

PRISMA: A Mobile Calculus with Parametric
Synchronization�

Roberto Bruni1 and Ivan Lanese2

1 Computer Science Department, University of Pisa, Pisa, Italy
bruni@di.unipi.it

2 Computer Science Department, University of Bologna, Bologna, Italy
lanese@cs.unibo.it

Abstract. We present PRISMA, a parametric calculus that can be in-
stantiated with different interaction policies, defined as synchronization
algebras with mobility of names (SAMs). We define both operational
semantics and observational semantics of PRISMA, showing that the
second one is compositional for any SAM. We give examples based on
heterogeneous SAMs, a case study on Fusion Calculus and some simple
applications. Finally, we show that basic categorical tools can help to
relate and to compose SAMs and PRISMA processes in an elegant way.

1 Introduction

Since the pioneering papers by Robin Milner [16] and Tony Hoare [10], the use
of process description languages has kept proliferating at an impressive rate.
Though nowadays the most prominent calculus is the π-calculus [17], many vari-
ants of it exist (see, e.g., the nice commented survey in [4]), exploiting different
communication primitives and focusing on different aspects, but where interac-
tion is a key issue [18,8,3,1].

While process calculi are used for modeling different kinds of systems, ranging
from computer networks to biological systems, at different levels of abstraction,
typically each calculus relies on just one fixed communication mechanism. When
a different communication protocol is needed, either it is encoded using the avail-
able mechanism, and this may be quite difficult and may obfuscate the model,
or a new ad hoc calculus providing this primitive is developed. For instance, [7]
introduces a broadcast variant of π-calculus, while [6] proves that there is no
uniform encoding of it into the π-calculus.

In Service Oriented Computing (SOC) it is commonly understood that ser-
vices come with their own invocation policies (e.g., one-way or request-response),
so that calculi for SOC should face the coexistence of several interaction poli-
cies within the same model. We want to overcome the limitation of previous
proposals by allowing processes to interact using synchronization models tai-
lored to the specific application in mind. For instance, take a news server S
that interacts with news providers using a message passing protocol, but then
� Research supported by the Project FET-GC II IST 16004 Sensoria.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 132–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

PRISMA: A Mobile Calculus with Parametric Synchronization 133

uses broadcast to send the news to subscribed recipients. We consider basic
actions of the form xa�y where x is the channel where the interaction is per-
formed, a an action specifying the contribution to the interaction and �y a tuple
of parameters. Note the separation between the channel name and the action
executed on it, which is a distinctive feature of our approach. In particular, we
consider actions in and out respectively as input and output primitives for mes-
sage passing, and inb and outb for broadcast. Also, we use publish and news
as communication channels: the first is used for the interaction between the
news provider and the server, and the latter for sending news to their recipients.
Channel info is used as news value instead. Thus the server can be modeled as
S =!(x)publish in〈x〉.(news outb〈x〉|S′[x]) where (−) is name restriction, | is par-
allel composition, . is prefixing and ! is replication. Here S′[x] is a generic context
exploiting x. A news provider instead has the form P = (info)publish out〈info〉.
Consider the system P |S|C1|C2, where Ci = (y)news inb〈y〉.Usei [y] is a suitable
client, for each i. The components P and S can interact on channel publish, lead-
ing to S|(info)(news outb〈info〉|S′[info])|C1|C2. Then, a broadcast interaction
among three different components (a sender and two receivers) delivers the news
to the clients, leading in one step to S|(info)(S′[info]|Use1[info]|Use2[info]).

In the paper we show that many different protocols can be formalized as
synchronization algebras with mobility (SAMs) and how the above defined in-
teractions can be specified in a general framework. For the sake of presentation,
the set of primitives is kept to a minimal extent, but we conjecture that other
features (e.g., locations, ambients, encryption, probability) can be likely trans-
ferred from the literature. The main advantage of having a uniform framework
for expressing high-level synchronization mechanisms is that their formalization
becomes simpler, since SAMs are tools dedicated to that purpose, and there is
no need of, e.g., introducing special processes implementing the required syn-
chronization patterns on top of the available ones. Also, PRISMA allows for de-
veloping general theories and tools (i.e., independent from the synchronization
model). Finally, when expressed in a uniform framework, different synchroniza-
tion models can be more easily compared and integrated (e.g., the compound use
of different policies is rather straightforward). The name PRISMA (the Italian
for prism) is intended to expose the many communication facets of our calculus.

Although PRISMA is based on name fusion, it is reductive to see it just as an
extension of Fusion Calculus [18], because much more general interactions are
allowed in PRISMA. We have chosen fusion as the key primitive for mobility
since Fusion Calculus inherits the expressive power of π-calculus, while making
the communication primitive more symmetric and easy to generalize. In fact, in
π-calculus, input and output are treated ad hoc, and this gives no hint on how to
deal with actions that are neither inputs nor outputs, such as in the Hoare SAM
(Example 2). Anyway we think that our approach can capture most interaction
calculi, and in particular the π-calculus, but this complicates the technicalities
of the approach (see e.g. the approach in [3] to deal with distinctions).

SAMs improve in a crucial way synchronization algebras [19] (which stem
from ACP communication functions [2]), which were tailored for calculi such as

134 R. Bruni and I. Lanese

CCS and CSP, to keep them in line with more sophisticated mobile calculi for
scenarios such as Global Computing.

SAMs were first defined in [13], in the context of a graph transformation
framework called Synchronized Hyperedge Replacement (SHR) [5,9], to provide
a uniform presentation of two existing synchronization models. PRISMA is not
a mere translation of SHR. Like PRISMA, also SHR is a unifying framework for
modeling systems, but SHR is more suitable for architectural models since the
structure of the system is explicitly represented. Instead, PRISMA focuses on
the linguistic aspect of interaction, and is more useful to analyze the interactions
between synchronization patterns and other primitives, since process calculi can
be easily extended with specific features (e.g., probabilities, pattern matching).
Our presentation of SAMs is also more general and polished w.r.t. the one in [13].

As main results: (i) we prove that the observational semantics of PRISMA,
called hyperbisimilarity, is a congruence under any SAM, (ii) we discuss how to
build complex SAMs by composing basic ones and (iii) we show how to prove
properties for general classes of synchronization protocols. The expressiveness of
our calculus is demonstrated via original examples on a news server (already out-
lined), on communications with accounting, on interoperability between different
synchronization policies, and via the case study on Fusion Calculus.

