
Causal-Consistent Reversible Debugging
for Message Passing Programs

Ivan Lanese
Focus research group

Computer Science and Engineering Department
University of Bologna/INRIA

Bologna, Italy

Joint work with Adrian Palacios and
 German Vidal

Roadmap

 Motivation
 Causal-consistent rollback and replay
 Suitability for debugging
 Demo

Roadmap

 Motivation
 Causal-consistent rollback and replay
 Suitability for debugging
 Demo

 … but this talk is also reversible, hence we will start
from the demo and go backward

Roadmap

 Motivation
 Causal-consistent rollback and replay
 Suitability for debugging
 Demo

Case study

 A (very simple) online purchase system
 An item can be purchased if

– the customer has enough credit
– the address of the customer is correct

 The checks are performed by different processes, and
another process computes short-circuit AND on them

 During perfective maintenance, a check for availability
of the good in store is added

 Everything worked fine for a while, but at some point an
item was sold to a client that had not enough credit

 What happened?

Demo

What we have seen

 We traced an execution in the standard Erlang execution
environment

 We used the trace to replay it inside the debugger
 We explored it looking for the bug causing a visible

misbehavior
– We moved forward redoing events of interest,

including all and only their causes
– We moved back undoing events of interest,

including all and only their consequences
 These are called causal-consistent replay and causal-

consistent rollback

Roadmap

 Motivation
 Causal-consistent rollback and replay
 Suitability for debugging
 Demo

Suitability: correctness and completeness

 Replay is correct and complete
 A misbehavior occurs in the original computation if and

only if it occurs in the replay
– Actually, in all possible replays (provided we go till

the end)

Suitability: minimality

 Replay and rollback are minimal
 Replaying an action A redoes the minimal amount of

actions needed to reach a consistent state where A has
been performed

– A state is consistent if it can be reached in a forward
computation

 Dual for rollback
 The user can concentrate on actions of interest

Roadmap

 Motivation
 Causal-consistent rollback and replay
 Suitability for debugging
 Demo

Causal-consistent replay/rollback

 These are the main commands provided by the debugger
 One can replay/rollback

– n steps on a given process
– the execution of a relevant (i.e., concurrent) action

● message send
● message receive
● process spawn

– (one can also rollback variable creations)

Causal-consistent rollback

 It allows one to undo a selected past action
 In the undo procedure any action can be undone,

provided that its consequences (if any) are undone
beforehand

 Concurrent actions can be undone in any order, but
causal-dependent actions are undone in reverse order

Causal-consistent replay

 It allows one to redo a selected future action
 In the redo procedure any action can be redone,

provided that its causes (if any) are redone beforehand
 Concurrent actions can be redone in any order, but

causal-dependent actions are redone in original order

Causal-consistent replay

 It allows one to redo a selected future action
 In the redo procedure any action can be redone,

provided that its causes (if any) are redone beforehand
 Concurrent actions can be redone in any order, but

causal-dependent actions are redone in original order

 Rollback and replay are dual
 Note: definitions based on causality, not time

– Work also if no unique notion of time exists
 Which traces can we get by using them?

Causal equivalence

 Two computations are causal equivalent if they differ
only for

– swaps of consecutive independent actions
– introduction or removal of do A/undo A or

undo A/redo A pairs
 The original computation and any computation obtained

using causal-consistent rollback and replay are causal
equivalent

– provided that we replay till the end
 Two causal equivalent computations contain the same

misbehaviors

How is logging performed?

 We built a tracer that instruments an Erlang program so
to produce a log for each process

 We log only concurrency-related actions
 Unique identifiers are attached to messages to match

sends with receives
 The log has the form

{73,spawn,74}
{73,send,5}
{75,receive,7}
 …

 This is enough to replay a causal equivalent
computation

pid

unique message identifier

Formal specification of replay and rollback

 Specification is needed to prove the properties we
discussed before

 Both replay and rollback are specified in two steps
 Uncontrolled semantics: which forward/backward steps

are legal at any given point, and how to execute them
– extends the semantics of Core Erlang with logs (for

replay) and histories (for backward execution)
– ensures that causality and log are not violated

 Controlled semantics: which forward/backward steps
are needed to perform a causal-consistent
rollback/replay

– explores the tree of causes/consequences

Uncontrolled semantics: structure

 The syntax of processes also includes their log and
history

 Both forward and backward steps are possible
 The log is consumed going forward and recreated going

backward, the history is consumed going backward and
recreated going forward

Uncontrolled semantics: constraints

 Causality violations are avoided
– Cannot undo a send before the corresponding receive
– Cannot redo a receive before the corresponding send

 Only forward steps compatible with the log are allowed
– A receive can only take the expected message

Controlled semantics

 Rollback and replay are sequences of uncontrolled steps
 We use a recursive algorithm to select the steps
 We use the uncontrolled semantics to actually undo or

redo them
 To rollback action A in process p

– Start undoing actions in p
– If A is undone then stop
– If A cannot be undone due to a dependency on action

A1 in process p1 then rollback A1 in p1, then
continue undoing A

 Replay is analogous

Roadmap

 Motivation
 Causal-consistent rollback and replay
 Suitability for debugging
 Demo

Why do we want all this?

 Debugging concurrent/distributed systems is hard
 Misbehaviors may appear/disappear depending on the

interleaving
 Re-executing a program may not reproduce the same

misbehaviors
– But replaying it using our approach does

 From a misbehavior it may be difficult to find the bug
– May be in a different process
– But it is a cause of the misbehavior
– We can replay the misbehavior …
– … and use rollback to reach the bug

Why not using breakpoints as usual?

 In standard debugging, one puts a breakpoint and
executes forward from there

 If the breakpoint is too late, one should re-execute with
an earlier breakpoint

– Or better replay, to reproduce the misbehavior
– In our approach, if we go too forward we can go

backward again, and vice versa
 Going backward helps the programmer:

– (S)he can follow causality links from the visible
misbehavior towards the bug

– Going forward there is no clue on what to execute
● Which process? Up to where?

Future directions

 I could have put this slide at the beginning ...
 Support Erlang instead of Core Erlang

– Not technically difficult, but time consuming
 Support a larger subset of the language

– Distribution, constructs for fault tolerance, ...
 Improve efficiency

– In particular, reducing the time overhead due to
logging

– Critical since logging needs to be done in production
environment

Finally

Thanks!

Questions?

	Slide 1
	Roadmap
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Future work
	Finally

