Concurrent and located synchronizations in
w-calculus*®

Ivan Lanese

Computer Science Department, University of Bologna, Italy
lanese@cs.unibo.it

Abstract. We present two novel semantics for m-calculus. The first al-
lows one to observe on which channel a synchronization is performed,
while the second allows concurrent actions, provided that they do not
compete for resources. We present both a reduction and a labeled seman-
tics, and show that they induce the same behavioral equivalence. As our
main result we show that bisimilarity is a congruence for the concurrent
semantics. This important property fails for the standard semantics.

1 Introduction

Recent years have seen a strong effort in the field of process calculi, trying to
find the best suited primitives and tools for describing different properties of
concurrent interacting systems. One of the most successful among these calculi
is the m-calculus [7], which allows one to model mobility, which is an interesting
feature of modern systems, in a natural way. Different extensions have been
considered to describe, for instance, concurrency aspects and locations [10, 8,13,
3.

Concurrency is usually obtained via mappings to models which are equipped
with concepts of causality and independence, such as graph transformation sys-
tems [8], Petri nets [3] or event structures [13]. This allows one to reason about
concurrency issues, but this makes harder or even prevents the use of standard
process calculi tools based on labeled transition systems (LTSs). We examine
which concurrency aspects can be modeled in process calculi using a standard
LTS. Clearly, labels of this LTS will be richer than standard labels. In particular,
we allow the execution of many actions inside the same transition, and the label
will contain all of them. While some actions do not interfere with each other,
others may compete for resources. In real concurrent systems, in fact, actions
usually require exclusive access to the communication medium. As a very simple
example, you cannot telephone if the line is busy: you need to use another line.
This is modeled in m-calculus by requiring concurrent actions to be performed
on different channels. This can be done easily for inputs and outputs, but not
for synchronizations. Notice, in fact, that in the standard 7-calculus semantics,
the label of any complete synchronization is 7, and this does not contain any in-
formation on the used channel. This information is necessary for our semantics.

* Research supported by the Project FET-GC II IST 16004 SENSORIA.

2 Ivan Lanese

Thus, to have a gradual presentation, first we analyze the effects of adding the
location of the synchronization to the label in the standard interleaving scenario,
and then we move to the concurrent one. The interleaving case is a necessary
step, but it may be useful also by itself. In fact, different channels may not be
equivalent, for instance since they may be under different accounting policies.

We analyze the properties of the interleaving and the concurrent semantics
both at the level of LTS and of the induced behavioral equivalence. In particular,
in both the cases we consider a reduction and a labeled semantics and we show
that they induce the same bisimilarity relation. We concentrate on the strong
semantics, and give some insights on how the results can be extended to the weak
case. An important property of the concurrent semantics is compositionality: the
induced bisimilarity is a congruence w.r.t. the operators of process composition,
while this is not the case for the standard semantics. This property allows one
to compute the behavior of large complex systems from the behavior of their
components, making analysis techniques scalable.

Structure of the paper In Section 2 we recall the standard (early) semantics
of m-calculus. Section 3 introduces locations in the interleaving setting, while
Section 4 moves to the concurrent one. Section 5 describes some comparisons
with similar approaches, while Section 6 outlines the weak semantics. Finally,
Section 7 presents some conclusions and traces for future work. Main proofs are
in Appendix A.

2 Background

In this section we present the syntax and the standard (early) semantics of
m-calculus (for simplicity we consider only the monadic w-calculus, but the ex-
tension to the polyadic case is straightforward). See, e.g., [12] for a more detailed
presentation.

Processes, in m-calculus, communicate by exchanging channel names, using
names themselves as communication medium. Therefore we assume a countable
set of channel names ranged over by a,b, z,....

Definition 1 (Syntax).
P::=ab.P, | a(x).Pl | P1|P2 | P+ P | va Py |'P1 | 0

In the above definition ab. P; is a process that outputs the name b on channel
a, while a(z).P; accepts an input on channel a, and, after receiving b, it behaves
as Pi{b/z}. Both @b and a(z) are called prefixes. Also, P;|Ps is the parallel
composition of P; and P, P, + P» the process that can behave as P; or as Ps,
va P is like process P, but the scope of channel a has been restricted to P,
1P, stands for an unbounded number of copies of P; executing in parallel and 0
is the idle process. We restrict our attention to prefix-guarded processes, i.e., in
P, + P; both P, and P> must be either prefixed processes or sums (or 0).

Concurrent and located synchronizations in m-calculus 3

react-S (a(z).P + M)|(@b.Q + N) —s P{b/z}|Q

arg _LsP o PosP
P P|Q —s P'|Q va P —s va P’
coner-S P15P2—)5P2’EP1’
& Py =5 P

Table 1. Standard reduction semantics.

Name z is bound in a(z).P; and name a is bound in va P;. The functions
fn(P), bn(P) and n(P) computing the sets of free names, bound names and all
the names in process P respectively are defined as usual. We consider processes
up to a-conversion of bound names, i.e., we always suppose that all the bound
names are different and different from the free names. We will write a instead
of a(z) and @ instead of @b if x and b are not important, and if 7 is a prefix we
write 7 for 7.0.

Note that the syntax does not include a prefix 7.P, which performs an internal
action before behaving as P, but this can be straightforwardly simulated by
va (a|a.P) for a ¢ fn(P).