Structure of the paper. § 2 recalls SAMs and shows some examples. In § 3 we
define the PRISMA calculus, analyze its operational and abstract semantics and
prove the congruence theorem for hyperbisimilarity. The case study on Fusion
Calculus is detailed in § 4, while § 5 analyzes the relationships among different
SAMs using basic concepts from category theory, which can be found, e.g., in [15].
All the material in § 3–5 is original to this contribution. Finally, § 6 contains some
conclusions and plans for future work. A full discussion on PRISMA calculus and
related topics can be found in the Ph.D. thesis of the second author [12].

2 Synchronization Algebra with Mobility (SAM)

Notation. We write A � B to denote the disjoint union of A and B, with inj1 :
A → A � B and inj2 : B → A � B the left and right inclusions, respectively.
When no confusion can arise we write inji(x) simply as x. If inji(x) ∈ A � B we
denote with comp(inji(x)) the element inj3−i(x) in B �A. We denote with n the

set {1, . . . , n} (where 0 def= ∅), while idn is the identity function on it. Given two
functions f : A → C and g : B → D we denote with [f, g] : A � B → C � D the
function that applies f to the elements in A and g to the ones in B. Given a
function f , the function f |S (resp. f |\S) is obtained by restricting f to S (resp.
to dom(f) \ S). Also, when set operations (e.g., ∪) are used on function f , it is
implicitly assumed that f is seen as a set of pairs (a, f(a)). We use ◦ to denote
the standard composition of functions, i.e. (g ◦f)(x) = g(f(x)). Given a vector �v
and an integer i we denote with �v[i] the i-th element of �v while Set(�v) is the set
of elements in �v. Finally, we denote with mgu(E) any idempotent substitution
resulting from computing the most general unifier on the set of equations E,
when it exists.

PRISMA: A Mobile Calculus with Parametric Synchronization 135

In this section we present SAMs, which are an extension of Winskel’s syn-
chronization algebras (SAs) [19] able to deal with name mobility, local resource
handling and nondeterminism. SAMs can be used to specify the interactions
among different actions, each carrying a tuple of arguments which are names of
channels. Each allowed synchronization pattern is modeled by an action synchro-
nization triple, whose first and second components are the interacting actions
and whose third component is the result of the synchronization. This is com-
posed by three different fields: (1) the resulting action, (2) a function specifying
how the arguments attached to the resulting action are computed (the compo-
nent Mob in Definition 2), (3) a relation determining which names are merged
(the component .= in Definition 2).

Definition 1 (Action signature). An action signature A is a tuple (Act, ar, ε)
where Act is the set of actions, ar : Act → N is the arity function specifying the
number of arguments of each action and ε ∈ Act has ar(ε) = 0.

The action ε stands for “not taking part in synchronization”, and it allows to
deal in a uniform way with synchronization and with asynchronous execution of
actions, the latter being modeled as synchronization with ε.

Definition 2 (Action synchronization set). An action synchronization set
AS on A is a set of triples of the form (a, b, (c, Mob,

.=)) where a, b, c ∈ Act,
Mob : ar(c) → ar(a) � ar(b) and .= is an equivalence relation on ar(a) � ar(b).

The Mob component assigns to each argument of c an argument of either a or b,
i.e. it specifies how the arguments of the resulting action are obtained from the
arguments of the component actions. Since actual arguments are not known at
SAM-definition time, the correspondence is defined according to the positions
in the tuple: for instance Mob(1) = inj2(1) means that the first parameter of
the resulting action comes from the first parameter of the second action, as
it is in the left part of Figure 1, that represents the action synchronization
(a, a, (a, Mob1,

.=)).
For .=, the idea is to define equivalence classes over incoming parameters:

parameters in the same class are then merged. Again, a positional notation is
used. For instance, according to the action synchronization in the left part of
Figure 1, a〈x〉 can interact with a〈y〉. Then x and y are merged, and the result
is a〈y〉 (if y is chosen as representative of the equivalence class).

Action synchronizations (a, b, (c, Mob1,
.=)) and (a, b, (c, Mob2,

.=)) such that
Mob1(n) .= Mob2(n) for each n (see the example in Figure 1) are semantically
equivalent (we will show in § 5 that they are isomorphic).

Next definition introduces a notion of composition on action synchroniza-
tions. In the general case, synchronization among n different processes must be
specified. However, SAMs guarantee that the order in which synchronization is
achieved is not important. Our approach allows to specify synchronization in a
compositional way, i.e. by considering the interaction between two processes at
the time. In particular, in order to express associativity we find it convenient to
consider the synchronization of three actions, which arises as the composition of
two binary synchronizations.

136 R. Bruni and I. Lanese

a

=.

Mob

=.
Mob

a aaaa
1

2

Fig. 1. Action synchronization

Definition 3 (Action synchronization composition)
Given α = (a1, b1, (c1, Mob1,

.=1)) and β = (a2, b2, (c2, Mob2,
.=2)) with c1 = a2,

the composition α �L β of α and β is the tuple (a1, b1, b2, (c2, Mob3,
.=3)) where

Mob3 = [Mob1, idar(b2)] ◦ Mob2 : ar(c2) → ar(a1) � ar(b1) � ar(b2), and the
equivalence relation .=3 on ar(a1)� ar(b1)� ar(b2) is defined as the projection on
the above specified domain of the least equivalence relation R on ar(a1)�ar(b1)�
ar(c1) � ar(b2) such that xR y if x

.=1 y ∨ x
.=2 y ∨ Mob1(x) = y.

A similar composition α �R β is defined when c1 = b2 instead of c1 = a2.

Definition 4 (Action synchronization relation)
Given an action signature A = (Act, ar, ε), an action synchronization relation
AS on A is an action synchronization set such that:

1. (a, b, (ε, Mob,
.=)) ∈ AS ⇒ a = b = ε;

2. (a, ε, (c, Mob,
.=)) ∈ AS ⇒ (c = a ∧ Mob = inj1 ∧ .= = id);

3. (a, b, (c, Mob,
.=)) ∈ AS ⇒ (b, a, (c, Mob′, .=′)) ∈ AS, where for each x, y

Mob′(x) = comp(Mob(x)) and x
.=′

y iff comp(x) .= comp(y);
4. if α1 = (a, b, (c, Mob,

.=)) ∈ AS and α2 = (c, d, (e, Mob′, .=′)) ∈ AS then
∃f ∈ Act, ∃β1 = (b, d, (f, Mob′′, .=′′)), β2 = (a, f, (e, Mob′′′, .=′′′)) ∈ AS such
that α1 �L α2 = β1 �R β2.

