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Abstract

This thesis aims at analyzing different aspects of synchronization in models for
Global Computing, concentrating on mobility, heterogeneity and compositionality.

We start by presenting a comparison among three different models from the
literature: Fusion Calculus, a calculus with mobility; Synchronized Hyperedge Re-
placement (SHR), a graph transformation framework that can be equipped with
both Milner (i.e., CCS style) and Hoare (i.e., CSP style) synchronization; and Logic
Programming, used as goal rewriting mechanism. We show that Milner SHR is
essentially a graphical concurrent extension of Fusion Calculus with multi-party
synchronization. The comparison between Hoare and Milner SHR shows that the
two models have different expressiveness, and that Hoare SHR can be mimicked
using Milner SHR, while the contrary is not always possible. The last step of the
comparison shows a strict correspondence between Hoare SHR and an extension of
Logic Programming with a transactional mechanism and an hiding operator.

The research in the second part of the thesis is triggered by the observation that
the choice of the synchronization policy to be used in a modeling framework is cru-
cial, since implementing a synchronization policy on top of another one is not an easy
task. Thus we introduce Synchronization Algebras with Mobility (SAMs), an ab-
stract description of a synchronization model obtained by extending Winskel’s syn-
chronization algebras to cope with mobility and local resource handling. SAMs are
used to make existing frameworks parametric w.r.t. a synchronization model, which
can thus be chosen to match the characteristics of the modeled system. Parametric
SHR applies this approach to SHR while PRISMA Calculus is the corresponding
extension for Fusion Calculus. Furthermore, we introduce SHR for heterogeneous
systems, where different SAMs can be used at the same time to manage interactions
performed in different parts of an heterogeneous system.

The last part of the thesis concentrates on compositionality properties of the
observational semantics of the analyzed frameworks. In particular we choose bisimi-
larity as semantics and we show whether this is a congruence w.r.t. the operators of
system composition. We extend standard bialgebraic techniques to prove that bisim-
ilarity is a congruence for parametric SHR. We also present a concurrent operational
semantics for Fusion Calculus and we prove that the corresponding bisimilarity is
a congruence, while the same property does not hold for standard interleaving se-
mantics.






Acknowledgments

I want to thank my supervisor Ugo Montanari for having driven this work, in par-
ticular at the beginning when I was a bit lost in the world of computer science
research. A special thank is for Roberto Bruni, as coworker, coauthor and friend,
for his suggestions and for having always found the time to help me. I also want to
thank all the other persons I have worked with: Emilio Tuosto, Dan Hirsch, Marzia
Buscemi, Hernan Melgratti, ...

Special thanks also for my friends Roberto Zunino and Maurizio Atzori, which,
even if they work on very different topics, have been able and willing to give me
useful advices. Thanks also to all my friends, for their help and for being my friends.

Last but absolutely not least, thanks to my parents Pino and Claudia, for having
always helped me, even if I showed up in my hometown Aosta only two or three
times a year.

Very very last, thanks to all the persons that helped me and that I forgot to
thank above.

Thanks to all,

Ivan






Contents

Introduction
0.1 Global computing . . . . . . . . ... o
0.2 Formal models for global computing . . . . . . ... .. .. ... ...
0.3 Overview of models for GC . . .. ... ... ... ... ......
0.4 Contributions of the thesis . . . . . .. ... ... ... ... ...
0.5 Outline of the thesis . . . . . . . . ... ... ... ... ...,
0.6 Origins of chapters . . . . . .. .. .. ... L.

1 Technical background
1.1 Notation, symbols and terminology . . . . . .. . ... .. ... ...
1.2 Labeled transition systems . . . . . . .. .. ... ... .. ......
1.3 Synchronization algebras . . . . . . ... ..o L
1.4 Fusion Calculus . . . . . . . . ...
1.5 Synchronized Hyperedge Replacement . . . . . . . . . ... ... ...
1.6 Logic Programming . . . . . . . ... ... o 00000

Comparing Models for Global Computing

From Fusion Calculus to Milner SHR

2.1 Mapping Fusion Calculus to Milner SHR . . . . .. ... ..
2.2 Interleaving Milner SHR . . . . .. .. ... ... ... ...
2.3 A concurrent semantics for Fusion Calculus. . . . . . . . ..

Milner SHR vs Hoare SHR

3.1 Expressiveness measures . . . . . . . . ... 0. e 0.0
3.2 HSHR and MSHR are not comparable . . . ... ... ...
3.3 Reconciling Hoare and Milner synchronizations. . . . . . . .
3.4 MSHR vs HSHR with general closed graphs . . . . ... ..

