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Introduction

CauDEr is a reversible causal-consistent debugger for the Erlang
programming language.

Distinctive features of CauDEr:

Reversibility of multi-process systems

Causal-consistent rollback
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Motivations

Concurrent and distributed systems are everywhere and both are
well known for their intrinsic difficulties.

Hence we need effective tools while writing code.
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The Erlang language

Erlang, developed in 1986 by Ericsson, is a concurrent, distributed,
functional programming language, based on message passing.

It is probably the most popular programming language that
implements the actor model.

Erlang owes its success to three aspects: the support of
concurrency and distribution, the facilities to do error-handling and
the OTP libraries.
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Some of the supported features

The debugger currently supports a subset of Erlang.
In particular it supports constructs for:

Concurrency (spawn, send and receive)

Distribution (creation of new nodes, reading the nodes,
remote spawn)
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Reversibility

Causal Consistency: before undoing an action we must ensure that
all of its consequences, if any, have been undone.
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Demo
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Causal dependencies

We say that there is a dependency between two consecutive actions in
two cases:

they cannot be executed in the opposite order

by executing them in the opposite order the result would change
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Concurrent dependencies

Supported constructs:

spawn/2, 3

send/2

receive

Dependencies:

An action of a process depends on its (successful) spawn

A receive depends on its send
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Distributed dependencies

Constructs:

spawn/4

start/1, 2

nodes/0

Dependencies:

1 a (successful) spawn on node nid depends on the start of nid ;

2 a (successful) start of node nid depends on previous failed spawns
on the same node, if any (if we swap the order, the spawn will
succeed);

3 a failed start of node nid depends on its (successful) start;

4 a nodes reading a set Ω depends on the start of all nids in Ω, if any.
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Semantics Structure

Definition (Process)

A process is defined as: 〈nid , p, h, θ, e〉 where

nid is the name of the node

p is the process id

h is the process history

θ is the process environment

e is the expression to evaluate
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Semantics Structure

Definition (System)

A system is defined as Γ; Π; Ω where

Γ is the global mailbox

Π is a pool of processes

Ω is the set of connected nodes
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Operational Semantics

CauDEr implements three semantics:

a forward semantics that defines Erlang’s behavior and stores
information in the history

a backward semantics that ensures that we undo only actions whose
consequences have been already undone

a rollback semantics which automatically undoes all the
consequences of an action
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Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [ ] ∧ reads(nid ′,Π) = [ ] ∧ failed starts(nid ′,Π) = [ ]

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [ ] ∧ reads(nid ′,Π) = [ ] ∧ failed starts(nid ′,Π) = [ ]

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [ ] ∧ reads(nid ′,Π) = [ ] ∧ failed starts(nid ′,Π) = [ ]

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}

↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [ ] ∧ reads(nid ′,Π) = [ ] ∧ failed starts(nid ′,Π) = [ ]

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [ ] ∧ reads(nid ′,Π) = [ ] ∧ failed starts(nid ′,Π) = [ ]

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [ ] ∧ reads(nid ′,Π) = [ ] ∧ failed starts(nid ′,Π) = [ ]

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Rollback Semantics

The rollback semantics allows us to reach a past state of the
computation of the system, such past state is specified as an action
performed by a process.

Some of the considered requests are:

{p, λ⇓}: the receive of the message uniquely identified by λ;

{p, stnid}: the successful start of node nid ;

{p, spp′}: the spawn of process p′.

A system in rollback mode is denoted as ddSeeΨ
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Rollback Semantics

S ↽p,r,Ψ′ S′ ∧ ψ ∈ Ψ′

ddSee{p,ψ}:Ψ  ddS′eeΨ

S ↽p,r,Ψ′ S′ ∧ ψ 6∈ Ψ′

ddSee{p,ψ}:Ψ  ddS′ee{p,ψ}:Ψ

S = Γ; 〈nid , p, h, θ, e〉 | Π; Ω ∧ S 6↽p,r,Ψ′ ∧ {p′, ψ′} = bwd dep(〈nid , p, h, θ, e〉,S)

ddSee{p,ψ}:Ψ  ddS′ee{p′,ψ′}:{p,ψ}:Ψ

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang



Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Rollback semantics: dependencies operator

The dependencies operator does pattern matching on the history item
and given the system computes the request to undo the consequences.

bwd dep(< , , nodes( , ,Ω′) : h, , >, ; Π; {nid ′} ∪ Ω) = {parent(nid ′,Π), stnid′}
where nid ′ /∈ Ω′
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Future work

Many features are still to be covered, e.g., links, failures, I/O.
As a side-product of studying how to do reversibility when such features
are considered we wish to obtain:

an abstraction of the language to reason while leaving out technical
details

a compact and readable way to formalize the language (this time
with the technical details)

automatic ways to obtain reversible semantics starting from
non-reversible ones (once the dependencies are well-understood)
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The end

Thank you for the attention!
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