Analysis of Reversible Systems: Overview and Open Challenges

Ivan Lanese
Focus research group
Computer Science and Engineering Department
University of Bologna/INRIA
Bologna, Italy
Disclaimers

- Reversibility comes in different flavors and has different forms
- I will speak about reversibility for concurrent interacting systems, mainly causal-consistent reversibility
- I am not omniscient: please interrupt me if I suggest as future work something you have already done
Analysis

- Given a system, how to (statically) ensure that a given property is satisfied
- A plethora of approaches
 - Behavioral types
 - Behavioral equivalences
 - Model-checking
 - Abstract interpretation
 - ...
- Related to monitoring, debugging and testing
- Relies on logic: if an analysis technique can verify different properties, we need a logic to express them
 - E.g., in model checking
Relevance of analysis

- A main topic of research in computer science
 - At last POPL 42 out of 66 papers were on analysis
- Only a limited amount of works in causal-consistent reversibility
 - Mostly recent
 - A 2014 survey on causal-consistent reversibility contained only 4 papers on analysis
Analysis and reversibility: basic questions

- Can I take my favorite technique and apply it to reversible systems directly?
- Do I need to update the technique to make it applicable to reversible systems?
- Can I exploit reversibility to make the technique simpler/more efficient/more powerful?
- Does reversibility enables/requires new analysis techniques?
Analysis and reversibility

- Reversibility may have a strong impact on analysis
 - In uncontrolled reversibility deadlocks are avoided by construction
 - Deadlock detection is useless
 - Not true with controlled reversibility

- The answer to the questions depends on the specific reversible model
 - Underlying language (CCS, pi-calculus, Erlang, ..,)
 - Control mechanism (no control, roll, ...)

- History and causality information are the main novelty
 - Pro: useful information that may help the analysis
 - Con: it needs to be analysed too
State of the art: bird view

- Logic: a few works exist
- Behavioral equivalences: a few works exist
- Behavioral types: many works exist, both for binary and multiparty interactions
- Program verification, model checking, abstract interpretation: nothing as far as I know
- Debugging: just one work
- Testing: nothing as far as I know
- New techniques: just one work
Logic

- Logics with reverse modalities exist
 [Rocco De Nicola, Frits W. Vaandrager: Three Logics for Branching Bisimulation. LICS 1990]

- These logics have been mainly applied to forward-only systems
 - To explore their concurrent behavior

- Are they suitable to describe reversible systems?
Which observables?

- What we want to observe in reversible systems?
 - Only forward moves
 - reversibility as a hidden mechanism
 - e.g., reversibility for reliability
 - Both forward and backward moves
 - reversibility as first-class citizen
 - e.g., modelling of biological systems
- Both make sense, but they are very different
- Impact on the definition of logic, bisimulation, ...
Behavioral equivalences

- Allow one to find when systems A and B are equivalent
 - A should match B moves and vice versa
- Many different equivalences, mainly divided into
 - Bisimulations: consider internal and external moves
 - Barbed equivalences: consider internal moves + barbs
 - Testing equivalences: use a testing process
- Bisimulations and barbed may be strong or weak
 - Weak equivalences allow internal moves to be executed for free
- For reversible systems one mainly has to decide how to match backward moves
Bisimulations for reversible systems

 - They force to go back along the same path
 - They say they do not see how allowing to reverse concurrent actions in any order would be useful

 - Based on causal-consistent reversibility
 - Distinguishes a.b+b.a from a|b
 - Equivalent to hereditary history-preserving bisimulation (with conditions)

- Both for strong bisimulation
Barbed for reversible systems

- First proposal (strong and weak) in
 [I. Lanese, C. A. Mezzina, J.-B. Stefani: Reversing Higher-Order Pi. CONCUR 2010]
 - No distinction between forward and backward actions
 - Limited distinguishing power

- Refined (strong) in
 - Forward actions matched by forward actions
 - Backward actions matched by backward actions
Testing for reversible systems

- No published study as far as I know
 - Some ongoing work, see Irek’s talk
- Closest work uses total order of actions
 [C. A. Mezzina, V. Koutavas: A Safety and Liveness Theory for Total Reversibility. TASE 2017]
- Related work on interacting transactions in
 [E. de Vries, V. Koutavas, M. Hennessy: Liveness of Communicating Transactions. APLAS 2010]
- Both can be seen as special cases of causal-consistent reversibility
Open questions: axiomatizations