We first describe the allowed transitions, then the behavioral equivalence.
As far as transitions are concerned we consider both the reduction semantics,
analyzing the behavior of the system in isolation, and the labeled semantics,
analyzing its interactions with the environment. In the following sections we will
show how these semantics must be changed to handle located and concurrent
synchronizations.

To simplify the presentation of the reduction semantics we exploit a structural
congruence equating processes that we never want to distinguish.

Definition 2. The structural congruence = is the least congruence satisfying
the monoid laws for parallel composition and summation (with 0 as unit), the
replication law P|!P =P and the laws for restriction vavb P =vbva P, va0=0
and VG(P]_|P2) EP1|I/aP2 zfa ¢ fn(P]_)

Definition 3 (Reduction semantics). The reduction semantics of 7-calculus
is the set of unlabeled transitions generated by the rules in Table 1.

The subscript S (for standard) is used to distinguish the standard semantics
from the ones we will present later. Also, we will use uppercase letters for reduc-
tion semantics and lowercase ones for labeled semantics, thus standard labeled
semantics is identified by subscript s.

Definition 4 (Labeled semantics). The labeled semantics is the LTS defined
in Table 2. We have as labels input ab, output ab, bound output a(b) (where b is
bound) and internal action 7. We use a as metavariable to denote labels.

The subject subj(c) of an action « is a if the action is ab, @b or a(b), while
subj(7) is undefined. The object obj(a) of an action « is b if the action is ab, ab
or a(b), while obj(7) is undefined.

4 Ivan Lanese

_ @b
out-s ab.P —; P inp-s a(z).P ab, P{b/z}

. PS5, P R
e E parst PP bu(@ni(@) =1
= - >
b N Q ab P|Q —s PllQ
. PSP Q5 Q ab a)
comes T « P s P s ! fn(P
P|Q =, P'|Q close-s — QT rs @ b ¢ in(P)
o P|Q —, vb(P'|Q")
ress L e P’ a ¢ n(a) o
vaP %5 va P open-s P =, P_(b) a#b
P|\P % P vb P a_)s P!
rep-s —————
P —, P’

Table 2. Standard labeled semantics (rules with * have also a symmetric counterpart).

We now define the behavioral equivalence for our processes. The same defini-
tion will be applied also to the LTSs that we will define in the following sections.
Subscripts will always clarify which underlying LTS is used.

Definition 5 (Bisimilarity). Let ¢ be a LTS. A bisimulation is a relation R
such that PR @ implies:

— P %, P! with bn(a) N n(Q) = 0 implies Q =; Q' AP'RQ’,
— vice versa.

A full bisimulation is o substitution closed bisimulation. We denote with =~
(resp. ~¢) the mazimal bisimulation (resp. full bisimulation), called bisimilarity
(resp. full bisimilarity).

3 Observing locations in the interleaving setting

In this section we present a semantics for w-calculus based on the idea that syn-
chronizations performed on different channels must be distinguished. We present
both a reduction semantics and a labeled semantics, and show that they produce
the same behavioral equivalence. Those semantics will be identified by subscripts
L and [respectively.

The information about localities must be added to labels, thus there are
(simple) labels (denoted by S) also in the reduction semantics. However, when
speaking about labeled semantics, we refer to the other style of semantics. Re-
ductions are labeled by sets of channel names containing the free names on which
a synchronization is performed. Thus we may have a singleton if the reduction is
performed by synchronizing on a free name, and the empty set otherwise. Syn-
chronization on local channels cannot be observed, since the restriction operator
completely hides the channel. This also follows the intuition that any effect of the
channel usage, included for instance its accounting, must be performed before
restricting it. See [2] for an example on introducing accounting on a channel.

Concurrent and located synchronizations in m-calculus 5

react-L (a(z).P + M)|@b.Q + N) 5, P{b/z}|Q
P i>L P’ P i>L P
par-L — res-L e
P|Q =1 P'|Q va P —= va P!
P=P, 5. Pi=P]
congr-L

P 2. Pl
Table 3. Located interleaving reduction semantics.

Definition 6 (Located interleaving reduction semantics). The located
interleaving reduction semantics of w-calculus is the LTS generated by the rules
in Table 3.

Note that this semantics strictly follows the structure of standard reduction
semantics (Table 1). Actually, the only difference is the introduction of labels.

We now present the labeled semantics, by extending the one in Table 2. Tech-
nically, the main difference is that we have different labels denoting a complete
synchronization instead of just 7. More precisely, we denote a synchronization
at a free name a with a7, while 7 is used to denote a synchronization on a
bound channel. The located semantics is obtained by substituting rules com-s
and close-s (and their symmetric) with:

PP Q3

com-1 o
PlQ = P'|Q

PP Q™ 0 b¢m(P)

close-1 o
PIQ = vb (P'|Q)

and adding the new rule tau-1:

P, P

tau-l —————
va P —; va P’

We extend the definition of subj(a) and obj(a) by defining subj(ar) = a,
while obj(ar) is undefined.

The next lemma characterizes the correspondence between standard labeled
semantics and located labeled semantics.

Lemma 1 (Operational correspondence). P %; P' iff:

— either a € {ab,ab,a(b), 7} and P 5, P,
— or a = ar for some a € fn(P) and P 5, P'.

Note that the states of the located and of the standard LTS coincide, but
located labels carry more information. In particular, there are different labels
corresponding to the unique label 7 of the standard semantics. Thus located
(full) bisimilarity implies the standard one.