Condition 1 (already present in SAs) specifies that no action can disappear
producing ε. Also, interaction of ε with any action just propagates the other
action (condition 2). Conditions 3 and 4 ensure commutativity and associativity
of synchronization respectively, by specifying that the composed actions take the
same parameters and force the same merges.

Definition 5 (SAM). A synchronization algebra with mobility is a triple S =
(A, F in, AS) which includes an action signature A = (Act, ar, ε), a set Fin ⊆
Act of final actions and an action synchronization relation AS on A.

Final actions are used to deal with local channels: since no process from outside
can interact with a bound channel, only actions corresponding to successful in-
teractions that do not require additional contributions can take place on bound
channels. Those actions are in Fin. For instance in message passing synchro-
nization an input is not in Fin, while the result of the synchronization between
one input and one output is in Fin.

We present three simple examples of SAMs, taken from [13,14] (albeit with
different notation). Below, MPi,j (for message passing) is a shorthand for the
function from max(i, j) to (any superset of) i� j such that MPi,j(m) = inj1(m)
if m ≤ i, and inj2(m) otherwise, while EQi denotes the least equivalence relation
on (any superset of) i � i containing {(inj1(m), inj2(m))|m ≤ i}.

PRISMA: A Mobile Calculus with Parametric Synchronization 137

Remark 1. From now on, to simplify the presentation, we will not write ex-
plicitly the triples obtained by commutativity and we assume that the triple
(ε, ε, (ε, MP0,0, EQ0)) is omnipresent. We also assume that a ranked set of labels
L is given such that L ∩ {ε, τ} = ∅, with rank ar : L → N.

Example 1 (Milner SAM). The SAM MilnerL is given by:

- Act = {τ, ε} ∪
⋃

a∈L{a, a}, ar(a) = ar(a) for each a ∈ L, ar(τ) = 0;
- Fin = {τ};
- (λ, ε, (λ, MPar(λ),0, EQ0)) ∈ AS for each λ ∈ Act,

(a, a, (τ, MP0,0, EQar(a))) ∈ AS for each a ∈ L.

MilnerL represents message passing à la π-calculus: one input a interacts with
one output a, and parameters in the same position are merged. Action τ repre-
sents a complete message exchange, and thus belongs to Fin. Here we are more
general than π-calculus, since it allows just one output action, while we allow
many (each with corresponding input), and this corresponds to introducing a
simple form of typing.

Example 2 (Hoare SAM). The SAM HoareL is given by:

- Act = Fin = {ε} ∪ L;
- (λ, λ, (λ, MPar(λ),ar(λ), EQar(λ))) ∈ AS for each λ ∈ Act.

Hoare synchronization models a global agreement on the action to perform. As
before, corresponding parameters are merged, but now they are carried over the
result of the interaction.

Example 3 (Broadcast SAM). The SAM BdcL is given by:

- Act = {ε} ∪
⋃

a∈L{a, a}, ar(a) = ar(a) for each a ∈ L;
- Fin =

⋃
a∈L{a};

- (a, a, (a, MPar(a),ar(a), EQar(a))) ∈ AS for each a ∈ L,
(a, a, (a, MPar(a),ar(a), EQar(a))) ∈ AS for each a ∈ L.

The above SAM models broadcast. When used in PRISMA, it forces an output a
from a sequential PRISMA process to synchronize with all the listening sequen-
tial processes in parallel, which have to perform an input a. Notice that, if one
wants to have a multicast MulL, where some listening process may not synchro-
nize with the output, it is enough to add the triples (λ, ε, (λ, MPar(λ),0, EQ0))
for each λ ∈ Act to AS.

We present now a more complex (and original) example: a SAM for commu-
nication with priority that allows many senders to synchronize with just one
receiver, which takes only the message with the highest priority. This SAM can
be used, e.g., to model communication in sensor networks, where the base station
acquires at each step the most important available information. In the example
we consider just one input action in of arity 1, but the generalizations to many
actions and different arities are straightforward.

138 R. Bruni and I. Lanese

- Act = {in, ε} ∪ {(out, n)|n ∈ N} ∪ {(out+, n)|n ∈ N} ∪ {(out−, n)|n ∈ N};
- ar(a) = 0 for all a ∈ {ε} ∪ {(out+, n)|n ∈ N}, and ar(a) = 1 otherwise;
- Fin = {(out+, n)|n ∈ N};
- (a, ε, (a, MPar(a),0, EQ0)) ∈ AS for each a ∈ Act,

(in, (out, n), ((out+, n), MP0,0, EQ1)) ∈ AS for each n,
(in, (out, n), ((out−, n), MP1,0, EQ0)) ∈ AS for each n,
((out, n), (out, m), ((out, n), MP1,0, EQ0)) ∈ AS for each n ≥ m,
((out, n), (out−, m), ((out+, n), MP0,0, EQ1)) ∈ AS for each n ≥ m,
((out, n), (out−, m), ((out−, n), MP0,1, EQ0)) ∈ AS for each n ≥ m,
((out, m), (out−, n), ((out−, n), MP0,1, EQ0)) ∈ AS for each n ≥ m,
((out+, n), (out, m), ((out+, n), MP0,0, EQ0)) ∈ AS for each n ≥ m.

Fig. 2. The priority SAM Pri

Example 4 (Priority SAM). The SAM Pri is defined in Figure 2. The basic idea
is that the result of the synchronization of an action in and an action (out, n),
i.e. an output with priority n, is guessed: either we guess that n is the highest
priority, we merge the parameters and the result is (out+, n), or we guess the
opposite, we propagate the input variable and the result is (out−, n). The first
guess, if wrong, is discarded when an output with higher priority is found, the
second one is checked when the channel is declared local, since (out−, n) /∈ Fin.
Here nondeterminism is useful for the guess, but also needed to choose which
output to propagate when two with the same priority interact.

3 The PRISMA Calculus

We can now present the syntax and the semantics of PRISMA. Action prefixes
in PRISMA are parametric on a given SAM S = ((Act, ar, ε), F in, AS).

Definition 6 (PRISMA). The syntax for PRISMA processes is:

P : : = 0 (Inaction) xa�y.P (Prefix)
P1|P2 (Parallel composition) P1 + P2 (Nondeterministic sum)
(x)P (Restriction) !P (Replication)

where x is a channel name, a ∈ Act is an action and �y is a vector of channel
names whose length is ar(a). Channel x is the subject of xa�y.

