Reversible Computing

Ivan Lanese
Focus research group
Computer Science and Engineering Department
University of Bologna/INRIA
Bologna, Italy
Remember where we are

- Causal-consistent reversibility as the suitable way to do reversibility in a concurrent setting
- Uncontrolled reversibility as the simplest setting, but not very useful
- Different mechanisms allowing to control reversibility
- Which one do we choose?
Our approach

- The choice of the approach is based on the intended application field

- Our application field: programming reliable concurrent/distributed systems

- Normal computation should go forward
 - No backward computation without errors

- In case of error I should go back to a past state
 - We assume to be able to detect errors

- I should go to a state where the decision leading to the error has not been taken yet
 - The programmer should be able to find such a state
The kind of algorithm we want to write

- γ: take some choice

 if we reached a bad state

 roll γ

 else

 output the result

- The approach based on the roll operator is suitable to our aims

- Not necessarily the best in all the cases
A trade-off

- The approach based on roll tries to minimize the use of reversibility
 - Reversible computations only in case of error
 - The amount of computation to be undone is bound
 - Efficient strategy

- The programmer should find
 - The bad state
 - The decision leading to it

- Other approaches are less efficient, but rely less on the programmer skills
 - Irreversible actions only require to find the good state
 - Easier, but the approach is less efficient
Roll and loop

- With the **roll** approach
- We reach a bad state
- We go back to a past state
- We may choose again the same path
- We reach the same state again
- We go back again to the same past state
- We may choose again the same path
- …
Permanent and transient errors

- Going back to a past state forces us to forget everything we learned in the forward computation
 - We forget that a given path was not good
 - We may retry again and again the same path
- The approach is good for transient errors
 - Errors that may disappear by retrying
 - E.g., message loss on the Internet
- The approach is less suited for permanent errors
 - Errors that occur every time a state is reached
 - E.g., division by zero, null pointer exception
 - We can only hope to take a different branch in a choice
Non perfect reversibility

- In case of error I want to change path
 - Not possible in the current setting
 - The **roll** leads back to a past state
 - The same path will be available again
 - The programmer cannot avoid this

- I need to remember something from the past try
 - I should break the Loop Lemma
 - Reversibility should not be perfect
Alternatives

- I want to specify alternatives
- **Roll** causes the choice of a different alternative
- The programmer may declare alternatives so to avoid looping behaviors
 - I should rely on the programmer for a good definition and ordering of alternatives
Specifying alternatives

- Actions A%B
- Normally, A%B behaves like A
- If A%B is the target of a roll, it becomes B
- Intuitive meaning: try A, then try B
- Very simple alternative mechanism
- B may have alternatives too
Programming with alternatives

- We should find the actions that may lead to bad states
- We should replace them with actions with alternatives
- We need to find suitable alternatives
 - Retry
 - Retry with different resources
 - Give up and notify the user
 - Trace the outcome to drive future choices
Example

- Try to book a flight to Cagliari with Meridiana
- A Meridiana website error makes the booking fail
 - Retry: try again to book with Meridiana
 - Retry with different resources: try to book with Alitalia
 - Give up and notify the user: no possible booking, sorry
 - Trace the outcome to drive future choices: remember that Meridiana web site is prone to failure, next time try a different company first
Other forms of alternatives

- Our alternatives are in sequence
 - Try A, then try B
- One can imagine to try A and B in parallel, when one of them succeeds the other computation is undone
 - Try both Meridiana and Alitalia
 - Book with the first one to give a good offer
 - This is called speculative parallelism
Is this enough?

- We have outlined a large piece of theory
 - Uncontrolled causal-consistent reversibility
 - A **roll** operator as control mechanism
 - Alternatives to avoid looping

- Did we find suitable abstractions for programming reliable systems?

- We need to put our constructs at work on a suitable benchmark
 - Still ongoing work
8 queens problem

- A classic state exploration program
 - 8 queens problem
 - Compact specification, concurrent algorithm
 - We need to improve efficiency

- Not innovative, but this is the first application programmed using a reversible causal-consistent calculus
Interacting transactions

- [Edsko de Vries, Vasileios Koutavas, Matthew Hennessy: Communicating Transactions. CONCUR 2010]

- Transactions that may interact with the environment and with other transactions while computing

- In case of abort one has to undo all the effects on the environment and on other transactions
 - To ensure atomicity
Interacting transactions via reversibility

- We can encode interacting transactions
 - We label the start of the transaction with γ
 - An abort is a **roll** γ
 - The **roll** γ undoes all the effects of the transaction
 - A commit simply disables the **roll** γ

- The mapping is simple, the resulting code quite complex
 - We also need all the technical machinery for reversibility

- The encoding is more precise than the original semantics
 - We avoid some useless undo
 - Since our treatment of causality is more refined
Software transactional memories

- AtCCS
 - A calculus for software transactional memories
 - We have been able to model most of it
 - In a compositional way
Long running transactions

- Used in the field of service oriented computing
- Computations that either succeed or are compensated
 - A compensation is an ad hoc piece of code
 - The compensation does an approximate undo of the effect of the transaction
- Atomicity is relaxed w.r.t. ACID transactions
- Reversibility does not help in encoding calculi for long running transactions
- However, reversibility may help the programmer in writing the compensation
Defining uncontrolled causal-consistent reversibility

From ideas to theory
Our (theoretical) tools

- Process calculi
 - CCS, higher-order π
- Operational semantics
 - Mainly reduction semantics
- Programming languages
 - μOz
Why process calculi?

