
No More, No Less
A Formal Model for Serverless Computing

Maurizio Gabbrielli, Ivan Lanese, Stefano Pio Zingaro
INRIA, France / Università di Bologna, Italy

Coordination 2019

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti
University of Southern Denmark, Denmark

A gentle introduction to “serverless”...

...

Adapted from “Serverless Architecture Patterns” by Abby Fuller, AWS

Event Source Function Cloud Architecture

A gentle introduction to “serverless”...

Monolith Microservices Serverless

provisioned,
pay-per-deployment

on-demand,
pay-per-execution

A gentle introduction to “serverless”...

Monolith Microservices Serverless

A gentle introduction to “serverless”...

Monolith Microservices Serverless

?!

Still rougharound theedges

A gentle introduction to “serverless”...

https://aws.amazon.com/serverless/

Tailor

https://aws.amazon.com/serverless/

A gentle introduction to “serverless”...

https://github.com/alanwill/aws-tailor

Tailor

an excerpt

https://github.com/alanwill/aws-tailor

… and its current limitations (non-exhaustive)

● Currently ~15’ execution timeout;

● No function-to-function invocation. Functions need an in-between
stateful service to call each other;

● Sparse coordination logic.

… and its current limitations (non-exhaustive)

● Traffic-dependent scaling of
functions implies:
○ complex cost model;
○ complex system load

estimations.

● Poor performance for
standard communication
patterns

Jonas, Eric, et al. "Cloud Programming Simplified: A Berkeley View on Serverless Computing."

Block
Storage

Object
Storage

File
System

Elastic
Database

Memory
Store

Function access

Transparent
Provisioning

Availability and
persistence

Latency

Costs

… and its current limitations (non-exhaustive)

Lock-in due to absence of standards on:

● function support/execution environments;

● function call semantics;

● semantics of stateful services.

Direction

● We want to study S.C. avoiding any vendor/technology specifics

● We need a formal model for Serverless Computing that

○ Captures current incarnations of S.C.

(e.g. event-based, storage-mediated as in AWS)

○ Supports proposed approaches/features

(e.g. function-to-function invocation, updatable function definitions)

Serverless Kernel Calculus (SKC)

● Systems: ⟨S,𝒟⟩

● Function definitions: f↦M

● Running functions: c◂M

Repository of function definitionsNetwork of running functions

λ-termFunction name

λ-termPromise

Serverless Kernel Calculus (SKC)

● Systems: ⟨S,𝒟⟩

● Function definitions: f↦M

● Running functions: c◂M

Repository of function definitionsNetwork of running functions

λ-termFunction name

λ-termPromise

Serverless Kernel Calculus (SKC)

● Systems: ⟨S,𝒟⟩

● Function definitions: f↦M

● Running functions: c◂M

Repository of function definitionsNetwork of running functions

λ-termFunction name

λ-termPromise

Serverless Kernel Calculus (SKC)