In PRISMA, restriction (x) is the only binder for x. As usual, processes are taken
up to α-conversion of restricted names, and fn(P) denotes the set of free names
in P . The intrinsic compositionality of action synchronization in SAMs makes
the LTS operational semantics more natural for PRISMA than semantics in the
reduction style, where all possible global synchronizations, involving an unbound
number of processes, should be considered explicitly (think, e.g., of broadcast).
Roughly, reductions would correspond to “closed” synchronizations, according
to Fin.

PRISMA: A Mobile Calculus with Parametric Synchronization 139

Table 1. Rule for synchronization

P1
(Y1)xa1�y1,π1−−−−−−−−−→ P ′

1 P2
(Y2)xa2�y2,π2−−−−−−−−−→ P ′

2 (a1, a2, (c, Mob,
.=)) ∈ AS Φ

P1|P2
(W)xc�w,π|\(Y1∪Y2)−−−−−−−−−−−−−→ (�s)(P ′

1|P ′
2)π

(2)

where the premise Φ is the conjunction of the following five side conditions:

freshness of extruded names: Y1 ∩ Y2 = ∅, (Y1 ∪ Y2) ∩ (fn(P1) ∪ fn(P2)) = ∅;
forced fusions: π = mgu({�yi1 [j1] = �yi2 [j2]| inji1(j1)

.= inji2(j2)}∪{x = y|xπ1 = yπ1∨
xπ2 = yπ2}) where we choose elements not in Y1 ∪ Y2 as representatives for the
equivalence classes of names in π, whenever possible;

arguments of c: �w[k] = (�yi[j])π iff Mob(k) = inji(j);
names extruded by c: W = Set(�w) ∩ (Y1 ∪ Y2);
closed names: Set(�s) = (Y1 ∪ Y2)π \ W (any order can be chosen for �s).

We present now the inference rules defining the semantics of PRISMA pro-
cesses, in an incremental way. The rules are parametric on the SAM S that fixes
the allowed interaction policies. Interestingly the rules exploit just α-conversion
as structural law, and this simplifies the proofs of process properties. However,
the kind of axioms usually used in structural congruence equate processes which
are also equivalent according to our observational semantics (see Lemma 1).
One could avoid α-conversion too, but this would unnecessarily complicate the
inference rules. The first rule we examine is the one for prefix:

xa�y.P
xa�y,id−−−−→ P (1)

The transition simply executes the corresponding action. Note that the label
contains a substitution too (the identity substitution in this case): this is used
to trace fusions of global names performed by the synchronization, since they
must be applied to parallel processes (see, e.g., rule 9).

The most important, but also the most complex, rule allows to synchronize
two actions performed by parallel processes (rule 2 in Table 1). Its complexity
is due to the great degree of flexibility of PRISMA, which allows to specify
both action synchronization and (name) mobility patterns. Also, we deal with
slightly more complex actions than the ones seen so far, since a set of extruded
names appears (when empty, such as in rule 1, it is deleted from the label).
Extruded names are names that were bound before, but become global after
being used as parameters in the label. Extruded names must be traced, since
when they are removed from the tuple of parameters, restrictions for them have
to be reintroduced (as in π-calculus (close) rule).

The rule for synchronization allows two actions a1 and a2 performed on the
same channel x to synchronize. The main effect of the synchronization is to
produce a new substitution π, which combines the previous substitutions traced
by π1 and π2 with the new substitution π determined by taking into account
the equivalence classes defined by .=. The substitution π is applied to the two
interacting processes P ′

1 and P ′
2 and to the tuple �w of parameters of the resulting

action c, and, as far as global names are concerned, it is traced in the label as

140 R. Bruni and I. Lanese

π|\(Y1∪Y2). The set W is the new set of extruded names. Finally, names that were
extruded (Y1 ∪ Y2), still exist ((Y1 ∪ Y2)π) and are no longer appearing in the
label ((Y1 ∪ Y2)π \ W) must be closed by inserting them into �s (in any order).

Two additional aspects must be considered to deal with parallel composition.
In some SAMs, such as the Milner one, no process is forced to participate to the
synchronization, while in others, such as in broadcast, the processes in a given
set must participate. This is specified in SAMs by allowing or disallowing the
interaction with ε, which can be executed for free by any process using rule:

x ∈ N

P
xε〈〉,id−−−−→ P

(3)

However, also in broadcast, we want to allow processes which are not inter-
ested in the synchronization to stay idle. We consider that a process is interested
in a synchronization at x if it has an active prefix with subject x. Thus, follow-
ing the approach of [7], we introduce a label ¬x which can be executed by any
process which has no active prefix with subject x. This can be modeled with:

x is not an active subject of P

P
¬x−−→ P

(4)

It is easy to give an inductive definition of this rule to allow proofs by induction
(not shown here just for space constraints). A dedicated rule (and its symmetric)
are required to allow this action to interact with a normal action:

P1
(Y)xa�y,π−−−−−−→ P ′

1 P2
¬x−−→ P2 Y ∩ fn(P2) = ∅

P1|P2
(Y)xa�y,π−−−−−−→ P ′

1|P2π
(5)

Restriction is dealt with rules 6–10 in Table 2. Rule 6 says that restriction
on channel z does not influence actions where z is neither the subject nor a
parameter. If the equivalence class of z according to π is not a singleton, we
have to remove z from π, since it is not visible outside its scope. If z is one of

Table 2. Rules for restriction

P
(Y)xa�y,π−−−−−−→ P ′ z /∈ Set(�y) ∪ {x} z /∈ Im(π)

(z)P
(Y)xa�y,π|\{z}−−−−−−−−−→ (z)P ′

(6)

P
(Y)xa�y,π−−−−−−→ P ′ z ∈ Set(�y) \ {x} \ Y z /∈ Im(π)

(z)P
({z}∪Y)xa�y,π|\{z}−−−−−−−−−−−−→ P ′

(7)

P
(Z)xa�y,π−−−−−−→ P ′ a ∈ Fin x /∈ Im(π) Set(�z) = Z

(x)P
√

,π|\{x}−−−−−−→ (x�z)P ′
(8)

P
√

,π−−→ P ′

P |Q
√

,π−−→ P ′|Qπ
(9) P

√
,π−−→ P ′ x /∈ Im(π)

(x)P
√

,π|\{x}−−−−−−→ (x)P ′
(10)

PRISMA: A Mobile Calculus with Parametric Synchronization 141

the parameters instead (rule 7), then it is marked as extruded in the label (as
in π-calculus rule (open)). Rule 8 closes the channel on which the action a is
done, reintroducing the restriction for names that were extruded by a. This is
allowed only if a ∈ Fin. This rule introduces a further form of label, namely
(
√

, π), which states that an action has been performed on a bound channel, and
that substitution π is its effect on global names. The simpler rules 9 (and its
symmetric) and 10 deal with this kind of labels.