Mapping HSHR into Logic Programming

4.1 Synchronized Logic Programming . . . . . .. ... .. ...
4.2 Adding an hiding operator to Logic Programming . . . . . .

23

27
27
35
43

49
20
51
o4
71



CHAPTER 0. CONTENTS

4.3 Mapping HSHR into SLP with hiding . . . . . . . ... ... ..

IT Parametric synchronizations in a mobile framework 101

5

Synchronization Algebras with Mobility

5.1 Definition of SAMs . . . . . . ... ... L
52 Atoolbox of SAMs . . . .. .. ... ... ...
5.3 Equipping SAMs with a categorical structure . . . . . . ... ..

Applications of SAMs to SHR

6.1 Parametric SHR . . . . . ... ... ... .. ... ........
6.2 SHR for heterogeneous systems . . . .. .. ... ... .....

Applications of SAMs to process calculi

7.1 The PRISMA Calculus . . . . ... ... ... ... .......
7.2 Relations between PRISMA and other process calculi . . . . . .

IIT Observational semantics and compositionality

8

Observational properties of parametric SHR

8.1 A bialgebraic framework for SHR . . . . .. ... .. ... ...
8.2 Observational semantics for SHR . . . . ... .. ... .. ...

Observational properties of process calculi

9.1 Concurrent semantics for Fusion Calculus is compositional . . .
9.2 Observational properties of PRISMA Calculus . . . . ... ...

10 Conclusions and future work

10.1 Conclusions . . . . . . . . .
10.2 Plans for future work . . . . . . . . ... L.

Bibliography

105



List of Figures

1.1
1.2
1.3

2.1
2.2

3.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5

8.1

Graphical schema of the thesis. . . . . .. ... ... ... ...... XV
Star graph. . . . . .o 18
Productions. . . . . . . . . . .. 19
Ring creation and reconfiguration tostar. . . . . . . .. .. ... ... 20
Fusion process translated into a graph. . . . . ... ... ... .... 33
Graphical representation of a Fusion transition. . . .. . . ... ... 35
Translation of a HSHR transition into the 2-shared framework. . . . . 73
Equivalent action synchronizations. . . . . . .. ... ... ... ... 108
Graphical representation of an action synchronization. . ... .. .. 109
Transition of the airport case study. . . . . . .. .. .. .. ... ... 125
Productions for the airport case study. . . . .. .. .. .. ... ... 126
Clients waiting for authorization. . . . . . . ... ... .. ... ... 133
Sample communication network. . . . . . . ... ... 137
Communication network with a new logic channel. . . . . . . . . ... 138
Two bisimilar M amoeboids. . . . . .. . . ... ... ... ... ... 178



10

CHAPTER 0. LIST OF FIGURES



List of Tables

1.1
1.2
1.3

2.1

4.1
4.2

7.1
7.2

8.1

Structural congruence for Fusion agents. . . . . . ... .. ... ... 8
SOS semantics for Fusion Calculus. . . . . . ... ... .. ... ... 9
Structural congruence for graph terms. . . . . . .. ... 13
Comparison between Fusion and MSHR. . . . ... .. ... .. ... 43
Axioms for goals with hiding. . . . . .. ... ... ... ... ... . 82
Comparison between HSHR and SLP with hiding. . . . . . .. .. .. 98
Operational semantics of PRISMA: transitions with label —z. . . . . 142
Operational semantics of PRISMA: transitions with executable actions.143

Axiomatization of graph terms. . . . . .. ... Lo 163



12

CHAPTER 0. LIST OF TABLES



Introduction

In this thesis we discuss different issues concerning formal approaches to the devel-
opment of global computing (GC) systems and applications. Global computing, as
described in Section 0.1, rises new challenges to the software engineering commu-
nity, since different issues such as distribution, heterogeneity and mobility interact
in complex ways. A main aspect is that complex synchronization patterns involving
many different components are required to specify how to reach the desired compu-
tational goal. We argue in Section 0.2 that formal methods are the right approach
to face these challenges. We will discuss some of the approaches in the literature
in Section 0.3, while the contributions of this thesis are outlined in the remaining
sections.

0.1 Global computing

Global computing, that is computing using networks deployed on world-scale ar-
eas, 1s becoming more and more important. In fact Internet, the most famous and
developed GC system, interconnects today hundreds of millions of users, ranging
from private users with their home PCs to industrial LANs (local area networks).
In addition to Internet, also other WANs (wide area networks), such as wireless
communication networks or ATM networks, exist.

