
1

Reversible concurrent 
systems

Ivan Lanese
Computer Science and Engineering Department

Focus research group
University of Bologna/INRIA

GNCS project
Sistemi Reversibili Concorrenti: 

dai Modelli ai Linguaggi



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



What is reversibility?

The possibility of executing a computation 
both in the standard, forward direction, and 

in the backward direction, going back to a past state

 In some areas systems are naturally reversible: biology, 
quantum computing, …

 In other areas making systems reversible can be useful
– Undo option in text editors 
– Debugging, robotics, ...



Reversibility in concurrent systems

 Reversibility in a sequential setting: 
recursively undo the last action

 In concurrent systems execution of different actions 
may overlap in time

– No uniquely defined last action
– Actions form a partial order, not necessarily a total 

order

 Different approaches to reversibility exist 
 We follow causal-consistent reversibility 

[Danos & Krivine, CONCUR 2004]



Causal-consistent reversibility

 Based on causality instead of time
 Causal dependencies must be respected

– First reverse the consequences, then the causes
 Independent actions are reversed independently

a

a

b

b



Reversibility in our project

 We considered many aspects of reversibility, both 
foundational and applicative

 In the talk I will focus on two contributions
– How to apply causal-consistent reversibility to the 

debugging of Erlang programs?
● Ongoing effort since many years
● By myself, C. Sacerdoti Coen, G. Vidal, ...

– How to extend the relation between event structures 
and Petri nets to the reversible setting?

● By C. A. Mezzina, G. M. Pinna, E. Melgratti, I. 
Ulidowski 



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Debugging

 Debugging amounts to find the wrong 
line of code (bug) causing a visible 
misbehavior

 The bug precedes and causes the misbehavior
– Quite natural to use reversibility to go back from the 

misbehavior to the bug 



Reversible debugging

 Sequential reversible debugging is well understood
– Gdb (since 2009), Microsoft time-travel debugger, ... 

 Concurrent reversible debugging not so developed
– Most approaches just linearize the execution
– Causal information is lost

 Can we use causal-consistent reversibility?



Causal-consistent debugging

 Introduced in [Giachino, Lanese & Mezzina, FASE 
2014]

 Allows one to explore a concurrent computation back 
and forward

– Any action can be undone provided its consequences 
have been undone beforehand

 Which action to undo can be selected by the user or by a 
scheduler

 But we can do better



Debugging and causality

 Standard debugging procedure:
1. Observing an unexpected behavior

2. Finding in the code the instruction that caused it

3. Correcting the instruction
 Causal-consistent reversibility naturally tracks lot of 

causal information
 This information can be used to drive step 2 above
 Debugging strategy: follow causality links backward 

from the misbehavior to the bug
 We can use the roll operator to this end



Causal-consistent debugging: roll

 The roll operator allows one to undo a selected past 
action, including all and only its consequences

 Minimal set of undos needed to undo the selected action 
in a causal-consistent way

 Many interfaces for it:
– N actions in a given process
– Last assignment to a given variable
– Send of a given message



Causal-consistent roll at work

 The programmer executes the program and finds some 
unexpected behavior

 The roll allows him to find automatically the instruction 
that immediately caused the misbehavior

 Two possibilities:

– The found instruction is wrong: bug found

– The found instruction gets wrong data from previous 
instructions: iterate

 One can explore the tree of causes, navigating from one 
process to the other 



CauDEr

 Causal-consistent Debugger for Erlang
 Applies the approach outlined above to a fragment of 

Erlang
– Functional and concurrent language
– Based on message passing
– Used in mainstream applications such as some 

versions of Facebook chat
 https://github.com/mistupv/cauder-v2
 Support for further (non trivial) constructs in Erlang has 

been added during the project

https://github.com/mistupv/cauder-v2


CauDEr interface



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Petri nets

 Operational model for concurrency
 Based on tokens that enable transitions
 The one in figure is actually an

occurrence net (ON)
– No cycles and max 1 token per place
– It is always clear where a token

comes from
– Plays well with reversibility
– Can represent any net via unfolding



Event structures

 Denotational model for concurrency
 Based on events and relations among them
 These are actually prime event structures (PES)

– Only causation and conflict relations
– Variants have other relations

 Prime event structures correspond to
occurrence nets

– Classical result by Winskel

b and c are 
in conflict

a causes b



Reversible PES

 Extend PES with reversibility
– Not only causal-consistent

 Not all the events need to be reversible
 Introduce:

– Reverse causality ≺: a forward event is a cause of a 
backward one

– Prevention ▹: a forward event forbids a backward 
one



From ON to reversible ON

 Adding reverse transitions in ON gives rise to causal-
consistent reversibility



Modeling rPES with Petri nets

 We need to introduce inhibitor arcs
 Inhibitor arcs can model causality as well
 We can reduce to “flat” nets
 We call them Causal Nets (CN)
 Reversible Causal Nets (rCN) extend causal nets with 

reverse actions and additional inhibitor arcs



From ON to CN

a # b
a # c

a < c



Graphical summary of results

CN PES ON

rON

rCN rPES

Forward realm

Reversible 
realm

Winskel



Roadmap

 Reversible computing

 Debugging Erlang programs

 Petri nets vs event structures

 Conclusion



Other contributions

 Understanding the interplay between reversibility and 
time

 Developing techniques for axiomatic reasoning on 
reversible processes

 Understanding reversibility in Markov chains



Conclusion

 Reversibility is a niche area with many possible 
applications and open questions

 Studied by both computer scientists and mathematicians 
(and not only)

 If curious, Reversible Computation conference will be 
held in Urbino, on July 5-6

– Online participation will also be allowed




	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	What is reversibility?
	Diapositiva 5
	Concurrent reversibility
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Reversibility for debugging
	Causal-consistent debugging: trivial approach
	Debugging and causality
	Diapositiva 13
	Causal-consistent primitives at work
	μOz
	CaReDeb: a causal-consistent debugger
	Diapositiva 17
	Future work
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Finally