6 Ivan Lanese

Corollary 1. P~; P' = P~;P' and P~ P' = P~,P'.
The converse of the previous corollary does not hold.

Counterexample 1 (Located vs standard (full) bisimilarity)
vb (@ + b)|(a + b) ~;ala but not vb (a + b)|(a + b) ~; dla.

The only difference between the two processes is that the left one can also
perform a 7 action on the hidden channel b. In the standard semantics this is
indistinguishable w.r.t. the synchronization on a, while they are different under
the located semantics. The same counterexample holds also for full bisimilarity.

We now analyze the relationships between the reduction and the labeled
semantics. First of all we show that the reduction semantics fully captures all
the transitions of the labeled semantics that do not require interactions with the
environment. We denote with S7 the label a7 if S = {a} and 7 if S = 0.

Theorem 1. P in, P iff P i); P" with P"=P'.

More interestingly, two processes are bisimilar in any context under the re-
duction semantics iff they are full bisimilar according to the labeled one.

Definition 7 (Context). A context C[o] is obtained when a ® replaces an oc-
currence of 0 in a process. We denote as C[P] the process obtained by replacing
o with P in C[e], if it is well-formed.

Theorem 2. P ~; Q iff C[P]~L C[Q] for each context C[s].

This result proves the complete correspondence between the two semantics.

4 Concurrent synchronizations

We want to extend the located semantics presented in the previous section to
allow the contemporary execution of many actions, provided that they are per-
formed on different channels. This is justified by the observation that in a system
with real parallelism, such as distributed systems, different components can inter-
act at the same time, provided that they do not compete for resources. However,
the system is not fully synchronous, thus actions can occur also in isolation,
or, in other terms, some components may stay idle during a transition. More
parallel scenarios, where the communication medium can be shared by different
actions, can be studied, and will be subject of future work. We use subscripts C'
and c to identify the reduction and the labeled semantics respectively. We start
by presenting the reduction semantics.

Definition 8 (Concurrent located reduction semantics). The concurrent
located reduction semantics of m-calculus is the LTS generated by the rules in
Table 3 and by the rule:

Pi)cpl Q&)cQ' S1NSy=10

P|Q MC P’|Q’

comp-C

Concurrent and located synchronizations in m-calculus 7

Notice that here labels (that can now contain more than one name) are used
to check that concurrent reductions use different resources. The added rule allows

in fact parallel processes to concurrently reduce, by synchronizing on different

channels. For instance, ab|a(z).Zc|¢|c Mc be.

The following theorem shows the relation between the concurrent and the
interleaving semantics.

Theorem 3. P i)c' P' implies P = P, in; P i>L S—">L P, 1 = P" with
Uie{l,...,n} Si=S.

We now consider the labeled semantics. Technically, labels are essentially
multisets of located labels. Indeed, they are exactly that when there are no

restricted names. Restricted names appear in the label when they are extruded,

. _, a(b
such as b in vbab &)l 0. However many outputs may extrude the same name

concurrently. Thus the set of extruded names must be attached to the whole
label and not to single outputs.

Thus we use labels of the form (Y)act where Y is the set of extruded names
and act is a multiset of basic actions « of the form ab, ab, ar or 7. We use u as
metavariable for those labels, and we write o € pu if either a has the form ab, ab
(with b ¢ V'), ar or T and it belongs to act, or if @« = @(b), ab € act and b € Y. We
use [y, @, ..., a,] to denote a multiset containing the elements a;, as, ..., ay,,
and we use the operators U, C, \, ...on multisets with the obvious meaning. We
extend the notation to deal with labels, where the operators are applied to both
the multiset part and the set of extruded names (but, if a name does not occur
in the multiset, then it is removed also from the set of extruded names). We
call sequential label any label whose multiset part is a singleton, and sequential
transition any transition with a sequential label.

We define subj(u) = U,¢, subj(a) and similarly obj(x) = U, obj(@). Also
tau(p) is the largest submultiset of u containing only actions 7 (non located).

A label p = (Y)act is well-formed if [a1, az] C p implies subj(a;) # subj(as)
(if both the actions have a subject) and y € Y implies y € obj(u) and y ¢
subj(u). We denote as act,(u) the unique action a € p such that subj(a) = a,
if it exists.

In order to define the semantics we introduce two auxiliary operators to
deal with labels: @ and \, corresponding intuitively to label composition and
label restriction. The label py @ po is defined only if, whenever z € subj(u1)
and z € subj(us), act,(u1) and act,(u2) are an input and an output (possibly
bound) with equal subjects and objects.

In that case p1 @ o = (Y)act with:

act = tau(p1) U tau(us2)U
U { [aT] if @ € subj(uy) Nsubj{us)

ta (i ifa € bj i bi _i 7' = 1,2
aESUbj(p/l)Usubj(pg) ac (/'I/)1 a su .]()u’)\Su .](M3) (3 { }

Also, Y = (bn(u1) Ubn(us2)) Nobj(act).

8 Ivan Lanese

out-c ab.P E)C P
[ab]

P p inp-c a(z).P —. P{b/z}
* c
sum-¢* ———
P+Q%4. P paret F S P' bn(p) Nfn(Q) =0
. PP QM Q @ P|IQ 5. P'|Q

com-c

“1@ua Pt p &

P|Q 22—, vZ P|Q res-c e
p|!p_) P uaP—>C vA P’
rep-¢c —————
P =, P’

where & requires bn(u1) Nf(Q) = bn(u2) Nfn(P) = bo(ui) Nbn(u2) = @ and defines
= (bn(p1) Ubn(p2)) \ bn(p1 Qpuz) and @' defines A = {a} if a ¢ obj(u) and A =0
otherwise.