GC systems have different characteristics w.r.t. previous kinds of systems such
as LANs, and one must keep these differences into account not only when design-
ing them, but also in the more frequent case of developing applications for this
environment,.

First of all, GC systems are distributed, but in addition to normal problems
posed by distribution in LANSs, such as routing problems or remote resource access
problems, new difficulties arise because of the large distances involved. Since the
cost of communications (in terms of time, but maybe also in terms of money) is not
uniform, applications can not abstract from physical locations: network awareness
becomes an issue. Thus applications must deal with locations explicitly in order to
reach the wanted levels of quality of service (maybe by connecting to a near server
instead of a far away one). In some cases, physical locations can also be involved
in a more semantic way in the behaviour of an application. A classic example of
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location-dependent application is one that provides tourism information, such as
restaurant or hotel advertising: it should possibly suggest places near to the current
position of the user.

This kind of problems becomes fundamental for mobile systems. The impor-
tance of mobility nowadays is enormous, since everyone has its cellular phone, and
maybe also a mobile computer and a PDA. These examples refer to physical mo-
bility. Since one wants that these devices, while moving, keep computing and they
remain connected to some network, one wants GC systems to be able to support
mobility. This means that locations must be treated as dynamic information, and
connectivity can not be taken for granted. Another kind of mobility is software mo-
bility, where hardware is fixed but code can change its location. A common example
of software mobility is given by Java applets that can be downloaded from a remote
server and then executed locally. A more interesting example is given by software
agents, which can move from host to host in order to collect some data and then go
back home to deliver the result of their computation. The important aspect here is
that, not only code, but the whole computation (with its state) is moved. Software
mobility can be useful since moving code may be cheaper than moving the data
needed by the computation.

Another important feature of GC systems is heterogeneity: usually they are com-
posed by hosts which differ in computational power (from mainframes to PDAs), in
connectivity (from fast LANs to telephone cables), in memory and resource avail-
ability, in operating system and language support and in applicative environment.
Thus a main issue in GC is to make heterogeneous systems able to communicate,
synchronize and coordinate, abstracting away from the differences and allowing in-
teroperability. In other cases, differences must not be abstracted, but taken into
account in order to exploit them, e.g. by connecting to some host where a particular
kind of resource is available at the minimum cost. In order to do that, a negotiation
between the client and some possible servers may be needed. Another kind of het-
erogeneity is of administrative nature: systems can be composed by domains which
belong to different organizations, thus being subject to different accounting and se-
curity policies. In order to interact with or to move to other domains, applications
may have to exhibit some authorizations or passwords.

Security is also a direct concern for GC applications, since they can not always
trust all the components of the system they communicate with or even their own
execution environment (consider, e.g., the case of an agent executing on a remote
server). Thus issues such as secrecy of communications, integrity of data and code,
and availability of the services must be considered.

Another constraint on most GC systems is that they must be open. This means
that components can be added to or removed from a system while its other parts
continue their executions. A simple, striking example: you can not ask to shut down
Internet in order to connect or disconnect your PC. Thus available resources, the
parts of a system to be synchronized or the subsystems participating in a computa-
tion can change dynamically and without warning. This aspect is even more stressed
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in the case of mobile systems which can disconnect and then reconnect, maybe from
a different location. Sometimes not only components are added or removed, but
the whole structure of the system can be changed, while keeping the system run-
ning. This may happen for many different reasons, for instance in order to satisfy
new requirements for the system, or simply in order to optimize the structure of
the system w.r.t. the current service requests, ensuring load balance. Failures of
servers or communication links may trigger reconfigurations too. Mobile systems are
continuously reconfigurated in response to the movement of their own components.

Among the features of GC models discussed above, we leave aside security issues
and we focus on distribution and mobility, since security is usually analyzed using
dedicated techniques. As far as heterogeneity and openness are concerned, even
when they do not appear explicitly, they must be kept in mind since they influence
the choice of the best approach to use. For instance, we can not use models that
impose specific requirements on the structure of components since they are not
suitable for modeling heterogeneous systems.

0.2 Formal models for global computing

In order to manage the complexity of the development of applications for such an
environment, where different problems exist and interact in complex ways, formal
approaches are needed. Using formal methods one can build models of the system
to be developed, in order to be able to analyze some aspects of it, before starting
the actual implementation process. This is useful, first of all, to make clear the
requirements and then the structure of the system to be built, concentrating on the
aspects of interest and abstracting away from details. Many correctness checks can
be performed directly on the model, in order to find mistakes as soon as possible.
Correcting an error in the model is, in fact, much easier and much cheaper than
detecting and correcting it during the implementation phase. The developed mod-
els can be used to guide and help the implementation of the system (tools exist for
generating part of the code from models) and then as reference when testing the
actual system. For instance, an executable specification of a system can be used
to generate the correct behaviours of a system under test, and then the real sys-
tem, which is more complex since it must handle many more aspects, can be tested
against these behaviours.

