
Causal-consistent reversible 
debugging for Erlang 

Ivan Lanese, University of Bologna/INRIA

Thanks to Pietro Lami, German Vidal and many others 



Reversible computing

 In some areas systems are naturally reversible: 
biology, quantum computing, …

 In other areas making systems reversible can be 
useful: robotics, debugging, reliability, ...

The possibility of executing a computation 
both in the standard, forward direction, and 

in the backward direction, going back to a past state



Reversibility for debugging
 Debugging amounts to find the wrong line of code 

(bug) causing a visible misbehavior
 The bug precedes and causes the misbehavior
 Quite natural to use reversibility to go back from the 

misbehavior to the bug 
 Sequential reversible debugging is well understood

– Gdb (since 2009), Microsoft time-travel 
debugger, ... 



Debugging concurrent programs

 Concurrent reversible debugging not so developed

– Most approaches just linearize the execution

– Like a recorded movie, where you can go back 
and forward

– Causal information is lost
 Can we exploit causal information?



Debugging and causality

 Standard debugging procedure:

1) Observe an unexpected behavior

2) Find in the code the instruction that caused it

3) Correct the instruction
 Causal information can be used to drive step 2 above
 Debugging strategy: follow causality links 

backwards from the misbehavior to the bug



CauDEr
 Causal-consistent Debugger for Erlang
 Allows one to debug concurrent Erlang programs 

taking advantage of causality information
 Only an academic prototype

– Supports a limited fragment of Erlang

– Efficiency has never been considered

 … but can show what the approach can 
do on selected small examples



A simple example

 A server allowing one to invoke both stateless 
and stateful mathematical services

 Services spawned on the first request
 All served requests are logged



Sequentiality vs concurrency

 Reversibility in a sequential setting: 

– recursively undo the last action
 In concurrent programs there is no uniquely defined 

last action

– Which actions can be undone? 
 We follow causal-consistent reversibility 



Causal-consistent reversibility

 Causal dependencies must be respected
 First reverse the consequences, then the causes
 Independent actions are reversed independently

a

a

b

b



Causal-consistent debugging

 Allows one to explore a concurrent computation back 
and forward

 Any action can be undone provided its consequences 
have been undone beforehand

 The action to be undone can be selected by the user or 
by a scheduler

 But we can do better



How to follow causal links?

 If something wrong occurs, find the immediate causal 
link

 A variable has an unexpected value?
→ Undo its assignment (and inspect it)

 A message has an unexepcted content?

→ Undo its send (and inspect it)
 Either the inspected instruction contains the bug, or 

we need to iterate the procedure



The roll command

 We need a debugger command to perform such undos
 The roll command allows one to undo a selected 

past action, including all and only its consequences
 Minimal set of undos needed to undo the selected 

action without breaking causal dependencies



Conclusion
 Causal-consistent debugging allows one to 

explore concurrent computations back and 
forward

 The roll command allows one to follow causal 
dependencies from the visible misbehavior 
towards the bug

 CauDEr showcases our approach

 Still a lot of work to be done



Future perspective

 We plan to continue to work on CauDEr and the 
underlying theory

– Supporting a larger fragment of the language

– Understanding causality dependencies

– Looking for further useful debugging 
commands

 We will be happy to have any feedback from you



Thanks!



Additional resources

 CauDEr repositories:

– Used: https://github.com/PietroLami/cauder

– Stable: https://github.com/mistupv/cauder

 Relevant paper (and references therein):

– I. Lanese, U. P. Schultz, I. Ulidowski: 
Reversible Computing in Debugging of 
Erlang Programs. IT Prof. 24(1) (2022)

https://github.com/mistupv/cauder

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16