Finally, (almost) standard rules can be added to deal with nondeterministic
sum (rule 11 and its symmetric) and replication (rule 12):

P1
λ−→ P ′

1 λ �= xε〈〉, id λ �= ¬x

P1 + P2
λ−→ P ′

1

(11)
P |!P λ−→ P ′

!P λ−→ P ′
(12)

In the above rules, λ denotes a general label. The only peculiarity is that
actions ε and ¬x, which can be executed for free and thus do not represent real
process activities, should not force the choice of one branch of a sum.

Example 5. Take the priority SAM Pri of Example 4. The
√

-labeled transitions
for the process S = (x)(x in〈y〉.P | x(out, 3)〈z〉.Q | x(out, 2)〈w〉.R) are:

S
√

,{z/y}−−−−−→ (x)(P | Q | x(out, 2)〈w〉.R){z/y}
S

√
,{w/y}−−−−−−→ (x)(P | x(out, 3)〈z〉.Q | R){w/y}

S
√

,{z/y}−−−−−→ (x)(P | Q | R){z/y}
together with a transition where y is chosen as representative instead of z or w.
Here the last transition is the most interesting, since it features an interaction
between two outputs and one input, with the output with the lowest priority,
(out,2), being discarded. The only other admissible transitions are from S to
itself with labels of the form uε〈〉, id or ¬u for any u.

Example 6 (News server and PRISMA). The transitions described in the Intro-
duction for the news server can be derived, with suitable labels, in PRISMA by
considering a SAM with six actions: in and out interacting using Milner synchro-
nization and producing τ as a result, inb and outb interacting using broadcast
synchronization, and ε. Such a SAM can also be built using a coproduct con-
struction in the category of SAMs, as we will show in Section 5.

Also, more complex scenarios can be considered. For instance the broadcast ac-
tion canbe taggedwith some additional informationon the contentof the news, and
different input actions can be chosen to receive only some of them. For instance we
canhave actions out−CS for computer science news and out−math formathemat-
ical news. Correspondingly we can have actions in−CS and in−math, retrieving
the corresponding news, and in− all retrieving both of them. A process interested
only in some kind of news must however explicitly use actions to discard the others,
since broadcast enforces reception of the information by all the listening processes.

We study the observational properties of processes using hyperbisimilarity, as
done in Fusion Calculus. This is required since standard bisimilarity is not a
congruence w.r.t. composition operators.

142 R. Bruni and I. Lanese

Definition 7 (Hyperbisimilarity). A bisimulation is a relation ∼S such that
P ∼S Q implies:

– P
¬x−−→ P ⇒ Q

¬x−−→ Q,

– P
√

,π−−→ P ′ ⇒ Q
√

,π−−→ Q′ ∧ P ′ ∼S Q′,

– P
(Y)xa�y,π−−−−−−→ P ′ ∧ Y ∩ fn(Q) = ∅ ⇒ Q

(Y)xa�y,π−−−−−−→ Q′ ∧ P ′ ∼S Q′

and vice versa, where all the transitions are derived using SAM S. A hyperbisim-
ulation is a substitution-closed bisimulation. We denote with ≈S the maximal
hyperbisimulation. If P ≈S Q, we say that P and Q are hyperbisimilar. We shall
drop S from the notation when clear from the context.

We present now some properties of hyperbisimilarity. Note that properties that
hold for any SAM (or for any SAM satisfying suitable requirements, see, e.g.,
Lemma 2) can be proved once and for all. Next lemma, in particular, shows
that hyperbisimilarity abstracts away from certain syntactic features of processes
which are intuitively not important from an observational point of view. (We say
that an axiom P = Q on processes bisimulates if, for each instance of the axiom,
the two equated processes are hyperbisimilar.)

Lemma 1. The axioms below bisimulate for any SAM and for any P , Q, R:
P |Q = Q|P (P |Q)|R = P |(Q|R) P |0 = P P + P = P

P + Q = Q + P (P + Q) + R = P + (Q + R) P + 0 = P
(x)(y)P = (y)(x)P (x)P |Q = (x)(P |Q) if x /∈ fn(Q)

Proof (Sketch). Each axiom requires a coinductive proof. Axioms concerning
parallel composition exploit the properties of SAMs. The proof for P + 0 = P
uses the fact that transitions with source 0 cannot force a branch of the sum to
be taken. Proofs for other axioms are standard. ��

Lemma 2. The axiom (x)0 = 0 bisimulates iff ε /∈ Fin.

In fact, including ε in Fin corresponds to observe internal idle steps as
√

.
Next theorem proves that abstract semantics is compositional. This result is

fundamental to compute the abstract semantics of large complex systems from
the abstract semantics of their components. It extends in a non-trivial way an
analogous result for Fusion Calculus [18]: the interesting point is that it holds
for PRISMA over any SAM.

Theorem 1. Hyperbisimilarity ≈S is a congruence for any SAM S w.r.t. all
the operators in PRISMA.

Proof (Sketch). For each unary (resp. binary) operator op, we have to prove that
for each SAM S and for each P1, P2, Q1, Q2 processes, P1 ≈S Q1 and P2 ≈S Q2
implies op(P1)≈S op(Q1) (resp. op(P1, P2)≈S op(Q1, Q2)). The proof is by rule
induction on the derivation of the transition of op(P1) (resp. op(P1, P2)), and each
step requires a coinductive proof. However, rule induction is needed just for repli-
cation, while in the other cases it is enough to consider each operator in isolation.

PRISMA: A Mobile Calculus with Parametric Synchronization 143

We show the proofs for prefix, parallel composition and replication as exam-
ples. The other cases are similar. We will not consider transitions with labels ε
and ¬x since they can always be trivially simulated.

Case prefix): We have to prove that for each SAM S, each prefix xa�y and each
pair of processes P and Q such that P ≈S Q we also have xa�y.P ≈S xa�y.Q. Thus
we have to prove that, for each substitution σ, (xa�y.P)σ and (xa�y.Q)σ can per-
form the same transitions, going into hyperbisimilar states. The only transitions
to consider are the ones from rule 1, which have the same label as required and
lead to states Pσ and Qσ which are hyperbisimilar by hypothesis. In general,
we have not to consider explicitly the substitution σ, since this corresponds to
choosing P ′ = Pσ and Q′ = Qσ.