Table 4. Concurrent located labeled semantics (rules with * have also a symmetric
counterpart).

Similarly, u \ a is defined only if all the occurrences of a in u (if any) are as
object of a free output or as subject of ar. In the last case a7 is replaced by 7.
Other actions are preserved. If a € obj(u), then a is added to Y, otherwise Y is
unchanged.

We use vA as shortcut for vajvas . ..va, where A = {a,az,...,a,}.

Definition 9 (Concurrent located labeled semantics). The concurrent lo-
cated labeled semantics of w-calculus is the LTS defined in Table 4.

The following theorem shows that the concurrent LTS includes the inter-
leaving one. Moreover, when moving to the concurrent framework, no sequential
transitions are added.

Theorem 4. P 5, P' iff

— a#a(b) andPM)CP"

— a=1ua(b) and P —— (®)fat] . P

As an obvious consequence the concurrent bisimilarity implies the located
(and the standard) one.

Corollary 2. P~.,P' = P~ P' = P~ ,P'.

The concurrent semantics is indeed strictly finer as shown by the following
counterexample.

Counterexample 2 (Concurrent vs located bisimilarity)
alb~; a.b+ b.a but not alb~.a.b+ b.a.

The two processes are bisimilar under the located semantics, but not under

a,]

the concurrent one where a|b ¢ 0, a transition that cannot be matched by

Concurrent and located synchronizations in m-calculus 9

a.b+ b.a. This shows that the concurrent semantics highlights the degree of par-
allelism of a process, distinguishing between concurrency and nondeterminism.
Notice that this is the same counterexample used to prove that = is not a con-
gruence, since the two terms have different transitions when placed in a context
that merges a and b: the first one can perform a 7 action while the second one
cannot. This counterexample essentially exploits the fact that the expansion law
is no longer valid. However some instances of the expansion law hold, for instance
when actions are on the same channel: az|ay ~. az.ay + ay.az. Also, the ability
to perform actions in parallel includes the ability to perform the same actions
sequentially, thus c.(a|b) =, c.(a|b) + c.a.b.

The above counterexample suggests that bisimilarity may be a congruence.
This is indeed the case, as proved by the following theorem.

Theorem 5. ~. is a congruence w.r.t. all the operators in the calculus and
w.r.t. substitutions.

While referring to the appendix for the whole proof, we want to highlight here
some important points. First of all this theorem suggests that observing concur-
rency aspects is important to have good compositionality properties. This hap-
pens also in some similar cases (see [5]). Interestingly, adding a smaller amount
of concurrency is enough to get this property, in fact it is enough to allow the
concurrent execution of one input and one output on different channels. This
alone would yield, however, a semantics that lacks, in our opinion, a clear intu-
itive meaning. One should also note that the theorem does not hold in presence
of matching.

Building the concurrent semantics on top of the located semantics is funda-
mental for the congruence result. In fact, consider a concurrent semantics with
only normal 7 actions. Then the two terms vb (a+b)|(@+b) and ala are bisimilar,
but when they are inserted into context a|e the first one can perform [a, 7] going
to 0 while the second one cannot. Notice that closure under substitutions implies
~e — NC'

We now show that a concurrent transition can always be decomposed in a
computation including only sequential transitions, thus generalizing Theorem 3.

Given a label p and a sequential label a we define the operation a; u only if
bn(u) Nn(a) = @ and the union of the two action parts is well-formed. In that
case a; i is computed by making the union both on the multisets of actions and
on the sets of extruded names.

Theorem 6. If P =% P’ then P %, P" &, P'.

The recursive application of the theorem allows one to decompose a con-
current transition in a sequential computation. Notice, in fact, that any non
sequential label can be written as «; u for suitable a and pu.

Results similar to those in Theorem 1 and in Theorem 2 can be proved
also for the concurrent scenario. However there is a little mismatch between
the labeled and the reduction semantics we have presented, which are the most
direct generalization of the interleaving ones. The labeled semantics distinguishes

10 Ivan Lanese

between [r] and [r,7], while in the reduction one they both correspond to §.
One can either add the missing information to the reduction labels, or remove
it from the labeled setting. We analyze here the second case, but the first one
is analogous. We use nc as subscript for this semantics (modifying the rules is
trivial: actually it is enough to modify the operator of label restriction).

We extend the notation ST, denoting by it the multiset containing one action
at for each a € S.

Theorem 7. P 2¢ P’ iff P 5, P" with P = P’
Theorem 8. P =, Q iff C[P]~¢ C[Q] for each context Cle] .

5 Related work

Many different semantics for m-calculus have been proposed in the literature,
focusing on different aspects. We present here a comparison with the ones more
related to our approach.

First of all, we take the inspiration for this work from a concurrent semantics
for Fusion Calculus [9] derived in [6] using a mapping from Fusion Calculus
into a graph transformation framework called SHR [4]. The intrinsic concurrent
nature of SHR and the fact that actions there are naturally located on nodes
make the main semantic aspects discussed in this paper emerge spontaneously.
The semantics presented in [6] however preserved many of the particularities
of SHR synchronization, such as the fact that extrusions are not observed, and
processes are always allowed to perform idle transitions to themselves. Because
of the first difference, processes vz ux and vz ux + uz were bisimilar, while they
are not even bisimilar with the standard semantics of 7-calculus. On the other
side, idle transitions allowed the observation of the free names of a process, thus
vz Tu and 0 were not bisimilar. Furthermore the semantics in [6] is derived via
a mapping from an LTS which is quite different w.r.t standard process calculi
LTSs, while our work presents a similar semantics in a direct and standard way,
allowing one to use standard process calculi techniques.

