
1

Reversible concurrent 
systems

Ivan Lanese
Computer Science and Engineering Department

Focus research group
University of Bologna/INRIA

GNCS project
Sistemi Reversibili Concorrenti: 

dai Modelli ai Linguaggi



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



What is reversibility?

The possibility of executing a computation 
both in the standard, forward direction, and 

in the backward direction, going back to a past state

 In some areas systems are naturally reversible: biology, 
quantum computing, …

 In other areas making systems reversible can be useful
– Undo option in text editors 
– Debugging, robotics, ...



Reversibility in concurrent systems

 Reversibility in a sequential setting: 
recursively undo the last action

 In concurrent systems execution of different actions 
may overlap in time

– No uniquely defined last action
– Actions form a partial order, not necessarily a total 

order

 Different approaches to reversibility exist 
 We follow causal-consistent reversibility 

[Danos & Krivine, CONCUR 2004]



Causal-consistent reversibility

 Based on causality instead of time
 Causal dependencies must be respected

– First reverse the consequences, then the causes
 Independent actions are reversed independently

a

a

b

b



Reversibility in our project

 We considered many aspects of reversibility, both 
foundational and applicative

 In the talk I will focus on two contributions
– How to apply causal-consistent reversibility to the 

debugging of Erlang programs?
● Ongoing effort since many years
● By myself, C. Sacerdoti Coen, G. Vidal, ...

– How to extend the relation between event structures 
and Petri nets to the reversible setting?

● By C. A. Mezzina, G. M. Pinna, E. Melgratti, I. 
Ulidowski 



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Debugging

 Debugging amounts to find the wrong 
line of code (bug) causing a visible 
misbehavior

 The bug precedes and causes the misbehavior
– Quite natural to use reversibility to go back from the 

misbehavior to the bug 



Reversible debugging

 Sequential reversible debugging is well understood
– Gdb (since 2009), Microsoft time-travel debugger, ... 

 Concurrent reversible debugging not so developed
– Most approaches just linearize the execution
– Causal information is lost

 Can we use causal-consistent reversibility?



Causal-consistent debugging

 Introduced in [Giachino, Lanese & Mezzina, FASE 
2014]

 Allows one to explore a concurrent computation back 
and forward

– Any action can be undone provided its consequences 
have been undone beforehand

 Which action to undo can be selected by the user or by a 
scheduler

 But we can do better



Debugging and causality

 Standard debugging procedure:
1. Observing an unexpected behavior

2. Finding in the code the instruction that caused it

3. Correcting the instruction
 Causal-consistent reversibility naturally tracks lot of 

causal information
 This information can be used to drive step 2 above
 Debugging strategy: follow causality links backward 

from the misbehavior to the bug
 We can use the roll operator to this end



Causal-consistent debugging: roll

 The roll operator allows one to undo a selected past 
action, including all and only its consequences

 Minimal set of undos needed to undo the selected action 
in a causal-consistent way

 Many interfaces for it:
– N actions in a given process
– Last assignment to a given variable
– Send of a given message



Causal-consistent roll at work

 The programmer executes the program and finds some 
unexpected behavior

 The roll allows him to find automatically the instruction 
that immediately caused the misbehavior

 Two possibilities:

– The found instruction is wrong: bug found

– The found instruction gets wrong data from previous 
instructions: iterate

 One can explore the tree of causes, navigating from one 
process to the other 



CauDEr

 Causal-consistent Debugger for Erlang
 Applies the approach outlined above to a fragment of 

Erlang
– Functional and concurrent language
– Based on message passing
– Used in mainstream applications such as some 

versions of Facebook chat
 https://github.com/mistupv/cauder-v2
 Support for further (non trivial) constructs in Erlang has 

been added during the project

https://github.com/mistupv/cauder-v2


CauDEr interface



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Petri nets

 Operational model for concurrency
 Based on tokens that enable transitions
 The one in figure is actually an

occurrence net (ON)
– No cycles and max 1 token per place
– It is always clear where a token

comes from
– Plays well with reversibility
– Can represent any net via unfolding



Event structures

 Denotational model for concurrency
 Based on events and relations among them
 These are actually prime event structures (PES)

– Only causation and conflict relations
– Variants have other relations

 Prime event structures correspond to
occurrence nets

– Classical result by Winskel

b and c are 
in conflict

a causes b



Reversible PES

 Extend PES with reversibility
– Not only causal-consistent

 Not all the events need to be reversible
 Introduce:

– Reverse causality ≺: a forward event is a cause of a 
backward one

– Prevention ▹: a forward event forbids a backward 
one



From ON to reversible ON

 Adding reverse transitions in ON gives rise to causal-
consistent reversibility



Modeling rPES with Petri nets

 We need to introduce inhibitor arcs
 Inhibitor arcs can model causality as well
 We can reduce to “flat” nets
 We call them Causal Nets (CN)
 Reversible Causal Nets (rCN) extend causal nets with 

reverse actions and additional inhibitor arcs



From ON to CN

a # b
a # c

a < c



Graphical summary of results

CN PES ON

rON

rCN rPES

Forward realm

Reversible 
realm

Winskel



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Other contributions

 Understanding the interplay between reversibility and 
time

 Developing techniques for axiomatic reasoning on 
reversible processes

 Understanding reversibility in Markov chains



Conclusion

 Reversibility is a niche area with many possible 
applications and open questions

 Studied by both computer scientists and mathematicians 
(and not only)

 If curious, Reversible Computation conference will be 
held in Urbino, on July 5-6

– Online participation will also be allowed




	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	What is reversibility?
	Diapositiva 5
	Concurrent reversibility
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Reversibility for debugging
	Causal-consistent debugging: trivial approach
	Debugging and causality
	Diapositiva 13
	Causal-consistent primitives at work
	μOz
	CaReDeb: a causal-consistent debugger
	Diapositiva 17
	Future work
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Finally