Case |): Suppose that P1 ≈S Q1 and P2 ≈S Q2. To show P1|P2 ≈S Q1|Q2 we have
three rules to check. Let us consider rule 2. Most of the conditions deal only with
the labels, thus they are verified for P1 and P2 iff they are verified for Q1 and
Q2. The only condition to check is (Y1 ∪Y2)∩ (fn(P1)∪ fn(P2)) = ∅. This can be
satisfied since names in Y1 ∪ Y2 are bound, thus they can be α-converted if nec-
essary. We have to prove that the two resulting processes, namely (�s)(P ′

1|P ′
2)σ

and (�s)(Q′
1|Q′

2)σ are hyperbisimilar. Thanks to α-conversion, we can suppose
that �s is the same in both the cases. By hypothesis P ′

1 ≈S Q′
1 and P ′

2 ≈S Q′
2.

By coinductive hypothesis, P ′
1|P ′

2 ≈S Q′
1|Q′

2. Thanks to the closure under substi-
tutions of hyperbisimilarity (P ′

1|P ′
2)σ ≈S(Q′

1|Q′
2)σ. Finally, using closure under

restriction contexts, (�s)(P ′
1|P ′

2)σ ≈S(�s)(Q′
1|Q′

2)σ. The cases for rules 5 and 9 are
simpler than the one just shown.

Case !): We have to prove that if P ≈S Q, then !P ≈S !Q. We have to use rule
induction for that case. If !P λ−→ P ′, then we also have P |!P λ−→ P ′, which is a
premise. By inductive hypothesis on the context •|!•, Q|!Q λ−→ Q′ with Q′ ≈S P ′.
Since also !Q has the same transition, the thesis follows. ��

4 A Case Study: Fusion Calculus

Let L = {inn|n ∈ N} with ar(inn) = n. We will show that PRISMA over
MilnerL is essentially Fusion Calculus [18] (as expected), and we suggest a new
channel-located semantics for it. We consider the subset of Fusion Calculus whose
processes are defined by:

P : : = 0 | u�x.P | u�x.P | P1|P2 | P1 + P2 | (u)P | !P

We do not allow fusion prefixes, but {�x = �y}.P can be encoded as (z)(z�x.P |z�y.0)
for z /∈ fn(P). We denote with ≡ the structural congruence on Fusion processes
and with ≈f Fusion hyperbisimilarity. We refer to [18] for full details on Fusion
Calculus and on its semantics.

We define the uniform encoding function �−� from Fusion processes into
PRISMA processes as the homomorphic extension to the whole calculus of
�u�x.P � = u in|�x| �x.�P � and �u�x.P � = u out|�x| �x.�P � where inn and outn = inn

144 R. Bruni and I. Lanese

are complementary actions. The mapping can be extended to communication
labels by defining �(�y)u�x� = (Set(�y))u in|�x| �x, id and similarly for outputs. The
translation loses the order of extruded names, but this is unimportant, since in
Fusion all different orderings can be obtained thanks to structural congruence.

The following theorem shows the relationship between the behaviors of Fusion
processes and of their translations into PRISMA.

Theorem 2. Let P be a Fusion process. P
α−→ P ′ iff:

1. α is a communication action, �P �
�α�−−→ �P1� and P1 ≡ P ′ or;

2. α is a fusion action, �P �
λ−→ �P1π� and P1π ≡ P ′π where λ can be either

(
√

, π) or (xτ〈〉, π) for some x ∈ fn(�P �) and where π is a mgu of α.

Proof (Sketch). The proof is by structural induction on Fusion processes, and has
a case for each operator. One must prove that Fusion transitions correspond to
PRISMA transitions of the two forms above (but PRISMA can have transitions
with labels ε and ¬x too, since these ones have no Fusion correspondence).

Notably, Fusion structural congruence can be simulated since translations of
structural congruent processes are hyperbisimilar (see lemmas 1 and 2).

As far as parallel composition is concerned, Fusion synchronization is simu-
lated by rule 2 using synchronization (a, a, (τ, MP0,0, EQar(a))). Asynchronous
execution of Fusion actions can be simulated instead using synchronization
(a, ε, (a, MPar(a),0, EQ0)). Finally fusion propagation can be simulated by rule 9.

For restriction operator different rules have to be chosen according to the kind
of actions: rule 6 to deal with actions on other channels, rule 7 for extrusions,
rule 8 to move from the representation of fusions as xτ〈〉, π to (

√
, π) (note in

fact that τ ∈ Fin) and 10 if the label is already in this form.
The proofs for other operators are similar. Likewise, PRISMA rules can be

simulated by Fusion rules for labels which are translations of Fusion labels. ��
In PRISMA each process can always do idle steps to itself, with labels of the
form xε〈〉 or ¬x, which have no Fusion correspondence. In particular, the second
kind of labels allows to identify the active names of a process.

Corollary 1. �P � ≈MilnerL �P ′� ⇒ P ≈f P ′.

The main difference between Fusion Calculus and PRISMA over MilnerL is
that in our more general form the τ is a normal action and thus it is located.
The corresponding semantics can be defined also for Fusion Calculus, by adding
located fusions xφ to the set of transition labels. Rules can be updated to take
care of these labels.

The corresponding hyperbisimilarity is in general finer than the standard one,
as the following examples illustrate (the examples are written in the Fusion Cal-
culus syntax, but one can use the translation �−� to have them in the PRISMA
setting).

Example 7. One can easily find two processes that are bisimilar with the stan-
dard (non-located) semantics, but not with the PRISMA one, e.g.:

x | x ≈f (y)(x + y) | (x + y)

PRISMA: A Mobile Calculus with Parametric Synchronization 145

The right process can perform unlocated actions
√

by making y and y react,
while the left one cannot. A similar example can be written using replication:

x | !x.x ≈f (y)y | y | x | !x.x

(In both the examples the two members have the same set of active names.)

We think that the located semantics for τ can be useful, since, for accounting
or performance reasons, synchronizations performed on different free channels
may not be equivalent. Suppose for instance that channel x is provided by some
company while channel y is local and owned by the user: a process performing
a synchronization on y is cheaper than a process performing the same synchro-
nization using x. Local channels are instead all equivalent, since any interaction,
including traffic check (see Example 8), must happen inside the scope of the
channel. For a more detailed description of a semantics of this kind see [11].