Some related semantics for 7-calculus are described below.

Net semantics [3]: this semantics is obtained via a mapping into Petri nets,
and is quite related to ours. The main differences are that actions can use
the same channel concurrently, thus a.a and ala are distinguished, but two
outputs cannot extrude a name at the same time, thus vy Ty.zZy + zy.Ty and
vy Ty|Zy are equivalent. Also, this semantics relies on the mapping into Petri
nets, thus it is not straightforward to adapt it to variants of the calculus.

Open bisimilarity [11]: open bisimilarity instantiates processes throughout
the bisimulation game, but it uses distinctions to keep track of which names
can never be merged. Open bisimilarity is less distinguishing than concurrent
bisimilarity. The inclusion follows easily from the closure under arbitrary
substitutions of concurrent bisimilarity. The inclusion is strict since a|b and
a.b + b.a are open bisimilar but not concurrent bisimilar. Notice that open
bisimilarity is a congruence, but it has no direct coinductive characterization.

Concurrent and located synchronizations in m-calculus 11

Causal bisimilarity [1]: causal bisimilarity traces which are the causal depen-
dencies among actions. This semantics is not comparable with the concurrent
semantics, since vb (a + b)|(@ + b) and a|a are causally bisimilar (there are
no dependencies) but not concurrent bisimilar (the first one has a 7 transi-
tion, while the second one has not). Conversely ala and a.a are concurrent
bisimilar but not causally bisimilar.

If we add located 7 actions to causal semantics we get a bisimilarity that is
more distinguishing than the concurrent one. The inclusion is obtained by
observing that if two actions are independent, then they can be executed
concurrently, thus from the interleaving transitions and the causal depen-
dencies one can compute the concurrent transitions. The inclusion is strict
since the two processes la and la.a are causally different (in the second one
there are causal dependencies between different occurrences of a, while in
the first one there are not), but concurrent bisimilar.

Similar statements can be made for the (mixed-order) concurrent semantics
in [8], which has a causal flavor.

Located bisimilarity [10]: in this version of located bisimilarity a location
is associated to each sequential process, thus actions performed by different
sequential processes are distinguished. This concept of localities is completely
different from ours, and even if it tracks sequential processes this bisimilarity
is not comparable with the concurrent one. In fact, vb a.b.c|e.b and vb a.ble.b.c
are concurrent bisimilar, but they are not located bisimilar since in the first
one c is executed in the same component of a while in the second one it is not.
On the other hand: vbve b|b|c|¢ and vbve bb.(c[¢) are located bisimilar since
7 actions do not exhibit locations, while they are not concurrent bisimilar
since in the first one the two 7 actions can be executed in parallel, while in
the second one they cannot.

6 Weak semantics

In this section we outline the main features of the weak bisimilarities based on
the labeled semantics we have introduced in this paper. Usually weak bisimilarity
(see [12] for the precise definition) abstracts from internal activities, i.e. from 7
actions. However in our setting we have two kinds of 7 actions: a7 performed on
free name a and 7 performed on a hidden name. While one must surely abstract
from the latter ones, abstracting also located synchronizations may lose too much
information. We call semiweak bisimilarity the one that abstracts only from 7
(or § in the reduction semantics), and weak the one that abstracts also from ar
(or all the labels in the reduction semantics). Semiweak bisimilarity is midway
between the strong and the weak semantics.

If we consider semiweak bisimilarity most of the results shown in the previous
sections are still valid. The only notable difference is that the semiweak semantics
is not image finite (i.e., a process may have an infinite number of one step
derivatives, even up to bisimilarity), but theorems 2 and 8 can be proved only for
processes that are image finite up to bisimilarity. However, the same hypothesis
is required to prove the corresponding property of the standard weak semantics.

12 Ivan Lanese

If we consider weak bisimilarity instead (based on the labeled semantics), first
of all the located and the standard bisimilarities collapse. The concurrent bisim-
ilarity is still strictly finer (Counterexample 2 is still valid) than the standard
one, but there is no simple relation with a reduction semantics. In fact, in the
reduction semantics labels should be completely abstracted away, thus one must
have some other way to observe process behavior. The usual approach of using
barbs [12], that is observing the capabilities to produce inputs or outputs on
some channels, is not sufficient. For instance, a.b+ b.a and a|b are barbed bisim-
ilar in the concurrent scenario (both of them can react when put in a context
containing either @ or b or both).

7 Conclusions and future work

We have presented two semantics for m-calculus, highlighting important infor-
mation about which channels are used by a synchronization and which actions
can be executed concurrently. We have analyzed the semantics both at the level
of LTS and of induced behavioral equivalence. As a main result we have shown
that bisimilarity is a congruence for the concurrent located semantics, and this
guarantees compositionality. Note that all the shown results hold also for CCS,
since mobility is not exploited in the used constructions.