The use of formal methods is consolidated in computer science, but traditional
models, built for sequential or parallel programs, are not enough for dealing with GC
systems. In fact, in addition to standard concerns such as efficiency and input-output
behaviour, other aspects have to be considered. As an example, GC models usually
handle aspects such as locations or probability (for security concerns for instance)
explicitly. Furthermore GC systems are usually made of traditional preexisting
systems which interact in order to reach a common goal. Thus models must deal
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with coordination among given entities, which interact using some set of primitives
that depends on the underlying middleware. More precisely, models must allow the
separation between computation, which can be abstracted, at least at the higher
levels of abstraction. and coordination, which is always a central aspect. Even after
this first abstraction, GC models can be large, thus further levels of abstraction
can be necessary. For instance, at the low level of abstraction, communications
are asynchronous (and maybe faulty) as they are in real systems, but, at the more
abstract level, one wants to consider (part of) the system as synchronous, leaving to
other levels the implementation of synchronization mechanisms. This may require to
exploit probabilistic techniques, since in many cases deterministic solutions are not
possible [Lyn89]. Furthermore, at the low level, the basic interacting mechanism
is usually a synchronization between two entities, that is an abstraction of some
kind of message passing, while at the higher levels synchronizations are wider in
space, involving multiple entities, and in time, grouped in transactions that must be
completed atomically or parts of complex reconfigurations. For instance, different
components of the system may have to agree on some information, such as the
bandwidth dedicated to a data transfer, and at the low level one is interested in the
protocol that drives the negotiation. At the more abstract level components provide
their requests, as constraints on the behaviour of the system, and the result of the
synchronization is a behaviour that satisfies all the constraints. It is useful to have
these complex forms of synchronization as primitives in the model, without the need
of simulating them using simpler ones, since such encodings may be complex and
may obfuscate the description of the aspects of interest. The relationships between
models at different levels of abstraction can be explicitly defined as refinements
between them.

Finally, because of the huge size of the systems involved, it is important to have
compositional models, that is to be able to combine models of different parts of the
system to have a model of the whole system. A common approach to this problem
is to define systems that can be interconnected through some kind of interfaces,
and then to consider as behaviour of the system the one that can be inferred by
analyzing what happens on its connecting interfaces. A model is compositional if
its external behaviour can be inferred from the external behaviours of its compo-
nents, without taking into account their internal structure. Different methods for
analyzing this kind of behaviours exist in the literature, and one of their common
goals is to define when two systems are equivalent, that is when they exhibit the
same set of behaviours. In a compositional framework, equivalent subsystems are
interchangeable without altering the behaviour of the whole system. Furthermore,
if a system is equivalent to a simpler specification (w.r.t. some set of properties)
then it correctly satisfies the requirements imposed by it.

The importance of GC systems, and in particular the need for theoretical re-
search in the field, has been recognized by the European community, which started
in 2001 the GC initiative [Glob], which has now been followed by GC II [Gloa].
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These initiatives consist of a cluster of projects which are devoted to the analysis of
different issues raised by GC systems, with particular attention to the foundational
aspect.

Our work has been carried on in this framework, and it is mainly related to
the GC projects Agile [AGI| on architectures for mobility and Profundis [PRO)]
on proofs of functionality for mobile distributed systems and to the more recent
GC II project Sensoria [SEN] on software engineering for service-oriented overlay
computers.

0.3 Overview of models for GC

We give now a general overview of some models and techniques that have been suc-
cessfully used in the GC area, emphasizing in particular their merits and drawbacks.
A more detailed and technical description of the ones that are more closely related
to our work is given in Chapter 1.