- Abstract view of programming languages
 - Focusing on interaction and communication
- Equipped with a well defined semantics
 - To clearly specify the intended behavior
- Equipped with suitable tools for reasoning
 - In particular behavioral equivalences
 - Allowing to prove our results
- When the basic issues have been understood we will move towards more realistic languages
CCS

- A calculus to model concurrent interacting systems
- One of the contributions for which Milner got the Turing award
- Syntax
 \[P ::= a.P \mid \overline{a}.P \mid P|P \mid P + P \mid 0 \mid vaP \]
- CCS normally includes other operators, but this is enough for our purposes
- We consider only guarded choice
Structural congruence

- Some terms are written in a different way, but have the same meaning
- Structural congruence \equiv to equate them
 - Parallel composition and choice are associative, commutative and have 0 as neutral element
 - α-conversion: renaming of bound variables
 - $va \ 0 \equiv 0$ \quad $va \ (P|Q) \equiv (va \ P)|Q$ if a not in $\text{fn}(Q)$
 - $va \ vb \ P \equiv vb \ va \ P$
- As a consequence
 $va \ P \equiv P$ if a not in $\text{fn}(Q)$
Reduction semantics

- Defines the behavior of CCS terms
- One rule only
 \[(\overline{a}. P + Q) | (a. P' + Q') \rightarrow P | P'\]
- Closed under structural congruence and contexts
 - Parallel composition and restriction
Making CCS reversible

- Structural congruence is already reversible
- The reduction rule loses lot of information
 \[(\bar{a}. P + Q)\| (a. P' + Q') \rightarrow P\|P'\]
- We have lost \(a\), \(Q\) and \(Q'\)
- We need to store this information
- We want a form of distributed storage
- First try
 \[(\bar{a}. P + Q)\| (a. P' + Q') \rightarrow P\|P'|[a, Q, Q']\]
- We do not know where \(Q\) and \(Q'\) were attached
- Even worst if we have multiple processes and memories
Unique keys

- We need to relate the different parts
- We cannot refer them by description
 - Not memory efficient
 - Even worst, we cannot exchange equal terms with different histories
- We add unique keys to sequential processes
 - Processes beginning with prefix, choice or 0
 - Interaction is always between two sequential processes
- We have processes with keys such as $k: (a \cdot P + Q)$
Reduction with keys

- Second try
 \[k: (\bar{a}.P + Q)|k': (a. P' + Q') \rightarrow h: P|h': P'| \]
 \[[a, Q, Q', k, k', h, h']\]

- The memory remembers that
 - the processes with key \(k\) and key \(k'\)
 - interacted on channel \(a\) (output on \(k\))
 - discarding respectively processes \(Q\) and \(Q'\)
 - producing respectively continuations with key \(h\) and \(h'\)

- We have all the information to reverse the reduction

- Causality information: processes with key \(h\) and \(h'\) depend on processes with key \(k\) and key \(k'\)
Inventing keys

- At each step we invent two keys
 \[k: (\bar{a}. P + Q)\mid k': (a . P' + Q') \rightarrow h: P\mid h': P' \mid \]
 \[[a, Q, Q', k, k', h, h'] \]

- To ensure uniqueness they have to be different from all the existing keys

- This is done by using restriction

- Third (and final) try
 \[k: (\bar{a}. P + Q)\mid k': (a . P' + Q') \rightarrow \nu h, h' \quad h: P\mid h': P' \mid \]
 \[[a, Q, Q', k, k', h, h'] \]
Undoing a step

- We have one backward reduction rule
 \[h: P|h': P'|[a, Q, Q', k, k', h, h'] \rightsquigarrow\]
 \[k: (\bar{a}. P + Q)|k': (a. P' + Q') \]

- Does the Loop Lemma holds?
 \[k: (\bar{a}. P + Q)|k': (a. P' + Q') \]
 \[\rightarrow vh, h' \ h: P|h': P'|[a, Q, Q', k, k', h, h'] \]
 \[\rightsquigarrow vh, h'k: (\bar{a}. P + Q)|k': (a. P' + Q') \]

- Yes, up to structural congruence

- Other direction a bit more tricky
Invariants on keys

- Before reduction keys attached to sequential processes
 \[k: (\overline{a} \cdot P + Q) \vert k': (a \cdot P' + Q') \]
 \[\rightarrow vh, h' \ h: P \vert h': P' \vert [a, Q, Q', k, k', h, h'] \]

- And after?

- \(P \) and \(P' \) are arbitrary processes

- We want to find keys for the sequential processes
 - Otherwise they cannot reduce
Extending structural congruence

- We add two rules, one for restriction and one for parallel composition
 \[k: \nu a P \equiv \nu a k: P \]
 \[k: P|Q \equiv \nu k' \nu k'' k < k', k'' | k': P | k'': Q \]
- A connector \(k < k', k'' \) means that the process with index \(k \) has been split into processes with keys \(k' \) and \(k'' \)
 - Again causality information
- Structural rules for restriction on names are extended to deal also with keys
- \(k: P|k': 0 \equiv k: P \) does not hold