Corinne,
a Tool for Choreography Automata

Ivan Lanese
Computer Science Department
University of Bologna/INRIA
Italy

Joint work with Simone Orlando, Vairo Di Pasquale, Franco Barbanera and Emilio Tuosto
Map of the talk

- Choreography automata
- Properties of choreography automata
- Composition of choreography automata
- Conclusion
Map of the talk

- Choreography automata
- Properties of choreography automata
- Composition of choreography automata
- Conclusion
Choreographic models

- Choreographic models (e.g., BPMN choreographies, multiparty session types, ...) describe the global behavior of a communicating system.

- Useful to:
 - Understand the overall behavior
 - Ensure by construction or check behavioral properties such as deadlock freedom

- Equipped with a projection operation to derive the behavior required by each role.
Choreography automata

- A choreographic model based on finite state automata
- Automata where edges are labeled by interactions
 \[A \rightarrow B : m \]
 Participant A sends a message m to participant B and B receives it
- Project to communicating finite state machines, one per participant
Systems of CFSMs

- A CFSM is a finite state automaton whose transitions are labelled with communication actions:
 - $AB!m$: A sends a message m to B
 - $AB?m$: B receives message m from A
- A system is composed by one CFSM per participant
- Synchronous semantics: A and B can move iff A can perform $AB!m$ and B can perform $AB?m$ (for some m)
Map of the talk

- Choreography automata
- Properties of choreography automata
- Composition of choreography automata
- Conclusion
Properties of systems of CFSMs

- We would like systems of CFSMs
 - To follow the behavior specified by the c-automaton
 - To enjoy properties such as deadlock freedom and liveness

- This can be ensured by checking two properties on the starting c-automaton [Barbanera, Lanese, Tuosto: COORDINATION 2020]
 - Well-sequencedness
 - Well-branchedness
Well-sequencedness

- If two transitions have disjoint sets of participants, then they form a commuting diamond.
Well-branchededness

- If there is a choice then
 - there is a participant making the choice
 - the other participants either behave in the same way or are made aware of the choice outcome
- Formalization quite complex, intuition is enough for the purpose of this talk
Map of the talk

- Choreography automata
- Properties of choreography automata
- Composition of choreography automata
- Conclusion
Opening systems of CFSMs

- C-automata are close: communications target other participants of the same system
- Composition idea from [Barbanera, de’Liguoro, Hennicker: JLAMP 2019]
- Open systems by selecting a participant as interface towards another system
Composing systems of CFSMs

- Systems can now be composed via dropping the interfaces and connecting the systems directly.
- Any two participants can be chosen as interfaces, provided they are compatible.
Map of the talk

- Choreography automata
- Properties of choreography automata
- Composition of choreography automata
- Conclusion
Summary

- Corinne allows one to work on c-automata, in particular:
 - Project them
 - Check well-sequencedness and well-branchedness
 - Compose them
- Can import choreographies from other tools such as chorgram
- Allowed us to find a couple of minor bugs in the examples in our papers
- Available online at https://github.com/lanese/corinne-3
- > 2K lines of python3
- Based on tkinter for graphical interface, antlr4 for parsing and graphviz for drawing automata
Future work

- Extend the tool to support other operations
 - Other forms of composition
 - Checking properties for asynchronous semantics
 - Compute the semantics
- Refine some conditions [requires theoretical study]
 - Weaken the conditions for well-branchedness
 - Improve the complexity of the check of well-branchedness
End of talk

Thanks!

Questions?