An important approach is the process calculi one: since process calculi are situ-
ated between real programming languages and mere mathematical abstractions, they
facilitate rigorous system analysis, offering the basis for prototypical implementa-
tions and for verification tools. Many running implementations of languages [PT00,
CL99, SU01, BDPF98] based on calculi originally proposed to experiment basic in-
teraction primitives exist. In the process calculi approach a system is modeled as a
term in a suitable term algebra, which has operators such as parallel composition,
nondeterministic choice and local resource declaration. The operational semantics
of a system is defined by inference rules (SOS semantics, see [Plo81, Plo04]) that
define a labeled transition system (LTS) or via reduction rules. In the second case
a relation specifies which states are reachable from a given one, while in the first
one also a label specifying the interactions with the environment is added. SOS se-
mantics is quite important since it allows to easily define observational equivalences.
These equivalences quotient systems which are indistinguishable by observing their
interactions with the environment, even if they have a different internal structure.
The first and simpler equivalence is trace equivalence [Hoa80], which just considers
the sequence of labels of the steps in the computation. A more refined approach
is bisimulation [Par81, Mil89], which considers also the branching structure of the
computation. Testing equivalences [DH84] concentrate instead on the ability of pro-
cesses to produce a particular observation when inserted in some contexts. Another
approach, which started with [HM85], is based on the set of formulas of a suitable
modal logic that are satisfied by the process. An interesting recent thread of re-
search is devoted to find automatic ways to build a labeled semantics starting from
a reduction one [Sew98, LMO00]. An important drawback of process calculi is that
they use the same syntactic structures to define both the topological structure of
the system and its allowed behaviours. For instance, the parallel composition op-
erator can be considered both as parallel composition of systems and as defining
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the concurrent execution of two processes. Similarly, a restriction operator can be
interpreted as definition of an administrative domain, but also as name declaration.

The process calculi approach is born in the area of communicating systems with
CCS [Mil82] and CSP [Hoa80], which allow to define systems interacting using re-
spectively Milner synchronization, where two processes synchronize by doing comple-
mentary actions, simulating message passing systems, and Hoare synchronization,
where any number of processes can synchronize by performing the same action.
ACP [BK84] instead has a parametric synchronization model and a more developed
algebraic theory. These calculi are not apt to model GC systems since they can not
handle, e.g., mobility. This problem is analyzed in 7-calculus [MPW92], a successor
of CCS, which introduces name mobility: instead of moving a process, a name, i.e.
a reference to it, is transmitted. This kind of mobility is mathematically simpler but
it has been shown powerful enough to model also process mobility [San01], where
the actual process is communicated. An important feature of m-calculus is its ability
to generate new names which are guaranteed distinct from any other known name.
This allows to give access to a resource to exactly one process, that is the one that
receives the name, and to model security features such as nonces. An asynchronous
version of 7-calculus has been proposed in [HT91].

The w-calculus is the first calculus of a whole family of calculi for mobility
(see [Dal00] for a nice survey). Among these we are mainly interested in the Fusion
Calculus [PV98, Vic98], which is a convenient simplification of m-calculus. Never-
theless 7-calculus can be mapped into a subset of Fusion Calculus preserving the
one-step semantics [Vic98]. Thus Fusion Calculus is, from this point of view, at
least as expressive as its predecessor, and furthermore it allows fusions of names,
thus modeling a further mobility feature. However, since fusions of arbitrary names
can be performed, names can no more be guaranteed distinct. An approach that en-
forces this property back is the one presented in [BBM04, BBM05|. An asynchronous
version of Fusion Calculus is presented in [GWO00].

The Join Calculus [FG96] is similar to the asynchronous 7-calculus but it enforces
a unique site for each channel, making it more easily implementable in a distributed
setting (since no conflicts among receivers of a message are possible).

Other variants of m-calculus have been proposed to deal directly with specific
issues, such as locations [HR98|, probability [Pri95, HP00], broadcast communica-
tions [EM99], cryptography [AG97], terms [AF01] and semistructured data [ABO05].

Another important calculus is Ambient calculus [CG98], which is more suited to
study hierarchical models where the mobility space is partitioned in different envi-
ronments called ambients. Processes live inside ambients and they can drive their
ambients with primitives for moving or destroying an ambient. A known problem of
Ambient calculus is that it has an artificious and involved SOS semantics [MZ03],
while reduction semantics is simpler.

An interesting calculus is KLAIM [DFP98]|, a process calculus based on LINDA
[Gel85], which thus uses (distributed) repositories called tuple spaces as communica-
tion infrastructure. This communication paradigm allows asynchronous interactions
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among processes, which can drop pieces of information in tuple spaces. Other pro-
cesses can come and read those pieces of information, and searching is done via
pattern matching, thus the sender and the receiver do not need to know each other.
KLAIM is important since it contains also primitives for modeling software mobil-
ity, thus allowing easy creation of systems composed by mobile agents. Furthermore
KLAIM is not only a process calculus, but it has also a prototypical implementation,
and thus it can be used to experiment with real mobile applications [BDPF98].