5 A Category of SAMs

We want to analyze now how different SAMs can be combined and interact, in
order to allow interoperability among calculi based on different synchronization
primitives. We use basic tools from category theory [15] to this end.

SAs form a category SA [19] whose objects are SAs and whose morphisms
are functions h : ActA → ActB such that h(εA) = εB and (a, b, c) ∈ ASA ⇒
(h(a), h(b), h(c)) ∈ ASB. The morphism h is called synchronous (strict using
Winskel’s terminology) if h(a) = εB ⇔ a = εA. SAs with synchronous morphisms
form the subcategory sSA of SA. We want to extend these definitions to SAMs.

Definition 8 (Morphism between action signatures)
Let AA = (ActA, arA, εA) and AB = (ActB , arB, εB) be action signatures. An
asynchronous morphism H : AA → AB is a function h : ActA → ActB such that
h(εA) = εB, together with a family of functions ha : ar(h(a)) → ar(a) indexed by
actions. Synchronous morphisms additionally require that h(a) = εB ⇔ a = εA.

Each component of identity morphisms is an identity. We define morphism com-
position as (h, {ha}a∈ActA); (k, {kb}b∈ActB) = (k ◦ h, {ha ◦ kh(a)}a∈ActA). Note
that the functions {ha}a∈ActA and morphism H are in opposite directions.

Definition 9 (Morphism between SAMs)
Let (AA, F inA, ASA) and (AB, F inB, ASB) be two SAMs. A morphism H from
the first to the second is a morphism H : AA → AB between the corresponding
action signatures such that:

1. a ∈ FinA ⇒ h(a) ∈ FinB;
2. (a1, a2, (c, MobA,

.=A)) ∈ ASA ⇒ (h(a1), h(a2), (h(c), MobB,
.=B)) ∈ ASB

and
– if MobA(hc(n)) = inji(m) then ∃j, m′ such that MobB(n) = injj(m

′)
and injj(haj (m′)) .=A inji(m);

– inji(n) .=B injj(m) if and only if inji(hai(n)) .=A injj(haj (m)).

146 R. Bruni and I. Lanese

A SAM morphism is synchronous iff the corresponding morphism between
action signatures is synchronous.

Essentially actions are mapped to other actions implementing them, and a map-
ping between parameters (in the opposite direction) is provided. Morphisms can
remove parameters or add new synchronizations, but they must provide corre-
sponding elements for the existing ones, preserving their behavior (i.e., action
composition, computation of parameters and merges among them) on the re-
maining parameters.

Lemma 3. SAMs with asynchronous morphisms form the category ASYNC,
SAMs with synchronous morphisms form the subcategory SYNC of ASYNC.

Processes on a SAM S1 can be translated into processes on a SAM S2 according
to a morphism H : S1 → S2.

Definition 10. Given a morphism H = (h, {ha}a∈Act), we define the corre-
sponding translation of PRISMA processes as the homomorphic extension of the
prefix translation mapping xa�y to xh(a)�w where �w[i] = �y[ha(i)].

In general morphisms neither preserve nor reflect process behavior, but some
classes of them, such as isomorphisms, do.

Lemma 4. An isomorphism between SAMs can only rename actions, permute
their parameters, and change for each action synchronization triple the repre-
sentative chosen by Mob inside a .=-equivalence class.

Corollary 2. Let P and Q be two processes and H(P) and H(Q) be their
translations according to SAM isomorphism H : S1 → S2. Then P ≈S1 Q iff
H(P)≈S2 H(Q).

Products and coproducts exist and can be used to combine SAMs.

Lemma 5. Let ((Act1, ar1, ε1), F in1, AS1) and ((Act2, ar2, ε2), F in2, AS2) be
two SAMs. The product in ASYNC, which we call asynchronous product, has
the form ((Act⊗, ar⊗, ε⊗), F in⊗, AS⊗) where:

– Act⊗ = Act1 × Act2 with ar⊗((a, b)) = ar1(a) + ar2(b);
• without loss of generality, we can assume that for each (a1, a2), the first

ar(a1) parameters correspond to the ones of a1, and the other ones are
from a2;

– ε⊗ = (ε1, ε2);
– Fin⊗ = Fin1 × Fin2;
– AS⊗ = {((a1, a2), (b1, b2), ((c1, c2), Mob⊗,

.=⊗))| for each i ∈ {1, 2} there is
(ai, bi, (ci, Mobi,

.=i)) ∈ ASi};
• Mob⊗ and .=⊗ are defined as the union of the corresponding relations in

the component objects on the respective parameters.

The two projection maps are the obvious ones.

PRISMA: A Mobile Calculus with Parametric Synchronization 147

Proof (Sketch). If we consider just the part of morphisms that deals with actions,
then we have a product in the category of sets and functions, which is cartesian
product. If we fix an action and we consider its images, as far as parameters are
concerned we obtain a coproduct diagram in the category of finite sets and func-
tions, and this coproduct is the disjoint union. These diagrams can be extended
to diagrams in ASYNC by choosing the different elements as described in the
lemma. ��

Lemma 6. The product in SYNC, which we call synchronous product, is like
the asynchronous one, but it has no actions of the form (aA, εB) and (εA, bB)
except (εA, εB).

Proof (Sketch). The proof is an easy modification of the one above. ��

Lemma 7. Let ((Act1, ar1, ε1), F in1, AS1) and ((Act2, ar2, ε2), F in2, AS2) be
two SAMs. The coproduct in ASYNC coincides with that in SYNC and it has
the form ((Act+, ar+, ε+), F in+, AS+) where:

– Act+ = ((Act1 \ {ε1}) � (Act2 \ {ε2}) ∪ {ε+}) with ar+(inji(a)) = ari(a);
– a ∈ Fini ⇒ inji(a) ∈ Fin+, ε+ ∈ Fin+ iff ∃i ∈ {1, 2}.εi ∈ Fini;
– (a, b, (c, Mob,

.=)) ∈ ASi ⇒ (inj+i(a), inj+i(b), (inj+i(c), Mob,
.=)) ∈ AS+

where inj+i(x) = inji(x) for each x �= εi, inj+i(εi) = ε+.

The two injection maps are the obvious ones.

