Property-Preserving Updates

Ivan Lanese
University of Bologna/INRIA

Joint work with Davide Bresolin
University of Bologna
Map of the talk

- Research questions
- Our setting
- Solutions and complexity
- Conclusion
Map of the talk

- Research questions
- Our setting
- Solutions and complexity
- Conclusion
Why updates?

- Applications need to be updated, statically or dynamically
- Many possible uses
 - Deal with changing business rules or environment conditions
 - Bug fixes
 - Specialize the application to user preferences
Which updates?

- We consider a simple but general update mechanism.
- The application is composed by a context C, and a component to be updated A.
- The component A is replaced by B.
- We go from C[A] to C[B].
Property preservation

• Many approaches to check application correctness
 - Model checking, testing, abstract interpretation
• If the application is updated, we do not want to redo the whole checking from scratch
• This entails the following research question

If $C[A]$ satisfies a given property φ, what should one require on B to ensure that also $C[B]$ satisfies φ
Some natural generalizations

- One may require that ϕ is preserved while replacing A with B in any context C
- One may require that replacing A with B in context C preserves all the properties of $C[A]$.
- The answer to these questions depend on the models for context and components,
 - on the synchronization mechanisms,
 - on the logic for expressing properties.
Map of the talk

- Research questions
- Our setting
- Solutions and complexity
- Conclusion
Components and contexts

- We model contexts and components as constraint automata
 - $A = \langle Q, N, q_0, \rightarrow \rangle$
 - Automata with internal and external interface
 - Each interface is a subset of the set of nodes N
 - At each step, values are communicated on nodes
 - Labels are functions from N to data $\cup \{\bot\}$
- We consider embeddings
 - The component communicates only with the context
- We consider both synchronous and asynchronous synchronization
Running example

- We consider a system composed by two 1 bit registers, A and B
- Registers can be read and written
- A scheduler decides at each step which register can be accessed from outside

```
\( r_a = 0 \)
\( r_a = 1 \)
\( w_a = 1 \)
\( w_a = 0 \)
\( w_a = 1 \)
\( s = a \)
\( s = b \)
```
The whole system
We consider formulas in the safety fragment of μ-calculus.

$$\varphi ::= tt \mid ff \mid X \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid [\alpha]\varphi \mid \nu X.\varphi$$

We have I/O constraints inside the modality.
- I/O constraints describe which data pass on nodes.
- $\alpha ::= tt \mid n = d \mid n = \bot \mid n \neq d \mid n \neq \bot \mid \alpha,\alpha$

We interpret it on both finite and infinite runs of the automata.

$$\varphi = [w = 1] \, ff \lor [tt][tt][r = 0] \, ff$$

Either I don't write 1 at first step, or I don't read 0 at third step.
Map of the talk

- Research questions
- Our setting
- Solutions and complexity
- Conclusion
One property, one context (1)

- We want to find a most general B such that if $C[A]$ satisfies a given property φ, then also $C[B]$ satisfies φ
- This amounts to solve the following language equation:
 $$L(C[B]) \subseteq L(\Phi)$$
 where Φ is an automaton equivalent to φ
- This has been solved in the literature, and the solution is $B = C[\Phi]$
One property, one context (2)

- $B = C[\Phi]$ can be computed by adding final states to the automata.
- Since we are interested in prefix-closed solutions, one can remove final states from the solution.
- The problem is in 2-EXPTIME, since it requires a double complementation.
- The problem is EXPSPACE-hard.
 - Proved by reducing a suitable three-player game to it.
 - The component and the formula play against the context.
- The same approach can be used to ensure that a given property that does not hold in $C[A]$ holds in $C[B]$.
One property, one context: running example

- We consider $\varphi = [w = 1] \text{ff } \lor [tt][tt][r = 0] \text{ff}$

- The resulting scheduler is:
All properties, one context

- We want to find a most general B such that $C[B]$ satisfies all the properties satisfied by $C[A]$.
- This amounts to solve the following language equation:
 \[L(C[B]) \subseteq L(C[A]) \]
- This has been solved in the literature, and the solution is $B = C[C[A]]$.
- The problem is in 2-EXPTIME, since it requires a double complementation.
One property, all contexts

- We want to find a most general B such that for each context C if $C[A]$ satisfies a given property φ, then also $C[B]$ satisfies φ

- For asynchronous embedding, unless the formula is true or false, we need:
 $$L(B) \subseteq L(A)$$

- For synchronous embedding we need:
 $$L(B) \subseteq L(A) \cup R(\varphi)$$

 where $R(\varphi)$ contains all the words of lengths n such that there exists zc of length n such that z satisfies φ and zc does not satisfy φ
We consider $\varphi = [w = 1] \mathsf{ff} \lor [tt][tt][r = 0] \mathsf{ff}$

The resulting scheduler is:

We can remove the non-final state to restrict to prefix-closed solutions
We want to find the most general B such that, for each context C, $C[B]$ satisfies all the properties satisfied by $C[A]$

This amounts to solve the following language equation:

$L(B) \subseteq L(A)$
Map of the talk

- Research questions
- Our setting
- Solutions and complexity
- Conclusion
Summary

- We studied under which conditions updates preserve a given property.
- We generalized to all properties and/or all contexts.
Future work

• Consider the same problem in different settings
 – Other kinds of automata
 – Other kinds of properties
• What happens when multiple updates are considered?
Finally

Thanks!

Questions?