An approach that is quite related to the process calculi one is the coalgebraic
one [Rut00]: a coalgebra in a suitable category® can be used, e.g., to model a LTS,
and the notion of bisimulation naturally arises [AM89] as the dual notion to that of
algebraic congruence. This kind of models is well-suited for studying the observa-
tional properties of systems and in particular their compositionality aspects. With
this aim, one is interested in combining the observational behaviour of the system,
i.e. its coalgebraic structure, with its compositional structure, i.e. its algebraic
structure. In particular, one wants that the coalgebraic notion of bisimulation has
the algebraic property of being a congruence w.r.t. the operators in the algebra.
This happens in bialgebras [PT97]. Some techniques for proving that a coalgebra
has indeed a bialgebraic structure will be presented in Section 1.2.

An extension of this approach is the so called Tile Model [GMO0], which is also
inspired by rewriting logic [Mes92] and context systems [LX90]. In the Tile Model
both the system and the observations are modeled as arrows in a category, and
basic blocks called tiles represent the evolution of open system components. In
particular, a tile specifies how a given state is rewritten into another one, which
are the triggers required from subsystems to make the evolution possible and which
is the observable behaviour of the step. Basic tiles can be composed in different
ways in order to model interactions of different parts of the system or sequences of
computational steps. The Tile Model has been frequently used as a metamodel for
studying process calculi, see e.g. [FM00, MT97, GM02].

A classic approach to concurrent systems is the Petri net one [Pet62, Rei85]. In
this approach, a system is represented by a network of places and transitions. Places
hold tokens, which represent the state of the system, and transition executions can
consume tokens from some places producing tokens in other places. Many transitions
can be executed simultaneously. Interestingly, both states and computations have
a monoidal structure [MM90]. Some steps in the Petri net field towards GC have
been accomplished with the introduction of zero-safe nets [BM00], which allow to
synchronize different transitions in a transactional style. Furthermore this model
can be seen as a refinement of the classical one. The (quite developed) theory of
Petri Nets can be generalized to other approaches more apt to the GC field, in
particular to graph transformations [Roz97, EKMR99].

Graphs are a natural model for systems made up of interconnected components,

! An introduction to category theory can be found in [AHS90].
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since the topological structure can be directly mapped into the structure of the
graph. We mainly consider the approach where edges, or in general hyperedges,
namely edges connecting any number of nodes, represent processes or hosts which
communicate through ports or links represented by shared nodes, but dual ap-
proaches also exist [Le 98]. Graph transformations can animate the graph, thus
allowing to model a system whose configuration changes dynamically. In general, a
graph transformation system is made up of rules that specify how a particular graph
(the LHS of the rule) can be rewritten into another one (the RHS of the rule). The
approaches differ mainly in the constraints on the structure of the LHS (one node,
one edge, a generic graph), in the method used to match the LHS with a subgraph of
the graph to be rewritten and on the gluing strategy used to merge the RHS of the
rule with the rest of the graph. Sometimes special notation is provided to express
the preservation of a part of the LHS in the RHS.

The algebraic approach (so called because graphs are seen as elements in par-
ticular algebras), which allows to rewrite generic graphs, started with the double
pushout definition [EPS73], which uses two pushout constructions in the category
of graphs and total graph morphisms to apply rules. More recently a single pushout
in the category of graphs and partial graph morphisms has been used to the same
purpose giving rise to the single pushout approach [Léw93]. An approach based
on a double pullback [CEHWO01] instead is used to specify minimal requirements
on the transformation, allowing also additional unspecified reconfigurations to be
performed at the same time. The use of categorical constructions to define graph
transformations has the advantage of being largely independent on the exact struc-
ture of the objects to be rewritten, thus it is easily generalized to more complex
situations such as higher-level graphs [EHKP91]. These approaches to graph trans-
formations are difficult to implement in a GC setting where graphs are distributed
systems. In fact, when writing applications to implement reconfigurations modeled
as graph transformations of this kind, we may discover that hosts have not enough
information about the topology of the whole system to decide if a rule needs to
be applied or not. In general, the approach to coordination called choreography
does not require such information, while orchestration supposes a global view of the
system [BGGT05].

Thus a more choreographic approach, called Synchronized Hyperedge Replace-
ment (SHR), has been proposed. SHR uses context free rules called productions to
describe the evolution of single hyperedges (that is single processes or hosts). Pro-
cess synchronizations are modeled by imposing conditions on nodes, which specify
constraints on which productions can be applied in a single step. When the pro-
ductions to be applied have been chosen (this is called the rule-matching problem)
in such a way that the conditions are satisfied, the actual rewriting can be carried
on separately by single components. This approach was first proposed in [CM83]
with the name of “Grammars for Distributed Systems”. The rule-matching problem
can be modeled as a finite domain constraint problem [CDM85] and solved through
a distributed algorithm. Infinite computations and concurrency issues have been
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considered in [DM87]. An interesting extension of this approach allows also commu-
nication of nodes during transitions [RM99, HM01], and this allows to model mobile
systems whose connections change at runtime. An extended description of SHR is
presented in Section 1.5.

