
Causal-consistent reversible 
debugging for Erlang 

Ivan Lanese, University of Bologna/INRIA

Thanks to Pietro Lami, German Vidal and many others 



Reversible computing

 In some areas systems are naturally reversible: 
biology, quantum computing, …

 In other areas making systems reversible can be 
useful: robotics, debugging, reliability, ...

The possibility of executing a computation 
both in the standard, forward direction, and 

in the backward direction, going back to a past state



Reversibility for debugging
 Debugging amounts to find the wrong line of code 

(bug) causing a visible misbehavior
 The bug precedes and causes the misbehavior
 Quite natural to use reversibility to go back from the 

misbehavior to the bug 
 Sequential reversible debugging is well understood

– Gdb (since 2009), Microsoft time-travel 
debugger, ... 



Debugging concurrent programs

 Concurrent reversible debugging not so developed

– Most approaches just linearize the execution

– Like a recorded movie, where you can go back 
and forward

– Causal information is lost
 Can we exploit causal information?



Debugging and causality

 Standard debugging procedure:

1) Observe an unexpected behavior

2) Find in the code the instruction that caused it

3) Correct the instruction
 Causal information can be used to drive step 2 above
 Debugging strategy: follow causality links 

backwards from the misbehavior to the bug



CauDEr
 Causal-consistent Debugger for Erlang
 Allows one to debug concurrent Erlang programs 

taking advantage of causality information
 Only an academic prototype

– Supports a limited fragment of Erlang

– Efficiency has never been considered

 … but can show what the approach can 
do on selected small examples



A simple example

 A server allowing one to invoke both stateless 
and stateful mathematical services

 Services spawned on the first request
 All served requests are logged



Sequentiality vs concurrency

 Reversibility in a sequential setting: 

– recursively undo the last action
 In concurrent programs there is no uniquely defined 

last action

– Which actions can be undone? 
 We follow causal-consistent reversibility 



Causal-consistent reversibility

 Causal dependencies must be respected
 First reverse the consequences, then the causes
 Independent actions are reversed independently

a

a

b

b



Causal-consistent debugging

 Allows one to explore a concurrent computation back 
and forward

 Any action can be undone provided its consequences 
have been undone beforehand

 The action to be undone can be selected by the user or 
by a scheduler

 But we can do better



How to follow causal links?

 If something wrong occurs, find the immediate causal 
link

 A variable has an unexpected value?
→ Undo its assignment (and inspect it)

 A message has an unexepcted content?

→ Undo its send (and inspect it)
 Either the inspected instruction contains the bug, or 

we need to iterate the procedure



The roll command

 We need a debugger command to perform such undos
 The roll command allows one to undo a selected 

past action, including all and only its consequences
 Minimal set of undos needed to undo the selected 

action without breaking causal dependencies



Conclusion
 Causal-consistent debugging allows one to 

explore concurrent computations back and 
forward

 The roll command allows one to follow causal 
dependencies from the visible misbehavior 
towards the bug

 CauDEr showcases our approach

 Still a lot of work to be done



Future perspective

 We plan to continue to work on CauDEr and the 
underlying theory

– Supporting a larger fragment of the language

– Understanding causality dependencies

– Looking for further useful debugging 
commands

 We will be happy to have any feedback from you



Thanks!



Additional resources

 CauDEr repositories:

– Used: https://github.com/PietroLami/cauder

– Stable: https://github.com/mistupv/cauder

 Relevant paper (and references therein):

– I. Lanese, U. P. Schultz, I. Ulidowski: 
Reversible Computing in Debugging of 
Erlang Programs. IT Prof. 24(1) (2022)

https://github.com/mistupv/cauder

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16