Proof (Sketch). Here we have as underlying diagram a coproduct diagram in the
category of pointed sets and point-preserving functions (where ε is the point).
The coproduct is the disjoint union with merged points. This diagram can be
extended to diagrams in both ASYNC and SYNC by choosing the different
elements as described in the lemma. ��

We provide now some examples on how to exploit these constructions. Products
have pairs of actions with one element for each of the component SAMs as
actions, with the union of parameters. For instance, the asynchronous product
of two Milner SAMs is a message passing communication where at most two
communications can be performed at each step. Also, the synchronous product
of HoareL1 and HoareL2 is HoareL1×L2 . Coproduct allows to merge two SAMs in
a unique one preserving the behavior of each action, as proved by the following
lemma.

Lemma 8. Let P , Q be processes and H(P), H(Q) be their translations accord-
ing to SAM injection H : S1 → S1 + S2. Then P ≈S1 Q iff H(P)≈S1+S2 H(Q).

For instance, the SAM used in Example 6 is a coproduct of two SAMs,
one isomorphic to Milner{in} and the other to Bdc{inb}. The coproduct of
Milner{ini|i∈254} and Bdc{in255} can be used to model normal TCP/IP pro-
tocol, where address 255 is used for broadcast. Clearly this is just an intuition,
since far more refined techniques are needed to model TCP/IP in full details.

148 R. Bruni and I. Lanese

We conclude by presenting some interesting applications of our framework.
Notice that in the examples the modeling effort is required only to choose a suit-
able SAM to model the desired interaction. After that, the primitives available
in the model are in strict correspondence with the desired ones.

Example 8 (Introducing accounting on synchronization). Take the SAM account
with actions {ε, c} of arity 0 with Fin = {c} and where (c, ε, (c, Mob0,0,

.=0)) is
the only non trivial synchronization. The asynchronous product of account with
any SAM S allows a controller process Pc to count the number of synchroniza-
tions performed by a process P . Not accounted actions can be added via a co-
product with another SAM. Let P be a process without restrictions and let x
be one of its free names. Let H be the inclusion morphism mapping each ac-
tion a from S to (a, ε). Suppose that S contains an action $ of arity 0. Then
(x)(H(P)|!x(ε, c)〈〉.y($, c)〈〉.0) with the product synchronization behaves as (x)P
(up to translation of actions) with the synchronization specified by S, but it sends
a message ($, c) on channel y for each synchronization performed by P on channel
x. In fact, synchronization with (ε, c) is required to get a final action on x.

Example 9 (Using Fusion in a priority scenario). Consider an infrastructure
built for priority communication as specified in Example 4. Suppose that one
wants to run a Fusion process PF in that framework. Suppose for simplicity
that PF uses just unary prefixes. We will show how PF can be made to interact
with the other processes (although, clearly, it will not be able to fully exploit
the priority mechanism). The translation from Fusion to PRISMA can be used
to have a corresponding PRISMA process PM on the SAM Milner{in1}. In the
category ASYNC there is a morphism Hn : Milner{in1} → Pri that maps in1
to in, out1 to (out, n) and τ to (out+, n) for any statically chosen priority n.
The corresponding translation allows to automatically produce a priority process
PP = Hn(PM). The process essentially has all the outputs at the fixed priority
n, and it inputs the message with the highest priority as specified by the priority
synchronization. Notice that to have priority communication with many different
actions we can just extend the priority SAM (by considering the coproduct with
other copies of itself with different actions) and then apply the same procedure.

6 Conclusion

We have presented PRISMA, a SAM-based process calculus with parametric
communication patterns. This helps the modeling phase, when the desired syn-
chronization policy can be specified directly instead of being implemented using
“low-level” primitives. Different domain-specific SAMs can provide the right level
of abstraction for prototyping and analysis. We have also shown that simple cate-
gorical tools allow to compare and compose SAMs. Furthermore, interoperability
analysis can be easily performed, since different SAMs can be embedded in the
same framework using the coproduct construction and related using morphisms.
We have defined an observational semantics for PRISMA which is a congruence
w.r.t. all the operators in the language, thus allowing compositional analysis of
system behavior. Note that the congruence result holds for any SAM.

PRISMA: A Mobile Calculus with Parametric Synchronization 149

As future work, we want to test our model on some case studies taken from real
distributed protocols. On a more theoretical side, we want to exploit PRISMA
to compare processes based on different synchronization models. Furthermore,
we want to see how other existing calculi can be related to PRISMA, starting
from bπ-calculus [7].

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proc. of POPL’01, pp. 104–115. ACM Press, New York (2001)

2. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press,
Cambridge (1990)

3. Boreale, M., Buscemi, M.G., Montanari, U.: D-fusion: A distinctive fusion calcu-
lus. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 296–310. Springer,
Heidelberg (2004)

4. Dal Zilio, S.: Mobile processes: A commented bibliography. In: MOVEP 2000.
LNCS, vol. 2067, pp. 206–222. Springer, Heidelberg (2000)

5. Degano, P., Montanari, U.: A model for distributed systems based on graph rewrit-
ing. Journal of the ACM 34(2), 411–449 (1987)

6. Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communi-
cations. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268.
Springer, Heidelberg (1999)

7. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
Proc. of IPDPS’01, IEEE Computer Society, Los Alamitos (2001)

8. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the Join
calculus. In: Proc. of POPL’96, pp. 372–385. ACM Press, New York (1996)

9. Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mo-
bility. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
121–136. Springer, Heidelberg (2001)

10. Hoare, C.A.R.: A model for communicating sequential processes. In: On the Con-
struction of Programs, Cambridge University Press, Cambridge (1980)

11. Lanese, I.: Concurrent and located synchronizations in π-calculus. In: Proc. of
SOFSEM’07, LNCS (to appear)

12. Lanese, I.: Synchronization strategies for global computing models. PhD thesis,
Computer Science Department, University of Pisa, Pisa, Italy (2006)

13. Lanese, I., Montanari, U.: Synchronization algebras with mobility for graph trans-
formations. In: Proc. of FGUC’04, ENTCS 138, pp. 43–60. Elsevier Science, North-
Holland (2004)

14. Lanese, I., Tuosto, E.: Synchronized hyperedge replacement for heterogeneous
systems. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS,
vol. 3454, pp. 220–235. Springer, Heidelberg (2005)

15. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

16. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

17. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II Inform.
and Comput. 100(1) 1–40, 41–77 (1992)

18. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile
processes. In: Proc. of LICS ’98, pp. 176–185. IEEE Computer Society Press, Los
Alamitos (1998)

19. Winskel, G.: Synchronization trees. Theoret. Comput. Sci. 34, 33–82 (1984)

		Introduction

		Synchronization Algebra with Mobility (SAM)

		The PRISMA Calculus

		A Case Study: Fusion Calculus

		A Category of SAMs

		Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