A recent interesting approach to graph transformations is the one of bigraphs
[Mil01, JMO03], where two graphical structures are considered together: a forest
representing the spatial relation of containment, and a generic graph representing
the connections between entities.

A well known computational model that can also be used fruitfully in the GC
area is Logic Programming [L1093]. To this end however one must abandon the
usual idea of Logic Programming, where the aim is to find a SLD-refutation for a
goal, and thus a substitution that makes the corresponding clause true. It is useful
instead to consider logic predicates as concurrent processes that interact through
shared variables using the unification engine as communication mechanism. In this
framework one must consider partial or even infinite computations. The first step
in this direction is the work on compositionality in Logic Programming (see e.g.
[GS89]). An interesting paper for the GC perspective is [BMRO01]| where observa-
tional semantics is analyzed and open systems are considered (i.e. the semantics can
deal with instantiation of variables and insertion of the goal into a larger context).

A modeling framework that is widely used both in industry and in academia
is UML [RJB99], which provides a syntactic way of describing component-based
systems. The main drawback of UML is that it has not a complete formal semantics,
thus it is difficult to make formal analysis on UML diagrams. Extensions of UML to
deal with GC features such as mobility have been considered, e.g., in [BKKWO02].

This overview shows just the top of the iceberg of GC models, but it is enough to
highlight that different approaches exist, with different merits and drawbacks. Mod-
els developed to deal more easily with specific issues coexist with general frameworks
aiming at reunification. It is clear that even if a model able to deal with all the issues
raised by GC systems could exist, it is still far away. Our aim is, however, to take
some steps towards a reunification or at least a categorization of these models.

0.4 Contributions of the thesis

As already said, we have tried to move some steps towards the definition of a model
for GC apt to describe complex coordination patterns among different heteroge-
neous, distributed, mobile entities, analyzed at the high level of abstraction.

A good intuition of the idea underlying our approach can be given by a physi-
cal analogy. In physics, one is usually interested in systems where multiple objects
interact, for instance fluid molecules in a tube or antennas transmitting in the sky.
One can use physical equations to analyze all the interactions between the compo-
nents, but usually this approach is by far too complex to be carried on. Thus one
considers small parts of the space and (s)he describes each of them by using partial
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derivative equations. When suitable boundary conditions are added, one gets (if
(s)he is able to solve the system of equations) a solution that describes the possible
evolutions of the system.

In a similar way, we want to describe the interactions among GC components by
considering the interfaces as the interesting “small parts of the space” described by
equations specifying the conditions on system interactions, with boundary conditions
specified by components requirements. Solving these equations gives the allowed
behaviours of the system.

Essentially any synchronous form of interaction can be seen in this perspective,
but until now this aspect has not been exploited in its full power. In fact, the great
majority of models in the literature use very simple equations, corresponding to
message passing (Milner synchronization) or to other simple patterns. We think
that these models are not enough for modeling at the right level of abstraction the
complex kinds of interactions we are interested in.

From a technical point of view, we have started by analyzing different existing
models from the literature, with a double aim. First of all we wanted to better
understand their relationships to find out which features they have in common,
which features existing in some of them are instead missing in others (and what
we could get by adding them), and which correspond to choices depending on the
specific application one has in mind. We think that this last case individuates a
dimension in a “space of GC models”, and that this allows to give a categorization
of GC models, increasing their understanding and allowing to build parametric
models where the choices made on different dimensions have been made orthogonal.

Since a comparison among all the different models was far beyond our possibil-
ities, we have focused on some of them that showed at a first sight some interest-
ing commonalities, namely Fusion Calculus, Synchronized Hyperedge Replacement
(SHR) and Logic Programming. As hoped, the comparisons suggested many use-
ful insights of the kind described above. By transferring features from one model
to the others we obtained some interesting “hybrid models”. Among others, we
have analyzed the extension of Logic Programming with an hiding operator taken
from process calculi, and we have found a semantics for Fusion Calculus with good
compositionality properties defined using a mapping into SHR.

