
Introduction
Dependencies and Semantics

Future work

CauDEr: Causal-Consistent Debugging of Erlang

Giovanni Fabbretti 1, Ivan Lanese 2

1SPADES Team, INRIA and 2Univ. of Bologna

Progetto GNCS, 23-09-2021

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

CauDEr
Motivations
Erlang
Supported Primitives
Notion of Reversibility
Demo

Introduction

CauDEr is a reversible causal-consistent debugger for the Erlang
programming language.

Distinctive features of CauDEr:

Reversibility of multi-process systems

Causal-consistent rollback

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

CauDEr
Motivations
Erlang
Supported Primitives
Notion of Reversibility
Demo

Motivations

Concurrent and distributed systems are everywhere and both are
well known for their intrinsic difficulties.

Hence we need effective tools while writing code.

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

CauDEr
Motivations
Erlang
Supported Primitives
Notion of Reversibility
Demo

The Erlang language

Erlang, developed in 1986 by Ericsson, is a concurrent, distributed,
functional programming language, based on message passing.

It is probably the most popular programming language that
implements the actor model.

Erlang owes its success to three aspects: the support of
concurrency and distribution, the facilities to do error-handling and
the OTP libraries.

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

CauDEr
Motivations
Erlang
Supported Primitives
Notion of Reversibility
Demo

Some of the supported features

The debugger currently supports a subset of Erlang.
In particular it supports constructs for:

Concurrency (spawn, send and receive)

Distribution (creation of new nodes, reading the nodes,
remote spawn)

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

CauDEr
Motivations
Erlang
Supported Primitives
Notion of Reversibility
Demo

Reversibility

Causal Consistency: before undoing an action we must ensure that
all of its consequences, if any, have been undone.

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

CauDEr
Motivations
Erlang
Supported Primitives
Notion of Reversibility
Demo

Demo

Demo

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Table of Contents

1 Introduction

2 Dependencies and Semantics

3 Future work

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Causal dependencies

We say that there is a dependency between two consecutive actions in
two cases:

they cannot be executed in the opposite order

by executing them in the opposite order the result would change

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Concurrent dependencies

Supported constructs:

spawn/2, 3

send/2

receive

Dependencies:

An action of a process depends on its (successful) spawn

A receive depends on its send

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Distributed dependencies

Constructs:

spawn/4

start/1, 2

nodes/0

Dependencies:

1 a (successful) spawn on node nid depends on the start of nid ;

2 a (successful) start of node nid depends on previous failed spawns
on the same node, if any (if we swap the order, the spawn will
succeed);

3 a failed start of node nid depends on its (successful) start;

4 a nodes reading a set Ω depends on the start of all nids in Ω, if any.

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Semantics Structure

Definition (Process)

A process is defined as: 〈nid , p, h, θ, e〉 where

nid is the name of the node

p is the process id

h is the process history

θ is the process environment

e is the expression to evaluate

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Semantics Structure

Definition (System)

A system is defined as Γ; Π; Ω where

Γ is the global mailbox

Π is a pool of processes

Ω is the set of connected nodes

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Operational Semantics

CauDEr implements three semantics:

a forward semantics that defines Erlang’s behavior and stores
information in the history

a backward semantics that ensures that we undo only actions whose
consequences have been already undone

a rollback semantics which automatically undoes all the
consequences of an action

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}

↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Forward And Backward Semantics

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid ′ 6∈ Ω

Γ; 〈nid , p, h, θ, e〉 | Π; Ω ⇀p,start(nid′),{s,stnid′}
Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′{κ 7→ nid ′}〉 | Π; {nid ′} ∪ Ω

(StartS)

Γ; 〈nid , p, start(θ, e, succ, nid ′) : h, θ′, e′〉 | Π; Ω ∪ {nid ′}
↽p,start(nid′),{s,stnid′} Γ; 〈nid , p, h, θ, e〉 | Π; Ω

if spawns(nid ′,Π) = [] ∧ reads(nid ′,Π) = [] ∧ failed starts(nid ′,Π) = []

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Rollback Semantics

The rollback semantics allows us to reach a past state of the
computation of the system, such past state is specified as an action
performed by a process.

Some of the considered requests are:

{p, λ⇓}: the receive of the message uniquely identified by λ;

{p, stnid}: the successful start of node nid ;

{p, spp′}: the spawn of process p′.

A system in rollback mode is denoted as ddSeeΨ

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Rollback Semantics

S ↽p,r,Ψ′ S′ ∧ ψ ∈ Ψ′

ddSee{p,ψ}:Ψ ddS′eeΨ

S ↽p,r,Ψ′ S′ ∧ ψ 6∈ Ψ′

ddSee{p,ψ}:Ψ ddS′ee{p,ψ}:Ψ

S = Γ; 〈nid , p, h, θ, e〉 | Π; Ω ∧ S 6↽p,r,Ψ′ ∧ {p′, ψ′} = bwd dep(〈nid , p, h, θ, e〉,S)

ddSee{p,ψ}:Ψ ddS′ee{p′,ψ′}:{p,ψ}:Ψ

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Causal Dependencies
Entities Of The System
Operational Semantics
Rollback Semantics

Rollback semantics: dependencies operator

The dependencies operator does pattern matching on the history item
and given the system computes the request to undo the consequences.

bwd dep(< , , nodes(, ,Ω′) : h, , >, ; Π; {nid ′} ∪ Ω) = {parent(nid ′,Π), stnid′}
where nid ′ /∈ Ω′

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Table of Contents

1 Introduction

2 Dependencies and Semantics

3 Future work

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

Future work

Many features are still to be covered, e.g., links, failures, I/O.
As a side-product of studying how to do reversibility when such features
are considered we wish to obtain:

an abstraction of the language to reason while leaving out technical
details

a compact and readable way to formalize the language (this time
with the technical details)

automatic ways to obtain reversible semantics starting from
non-reversible ones (once the dependencies are well-understood)

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

Introduction
Dependencies and Semantics

Future work

The end

Thank you for the attention!

Giovanni Fabbretti , Ivan Lanese CauDEr: Causal-Consistent Debugging of Erlang

	Introduction
	CauDEr
	Motivations
	Erlang
	Supported Primitives
	Notion of Reversibility
	Demo

	Dependencies and Semantics
	Causal Dependencies
	Entities Of The System
	Operational Semantics
	Rollback Semantics

	Future work

