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Choreographic formalisms: why?

Programming multi-party message-passing systems is di�cult and error-prone due to
issues such as deadlocks and races.

A number of approaches propose solutions based on the concept of a choreographic
description:

• a blueprint of the message passing behavior of the system
• good as specification of the overall behavior
• specification of local participants can be generated
• some good properties may hold by construction (deadlock freedom, . . . )
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Choreographic formalisms: how?

Behavior defined by composing interactions A−→B:m

A−→B:m: participant A sends a message m to participant B, and B receives it

Allowed sequences of interactions generated in many ways: process algebras
(multiparty session types), automata, graphs, programs, ...

Various constraints posed by the syntax of the formalism, or added on top of it to
ensure properties of interest
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Choreographic languages: why and how?

Our question: what can be done working at the level of languages of interactions only?

• abstracting away how they are generated

Definition (Global language)
Languages of finite and infinite words on the alphabet:

Σint = {A−→B:m
∣∣ A 6= B ∈ P,m ∈M }

We use languages also to describe single participants:
Definition (Local language)
Languages of finite and infinite words on the alphabet:

Σact = {A B!m,A B?m
∣∣ A 6= B ∈ P,m ∈M }

We consider only prefix-closed languages.
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An advantage

Many formalisms are restricted to regular languages (e.g., automata).

We have no such constraint.
Example (A context-free language)

S ::= S′ ·S−→D:s·S−→H:s
S′ ::= S−→D:a·D−→S:t·S−→H:t·S′ ·S−→H:r·H−→S:r·S−→D:d·S′∣∣ S−→D:a·D−→S:t·S−→D:d·S′

∣∣ ε

Dispatcher D sends tasks t to server S. The server can either send the resulting data d to
dispathcer, or send tasks to some helper H and resume r them later on.

Not regular: same structure as balanced parenthesis.

We can prove properties about it!
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Projection

The projecton on C of an interaction A−→B:m is defined as:

(A−→B:m)↓C=


A B!m if C = A
A B?m if C = B
ε if C 6= A,B

The definition extends homomorphically to words and languages.

The projection L↓ of a g-language L is the communicating system (L↓A)A∈ptp(L).

Example

L = {C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m } closed under prefix
L↓A= { ε, C A?m, C A?m·A B!m, A B!m }
L↓B= { ε, A B?m, C B?m, C B?m·A B?m }
L↓C= { ε, C A!m, C B!m, C A!m·C B!m }
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Semantics

The (synchronous) semantics JSK of a communicating system S is the language of words
w such as w↓A∈ S(A) for each A

Example
L↓A= { ε, C A?m, C A?m·A B!m, A B!m }
L↓B= { ε, A B?m, C B?m, C B?m·A B?m }
L↓C= { ε, C A!m, C B!m, C A!m·C B!m }

JL↓K = {C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m·A−→B:m } closed under
prefix
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Correctness & completeness

Definition
A system S is correct w.r.t. a g-language L if JSK ⊆ L

complete if JSK ⊇ L

L↓ is always complete w.r.t. L.

However, it may not be correct.
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Characterizing correctness

Definition (Closure under unknown information)
cui(L) if for all w1 ·A−→B:m,w2 ·A−→B:m,w ∈ L
w ↓A= w1 ↓A and w ↓B= w2 ↓B
imply w·A−→B:m ∈ L

Theorem
If L↓ is correct w.r.t. L then cui(L) holds. If L is a standard or continuous and cui(L)

then L↓ is correct w.r.t. L.

Example
L = {C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m } closed under prefix

Not cui(L).

w1 = C−→A:m w2 = C−→B:m
w = C−→A:m·C−→B:m
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Is this enough? NO!

Languages which are correct and complete may generate “bad” systems, e.g., systems
that deadlock.

Deadlock-freedom (DF): for each participant A, A has no pending actions in maximal
computations.
Example
L = {w = A−→C:l·A−→B:m·A−→C:m, w′ = A−→C:r·A−→B:m·B−→C:m }
closed under prefix

cui(L): A and C know which word has been taken.

L↓ is not deadlock-free since w is a deadlock:

• finite maximal word in L, but
• w↓B= A B?m is not maximal in L↓B because w′ ↓B= A B?m·B C!m ∈ L↓B

After A B?m participant B does not know whether the protocol has finished or not
13



Properties of interest

Beyond deadlock freedom, we may want communication properties to hold.

Harmonicity (HA): each local sequence of actions can be executed in some computation
of the system.

For each A, if A has communications to make on an ongoing computation, then:

Lock-freedom (LF): at least one continuation involves A.
Strong lock-freedom (SLF): each maximal continuation involves A.
Starvation-freedom (SF): each infinite continuation involves A.
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Relations among communication properties

LF DF

HA SF

Moreover, DF ∧ SF ⇔ SLF
and SLF ⇒ LF.

/

If systems are projections of g-languages HA holds, hence:

LF DF

HA SF

Moreover, DF ∧ SF ⇔ SLF
and SLF ⇒ LF.

/

/

//
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Ensuring communication properties

Definition (Branch-awareness)

A g-language L on P is branch-aware if for each X ∈ P and for each pair of maximal
words w1 and w2 in L if w1 ↓X 6= w2 ↓X then w1 ↓X 6≺ w2 ↓X and w2 ↓X 6≺ w1 ↓X.

Neither projection should be a strict prefix of the other.

This was not the case in previous example.

Proposition (Branch-awareness characterises SLF)
A CUI g-language L is branch-aware i� L↓ is strongly lock-free.

All the other properties follow.
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Summary

• We have presented a general framework able to capture many choreographic
formalisms

• In the paper we detail the cases of
• global types (from P. Severi and M. Dezani-Ciancaglini. Observational equivalence for

multiparty sessions. Fundam. Informaticae (2019))
• choreography automata (our COORDINATION 2020)

• Correctness ensured by a closure property, instead of by forbidding computations
• We separate conditions for correctness and conditions for behavioral properties
• Our approach can prove properties of non-regular languages
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Future work

• Fitting in our framework other models from the literature
• Extending the framework to cope with asynchronous communication
• Drop prefix closure
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