As future work we plan to apply the same ideas to other calculi. In partic-
ular preliminary analysis show that similar results can be obtained for Fusion
Calculus [9], but more care is required to deal with fusions. Also, we want to
study the semantic effect of allowing concurrent actions on the same channel.
Preliminary results show that this has a strong impact, for instance the direct
generalization of Theorem 8 fails.

Acknowledgments The author would like to strongly acknowledge Davide
Sangiorgi for many useful discussions and comments and Ugo Montanari for
some early discussions.

References

1. M. Boreale and D. Sangiorgi. Some congruence properties of pi-calculus bisimilar-
ities. Theoret. Comput. Sci., 198(1-2):159-176, 1998.

2. R. Bruni and I. Lanese. PRISMA: A mobile calculus with parametric synchro-
nization. In Proc. of TGC’06, Lect. Notes in Comput. Sci. Springer, 2006. To
appear.

3. N. Busi and R. Gorrieri. A petri net semantics for pi-calculus. In Proc. of CON-
CUR’95, volume 962 of Lect. Notes in Comput. Sci., pages 145-159. Springer,
1995.

4. G. L. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via
graph synchronization with mobility. In Proc. of ICTCS 01, volume 2202 of Lect.
Notes in Comput. Sci., pages 1-16. Springer, 2001.

5. 1. Lanese. Synchronization Strategies for Global Computing Models. PhD thesis,
Computer Science Department, University of Pisa, Pisa, Italy, 2006.

Concurrent and located synchronizations in m-calculus 13

6. I. Lanese and U. Montanari. A graphical fusion calculus. In Proceedings of the
Workshop of the COMETA Project on Computational Metamodels, volume 104 of
Elect. Notes in Th. Comput. Sci., pages 199-215. Elsevier Science, 2004.

7. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.
Inform. and Comput., 100(1):1-40,41-77, 1992.

8. U. Montanari and M. Pistore. Concurrent semantics for the pi-calculus. In Proc.
of MFPS’95, volume 1 of Elect. Notes in Th. Comput. Sci. Elsevier Science, 1995.

9. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In Proc. of LICS’98, pages 176-185. IEEE Computer Society
Press, 1998.

10. D. Sangiorgi. Locality and interleaving semantics in calculi for mobile processes.
Theoret. Comput. Sci., 155(1):39-83, 1996.

11. D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Inf., 33(1):69-97,
1996.

12. D. Sangiorgi and D. Walker. Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

13. D. Varacca and N. Yoshida. Typed event structures and the pi-calculus. In Proc.
of MFPS’06. Elsevier Science, 2006. To appear.

A Proofs

Proof (of Theorem 1). By case analysis one can show that structural congruent
processes have the same transitions (leading to structural congruent processes),
thus for the forward implication one has just to show that for each reduction
rule a corresponding derivation can be written. The different cases are trivial.

The backward implication is a straightforward generalization of the corre-
spondence theorem between the standard reduction semantics and the standard
LTS (see [12], page 51).

Proof (of Theorem 2). Let us consider the forward implication. First of all one
can prove that ~; is context closed, i.e., if P ~; @ then C[P]~; C[Q]. The proof
is a straightforward generalization of the corresponding one for the standard
semantics (see, e.g., [12], page 68). Since P ~;) implies P =y, (), then the thesis
follows from context closure.

For the backward implication we have to show that if P and @ are not full
bisimilar, then we can build a context C[e] distinguishing them. We show how to
build CTe] in an inductive way. We consider the case of non bisimilar processes
first. Suppose that P = P', then either) has no such transition and the context
distinguishes them, or @ has a corresponding transition going to @' and C[P)]
and C[Q] reduce (in one or more steps) to C1[P'] and C;[Q’] respectively. Let a;
be the actions that can be performed by P (note that each process can perform
only a finite number of actions, and the resulting processes belong to a finite
number of equivalence classes up to structural congruence). Then the context
has the form (P,,.C; + -- -+ Py, .Cy)|e, and C[P] reduces to C;|P' after having
verified that action «; can be executed going to P’.

The proof is by case analysis on «;. In this analysis we use a7.P as a shortcut
for ala.P.

14 Ivan Lanese

Cases ab and @(b)) In these cases we define C[e] = a(z).er.((vz z.fn(P, Q) +
z.f7)|T.97.C;)|® where e, f and g are fresh and fn(P, Q) is a sequence of prefixes
including all the free names in P and @). The synchronization with ab or a(b) is
the only one allowing a chain of reductions with labels {a}, {e}, {b}, {f}, {9}
If b € fn(P, Q) then the action has the form @b, otherwise it has the form a(b).
We have put all the names in the context in order to be sure that fn(C[P]) =
fn(C[Q))- After the above described chain of reductions the process has the form
C;|P' as required.

Case ab) In this case the needed context is C' = a@b.et.C;|e, with e fresh.
Synchronization with ab is the only one allowing reductions with labels {a},
{e}. After that the process has the wanted form.

Case 7 or ar) In this case the context is simply C;, and the label of the
reduction individuates the form of the label.

Note that 7 or a7 actions performed by the process itself can never be mim-
icked by actions involving also the context or vice versa, since only the last
ones can immediately be followed by actions on names which are fresh from the
process point of view. Furthermore these fresh names are unique inside the con-
text, thus they allow one to exactly find out which part of the context has been
consumed.

