¢ N

a a a

SQ% ®) S3 > S92 S3
b ¢ b b c

()

Modeling rPES with Petr1 nets

® We need to introduce inhibitor arcs

® Inhibitor arcs can model causality as well
® We can reduce to “flat” nets

® We call them Causal Nets (CN)

® Reversible Causal Nets (rCN) extend causal nets with
reverse actions and additional inhibitor arcs

DN 2 NI
a b| & a a b a a
3483 %85 %36 33$/ 84% 83é/
b<a b>a

a<b b#c

So (e

S2

S4

From ON to CN

a#b a<c
a#c

({a,c}, #)
(*,a) (*,0)
o) (x,0) (o
{a, b}, #
a b T c
(a, *) (b, *) (c, %)

Graphical summary of results

Winskel

CN - =PES~ ~ON Forward realm

v
rON
~ Reversible
realm

v Ve
rICN- = rPES

Roadmap

® Conclusion

Other contributions

® Understanding the interplay between reversibility and
time

® Developing techniques for axiomatic reasoning on
reversible processes

® Understanding reversibility in Markov chains

Conclusion

® Reversibility is a niche area with many possible
applications and open questions

® Studied by both computer scientists and mathematicians
(and not only)

® If curious, Reversible Computation conference will be
held 1in Urbino, on July 5-6

— Online participation will also be allowed

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	What is reversibility?
	Diapositiva 5
	Concurrent reversibility
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Reversibility for debugging
	Causal-consistent debugging: trivial approach
	Debugging and causality
	Diapositiva 13
	Causal-consistent primitives at work
	μOz
	CaReDeb: a causal-consistent debugger
	Diapositiva 17
	Future work
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Finally