● Systems: ⟨S,𝒟⟩

● Function definitions: f↦M

● Running functions: c◂M

Repository of function definitionsNetwork of running functions

λ-termFunction name

λ-termPromise

SKC function terms

 M ::= M M' ∣ V

 ∣ f

 ∣ async M

 ∣ set f M

 ∣ take f

 V ::= x ∣ λx.M

 ∣ c

⟨ℰ[async M],𝒟⟩ ⟶ ⟨ℰ[c] ∣ c◂M,𝒟⟩

⟨ℰ[set f M],𝒟⟩ ⟶ ⟨ℰ[f],𝒟[f↦M]⟩

⟨ℰ[take f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟∖f⟩

Function invocation

Asynchronous eval

Function Repository
Updates

⟨ℰ[f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟⟩

Futures ⟨c◂V ∣ S,𝒟⟩ ⟶ ⟨S[V/c],𝒟⟩

SKC function terms

 M ::= M M' ∣ V

 ∣ f

 ∣ async M

 ∣ set f M

 ∣ take f

 V ::= x ∣ λx.M

 ∣ c

⟨ℰ[async M],𝒟⟩ ⟶ ⟨ℰ[c] ∣ c◂M,𝒟⟩

⟨ℰ[set f M],𝒟⟩ ⟶ ⟨ℰ[f],𝒟[f↦M]⟩

⟨ℰ[take f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟∖f⟩

Function invocation

Asynchronous eval

Function Repository
Updates

⟨ℰ[f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟⟩

Futures ⟨c◂V ∣ S,𝒟⟩ ⟶ ⟨S[V/c],𝒟⟩

SKC function terms

 M ::= M M' ∣ V

 ∣ f

 ∣ async M

 ∣ set f M

 ∣ take f

 V ::= x ∣ λx.M

 ∣ c

⟨ℰ[async M],𝒟⟩ ⟶ ⟨ℰ[c] ∣ c◂M,𝒟⟩

⟨ℰ[set f M],𝒟⟩ ⟶ ⟨ℰ[f],𝒟[f↦M]⟩

⟨ℰ[take f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟∖f⟩

Function invocation

Asynchronous eval

Function Repository
Updates

Futures ⟨c◂V ∣ S,𝒟⟩ ⟶ ⟨S[V/c],𝒟⟩

SKC function terms

 M ::= M M' ∣ V

 ∣ f

 ∣ async M

 ∣ set f M

 ∣ take f

 V ::= x ∣ λx.M

 ∣ c

⟨ℰ[set f M],𝒟⟩ ⟶ ⟨ℰ[f],𝒟[f↦M]⟩

⟨ℰ[take f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟∖f⟩

Function invocation

Asynchronous eval

Function Repository
Updates

Futures

SKC function terms

 M ::= M M' ∣ V

 ∣ f

 ∣ async M

 ∣ set f M

 ∣ take f

 V ::= x ∣ λx.M

 ∣ c

⟨ℰ[async M],𝒟⟩ ⟶ ⟨ℰ[c] ∣ c◂M,𝒟⟩

⟨ℰ[set f M],𝒟⟩ ⟶ ⟨ℰ[f],𝒟[f↦M]⟩

⟨ℰ[take f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟∖f⟩

Function invocation

Asynchronous eval

Function Repository
Updates

⟨ℰ[f],𝒟[f↦M]⟩ ⟶ ⟨ℰ[M],𝒟⟩

Futures ⟨c◂V ∣ S,𝒟⟩ ⟶ ⟨S[V/c],𝒟⟩

λ + Futures + Function Repository

Programmable events in SKC

● Store handlers for event e in the definition repository 𝒟:

install_handler ↦ λe.λhandler.
 let old_handler = take e
 let new_handler = λv.do async (handler v)
 (current_handler v)
 set e new_handler

● Raise event e (with v) by invoking its handlers in 𝒟:

 e v

● (See the paper for Tailor in SKC)

Programmable events in SKC

● Store handlers for event e in the definition repository 𝒟:

install_handler ↦ λe.λhandler.
 let old_handler = take e
 let new_handler = λv.do async (handler v)
 (current_handler v)
 set e new_handler

● Raise event e (with v) by invoking its handlers in 𝒟:

 e v

● (See the paper for Tailor in SKC)

Updatable function
definitions

Programmable events in SKC

● Store handlers for event e in the definition repository 𝒟:

install_handler ↦ λe.λhandler.
 let old_handler = take e
 let new_handler = λv.do async (handler v)
 (current_handler v)
 set e new_handler

● Raise event e (with v) by invoking its handlers in 𝒟:

 e v

● (See the paper for Tailor in SKC)

Updatable function
definitions

Function-to-function
invocation

Conclusions and future work

We introduced SKC a Kernel Calculus for Serverless Computing:
● Build on established models (λ-calculus + futures + function repository)
● captures current programming models
● supports next-gen features e.g. function-to-function invocation

Serverless: current challenges SKC: research direction

The coordination logic is spare and
loosely-consistent

Choreographic Programming
targeting SKC.

Estimation of performance and
costs is complex Quantitative SKC

No More, No Less
λ + Futures + Function Repository

=
A formal model for Serverless Computing

Thanks for your attention