Suppose now that the two processes are bisimilar but not full bisimilar. Then
there exists a substitution ¢ such that Po and Qo are not bisimilar. We can
suppose that o has the form {z/y} (if it is more complex then we can decompose
it into simpler substitutions and iterate the procedure). Let us consider the
context C[e] = ex|e(y).e for some fresh name e. C[P] reduces to P{z/y}, thus
if P and @ are not full bisimilar then C[P] and C[Q] are not bisimilar, and we
can apply the technique above.

Proof (of Theorem 8). The proof is by induction on the number of applications
of rule (comp-C). If it is never applied then the same derivation can be used also
in the interleaving setting. Let us consider the inductive case. Let us pick the last
application of the rule, deriving P|Q S1U%, pr |Q'. By using rule (par-L) instead
of (comp-C) we can build a transition with label S; going to P'|@. Similarly we
can derive a transition with label Sy from P’|Q to P’|Q’. These transitions can
replace the complex transition in the original derivation. The two transitions
resulting from the derivations built in this way are two steps of a computation
as required, and they both contain fewer applications of rule (comp-C), thus the
thesis follows by induction.

Proof (of Theorem /). The forward implication is by rule induction on the
derivation of the interleaving transition.

Rules (inp-1), (out-1), (sum-1), (par-1) and (rep-1)) Trivial.

Rule (com-1)) Rule (com-l) is simulated by rule (com-c), since [ab] Q[ab] =
[a7]. Furthermore Z = §.

Rule (close-1)) Again, we use rule (com-c). The only difference w.r.t. the
previous case is that now the second action has the form (b)[ab]. Since b ¢
obj([ar]) then b is removed from the set of extruded names and Z = {b}.

Concurrent and located synchronizations in m-calculus 15

Rule (res-1)) Rule (res-c) can be used here. Since a ¢ n(a) then [o] \ a is
defined and it coincides with [a]. Note that A = {a}.

Rule (open-1)) Rule (res-c) is used again. Here b is added to Y, thus A = 0.

Rule (tau-1)) Again rule (res-c) can be used. The thesis follows since [a7]\a =
[T].

The backward implication is by rule induction on the derivation of the con-
current transition, noting that there is no concurrent rule that can have a non
sequential label in the premises and a sequential label in the consequence, thus
concurrent derivations with non sequential labels cannot be extended to produce
sequential transitions.

Rules (inp-c), (out-c), (sum-c), (par-c) and (rep-c)) Trivial.

Rule (com-c)) If the two labels have different subjects or one is a 7 then
we get a non sequential label. Thus the two labels must be an input and an
output with the same subject. If the output is not bound then rule (com-1) can
be applied, otherwise rule (close-1) can be applied.

Rule (res-c)) If the bound name a does not occur in the label then rule (res-1)
can be used, if it is an object of a free output then rule (open-1) can be used,
otherwise it must be a subject of an action ar, thus rule (tau-1) can be used.

Proof (of Theorem 5). Before proving the main result we state two useful lemmas
dealing with substitutions. The first one analyzes the effect of a substitution on
the labeled transitions of a process, while the second one proves that concurrent
bisimilarity is closed under substitutions, thus proving the second part of the
thesis.

Lemma 2. Let o = {z/y}. If P m—ad>c P’ then:
— if at most one between x and y belongs to subj(act) then Po (Ya)—acwn Plo;
— if both x and y belong to subj(act) and act,((Y)act) and acty((Y)act) are one

input and one output (possibly bound) with the same subjects and the same
YI !
objects then Po ﬂ) P'c where act' is obtained from act by removing

the actions at x and y and adding 7, and Y' is Y if the removed output
was not bound and Y' \ {b} if b was the object of the bound output.

Furthermore all the transitions of Po are of the two forms above.

Proof. The proof is by induction on the length of the derivation of the transition
of P. In all the cases but the one for replication however structural induction is
enough.

Case P = 0) Trivial.

Case P = ab.P;) Trivial, since all the transitions fall in the first case.

Case P = a(x).P;) Similar to the previous case, just note that each name
can be chosen as b, and P;{b/z}o = Pio{bo/z} since z was bound in P;.

Case P = Py|P,) Let us consider the transitions of P;|P,. If a transition
is derived using rule (par-c) as the last rule, then P; (or P») has a transition
with the same label. By inductive hypothesis this transition (may) produce a

16 Ivan Lanese

transition for Pjo, which can be lift to a transition of (P;|P»)o using again rule
(par-c). Similarly, all the transitions of (P;|P2)o derived using rule (par-c) are
obtained in this way. If the last applied rule is (com-c) instead, two premises
have to be taken into account. When applying rule (com-c) to (Pi|P;)o, if o
merges two names on which actions are executed, the compatibility conditions
force them to be complementary, and, if so, a new synchronization is performed.
This is exactly the situation described by the second case in the statement of
the lemma. Again, all the transitions can be derived in this way.

Case P = P, + P,) Trivial, since the sum operator simply lifts the transitions
of its premises.

Case P = va P;) Note that since a is restricted inside Pj, the substitution
cannot affect it. Since the part of the label concerning the other names is just
lifted, then the thesis follows trivially.

Case P =!P;) Here induction on the length of the derivation must be used.
In fact, all the transitions of !Pyo are transitions of Pyo|!Pio. Thus they can be
computed from the transitions of Pyo and !P;o, which have a shorter derivation.
The proof is similar to the one for parallel composition.

Lemma 3. =~ is closed under substitutions.