- Enable to use axiomatic reasoning to prove equivalences
- Complete axiomatizations are hard
- Partial axiomatization are also interesting
 - Tool to prove equivalences
 - Tool to compare equivalence relations
- For uncontrolled reversibility one may go through the characterization in terms of hereditary history-preserving bisimulation
 - (Not sure whether it has been axiomatized)
- What about controlled reversibility?
Open questions: axiomatizations and history

- Frequently history and processes are partially redundant
 \[k : a \langle P \rangle | k' : a (X) \triangleright (X | b \langle Q \rangle) ; k'' | k''' : (a \langle P \rangle | b \langle Q \rangle) \]

- If we change the process without changing the history we get inconsistent processes

- Should we
 - live with inconsistent processes?
 - change history and processes in a coherent way?
 - avoid redundancy (as in CCSk)?
Open questions: weak equivalences

- We probably want
 - forward steps matched by forward steps
- We may want or not
 - backward steps matched by backward steps
- Should we allow auxiliary backward steps when matching forward steps/barbs and viceversa?
- Different possible combinations
 - Do they produce the same equivalences?
 - If not, which axioms distinguish them?
Behavioral types and contracts

- Behavioral types describe the flow of communication
 \((? \text{Int}.! \text{String}. \text{end}) + (? \text{Bool}. ? \text{Int}.! \text{Int}. \text{end})\)

- Ensure absence of communication errors

- Binary communications: ensuring compliance between a client and a server

- Multiparty communications: avoiding deadlocks and communication races

- Behavioral contracts: essentially behavioral types without saying which is the typed program
Reversible behavioral types: binary case

- [F. Tiezzi, N. Yoshida: Reversible session-based pi-calculus. JLAMP 84(5), 2015]
 - Use standard binary behavioral types in a session-based pi-calculus

- [C. A. Mezzina, J. A. Pérez: Reversibility in session-based concurrency: A fresh look. JLAMP 90, 2017]
 - Session types used as monitors
 - Types include modalities limiting the number of times an action can be undone
Reversible behavioral types: multiparty case

 - Choices work as checkpoints
 - Nondeterministic rollback

 - Monitors for each participant extracted from a choreography
Reversible binary behavioral contracts

 - Ensuring compliance even with arbitrary reversibility

- [F. Barbanera, I. Lanese, U. de’Liguoro: Retractable and speculative contracts. COORDINATION 2017]
 - Using controlled backtracking to ensure compliance
Open question: types for reversibility control

- Most of the works above use standard types
- Very little about reversibility control
 - Which are the checkpoints
 - How many times an action can be reversed
- What about types for reversibility control?
 - Types describe which patterns of actions and undoing are legal
 - Can be used to typecheck or monitor processes in languages with controlled reversibility
 - Will ensure coherent rollback in component-based systems
Model checking of reversible systems

- Checks whether a property in a given logic holds by exploring the state space
- Should properties describe full behavior or only forward behavior?
- History makes infinite state any recursive program
 - rec X. a. X
 - Abstractions are needed
- Causal consistency seems related to partial-order reduction
 - Can this be made formal?
 - How can this be exploited?
Abstract interpretations of reversible systems

• Extract abstract view of a system preserving given properties

• There is a Galois connection between a reversible calculus and the underlying forward-only calculus
 - Abstraction: removing history information
 - Concretion: adding empty history

• Weaker abstractions may be interesting
 - Part of the history relevant for some property
 - Cfr. program slicing
New analysis technique

- Consider a program that needs backtracking (e.g., 8 queens problem)
- Can be implemented in a reversible calculus with irreversible actions
- In order to check its correctness it is enough to consider its causal traces
 - Much simpler than considering all traces
 - Can be efficiently computed
Summary

- Analysis techniques are a main topic in concurrency theory and programming language research
- Reversible concurrent calculi and languages are fast developing
- Time has arrived for considering analysis techniques for them
- Reversibility has a strong impact on analysis techniques
Finally

Thanks!

Questions?