Proof. We can prove the thesis just for a substitution ¢ = {z/y}, and then it
will hold in general. We will prove that {(Po,Qo)|P ~.Q} is a bisimulation.
Suppose that P =, Q. Then all the transitions of P are matched by transitions
of @ and vice versa. Since all the transitions of Po (and correspondingly Qo)
can be computed according to Lemma 2 then the thesis follows.

We can now go back to the main proof. We have just proved the closure
under substitutions. To prove the closure under contexts we have a case for each
operator. Each proof is by coinduction.

Input prefix) We show this case in details, while we will be less detailed
in the other cases, which are similar. We have to prove that P =~.(implies
a(z).P =~ a(z).Q. The only applicable rule is (inp-c), that produces in both the
cases the label [ab], leading respectively to P{b/z} and Q{b/z}. By hypothesis
P=.Q, and from Lemma 3 P{b/z} ~.Q{b/z}.

Output prefix, sum) Trivial.

Restriction) Notice that the computation of the label depends only on the
previous label, thus the result is the same in both the cases. If the restriction is
preserved also in the conclusion, then the coinductive hypothesis can be used to
conclude, otherwise the implication holds trivially.

Parallel composition) Here too coinductive hypothesis is useful, and if Z # (
then congruence under restriction (just proved) must be used too.

Proof (of Theorem 6). The proof is by rule induction. We consider different cases
according to the last applied rule.

Rules (inp-c) and (out-c)) Trivial.

Rule (sum-c)) By inductive hypothesis the transition P %, P’ in the
premise can be decomposed into P %, P" £, P'. We want to decompose

Concurrent and located synchronizations in m-calculus 17

P +Q 2%, P'. Using rule (sum-c) we can derive P + Q 25, P". The thesis
follows.

Rule (par-c)) By inductive hypothesis the transition in the premise can be
decomposed into P 25, P" £, P'. Thus the first transition can be derived using
the same rule, obtaining P|Q —. P"|Q. The second transition can be derived
in the same way.

Rule (com-c)) We have different cases to consider here. In fact, @ and the ac-
tions in g can be originated either in P or in), or they can be a synchronization
of an action from P and one from Q. If « is originated by just one component

(let us say P), then by inductive hypothesis P %, P" £L5_ P’ (if all the actions
in p are from) then the second transition does not exist, but P" = P'). Also,
a does not involve Q. Thus using rule (par-c) we can derive P|Q = P"|Q. Also,
using rule (com-c) if u! exists, and rule (par-c) otherwise, P"|Q £ vZ P'|Q'.
This proves this case (note that Z is the correct one, since o does not involve
synchronizations).

Let us consider the second case, where « is a synchronization of an input
from one process and an output from the other one. By inductive hypothesis we

have derivations P 2%, P" 24 P! and Q =, Q" LIy Q' where a; and s
are complementary actions. Thus we can apply the rule (com-c) to derive the
first step. Then, if this step adds no restriction operator, either rule (com-c) or
rule (par-c) (if either pf or p} is empty) can be used for the second step. If
a restriction is added, rule (res-c) must be applied to complete the derivation
of the second step. More precisely, the process after the first step is vz P"|Q"
where z was the parameter of a bound output. We can apply to the derivations
starting from P” and Q" either rule (par-c) or rule (com-c). When we apply rule
(res-c), z does not occur in the label, thus the restriction is simply propagated.
Note that z has to be restricted, since the same synchronization would occur
also in the concurrent transition.

Rule (res-c)) Let us consider the decomposition of the premise. We can use
two times rule (res-c) to derive the desired computation, unless « extrudes the
restricted name. In this case no rule is needed to complete the second step of
the derivation.

Rule (rep-c)) By inductive hypothesis the transition P|!P =& P’ in the
premise can be decomposed into P|!P 2. P" & P'. We want to decompose
1P 28, P'. Using rule (rep-c) we can derive |P 2, P". The thesis follows.

Proof (of Theorem 7). The proof is analogous to the proof of Theorem 1.

Proof (of Theorem 8). For the forward implication, note that P =, @ is context
closed (one can easily adapt the proof of Theorem 5). Since P =, () implies
P =~¢ @ the thesis follows from context closure.

For the backward implication we have to show that if P and @ are not
bisimilar, then we can build a context C[e] distinguishing them. We show how
to build C in an inductive way. Suppose that P £ P, then either Q has no
such transition and the context distinguishes them, or) has a corresponding

18 Ivan Lanese

transition going to @' and C[P] and C[Q)] reduce (in one or more steps) to
C1[P'] and C1[Q'] respectively. Let u; be the actions that can be performed
by P (which are a finite number, and the resulting processes belong to a finite
number of equivalence classes up to structural congruence). Then the context
has the form (P,,.Cy +---+ P,,.Cy)|e, and C[P] reduces to C;|P' after having
verified that action y; can be executed going to P'.

We have to consider all the parallel actions contained in p;. Note that we
have at most one action for each channel. We build parallel contexts as parallel
compositions of the sequential contexts from Theorem 2 (actually, this would
produce non guarded sums, but the problem can be solved by prefixing each
P,, with €, with e not used elsewhere, and by providing a corresponding input
e in parallel: this will just add a 7 transition). The context C; can be appended
to any of the parallel components in P,,. Note that at the first step the label
contains the subjects of all the channels used for synchronization. Then for each
output we can synchronize on the first fresh name of the corresponding term,
followed by the object of the output and by the two concluding fresh names.
For inputs we have just the concluding fresh names. For ar actions we have no
additional observation.