The most important improvement however has been triggered by the comparison
between Hoare and Milner synchronizations performed in the SHR framework: this
has shown that implementing a synchronization model using another one is not a
trivial issue, and that one wants to be able to freely choose the synchronization
model to use, independently from other features of the modeling framework. In
other words, this has exactly shown to be a dimension in the space of GC models.
Mathematically, the synchronization policy has been modeled using Synchronization
Algebras with Mobility (SAMs), that extend synchronization algebras (which are
introduced in [Win84], and recalled here in Section 1.3) to deal with name mobility.
Identifying the synchronization model as a first-class entity in designing models has
allowed for many interesting results: for instance, SAMs have been proved to form a
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category, and thus suitable categorical constructions can be used to compose SAMs
in different ways to define easily new complex models, able to give the wanted kind
of high-level abstraction.

After having modeled different synchronization policies as SAMs, we have an-
alyzed their applicability in different frameworks. The first application has been
inside SHR, since this framework already had two different formulations, one using
Milner synchronization and the other one using Hoare synchronization. We propose
parametric SHR, where synchronization among productions is specified by a SAM,
as a general framework that allows both to recover the two previous instances of
SHR and to easily generate new ones, such as broadcast or priority SHR. Having
one parametric framework instead of many separated ones has the advantage that
properties need to be proven just once, and a unique implementation is possible,
allowing the users to choose each time the synchronization model more suitable for
the planned application.

A similar approach has been considered also in the field of process calculi, in order
to study a framework more apt to analyze the linguistic aspect of interaction. In fact,
process calculi can be easily extended with different features, while the structure of
SHR is more constrained since different aspects are specified in different ways (e.g.,
the structure of the system in the graph and its behaviour in the productions).
On the other side however SHR, provides a cleaner framework, useful mainly for
architectural modeling. The choice of which process calculus to extend ended with
the selection of Fusion Calculus, for three main reasons. First of all the properties of
Fusion and in particular the mapping from m-calculus into Fusion guarantee that it
is expressive enough to deal with the main features of GC systems and with mobility
in particular. Also, Fusion Calculus has been proved strongly related to SHR, and
this gives many insights on how to extend it. Also, this means that moving from
SHR to Fusion Calculus corresponds to move just in one dimension in the space of
GC models, namely the (really important, and maybe composed by different, yet
to discover, subdimensions) dimension that deals with the tools used to represent
system structure and behaviour. In particular, one dimension which is kept fixed is
the one of name handling, since our comparison proved that both models use the
same approach. Finally, Fusion Calculus has a symmetric form of communication,
which is easier to extend to models with more than two interacting participants
than the asymmetric communication of m-calculus. This extension produced the
PRISMA Calculus.

A further step has been to consider the contemporary presence of different syn-
chronization models inside the same system. Notice that such a development is
possible only after having isolated and abstractly defined what a synchronization
model is (in our approach, a SAM). We have considered this extension in the frame-
work of SHR, and called it SHR for heterogeneous systems, stressing the fact that
it allows to model systems where different forms of synchronization coexist. Such
a feature is useful for modeling, e.g., a network where wireless broadcast commu-
nications are available, together with message passing between wired components.
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Also, our framework allows to change the communication policy at runtime. While
it looks hard to imagine this option exploited at the communication level, where
communication mechanisms are determined by hardware choices, it is a natural fea-
ture at the application level, where the details of the communication mechanism are
decided by a negotiation among the participants.

The final step in our work has been to consider the compositionality properties of
the analyzed frameworks, since each model aiming at representing GC systems must
allow compositional reasoning to allow scalability up to systems of the required size.
Technically, we have chosen one of the most widely used approaches to the analysis
of the observable behaviours of systems, that is bisimilarity. In this framework, the
semantics is compositional when bisimilarity is a congruence w.r.t. the different
operators for system composition. The first intuitions on this topic have been ob-
tained by analyzing possible mappings of SHR into the Tile Model, where standard
techniques exploit the structure of the framework to provide easy proofs of those
results. However, all the results have been restated and fully analyzed in general
coalgebraic terms to make them accessible to a larger audience. One main result is
that bisimilarity is a congruence for parametric SHR with a large class of synchro-
nization models (and, in particular, for Milner and Hoare SHR from the literature).
The connection between Fusion Calculus and SHR could suggest that bisimilarity is
a congruence also for Fusion Calculus, but, as known from the literature, this is not
the case. In fact, to get a compositional semantics for SHR, one must use hyper-
bisimilarity, i.e., substitution closed bisimilarity. The comparison with SHR showed
that this difference is due to the interleaving semantics usually given to Fusion, while
the semantics of SHR is inherently concurrent. We have thus been able to produce
a concurrent semantics for Fusion Calculus, which is indeed a congruence. Also, the
property of Fusion Calculus that hyperbisimilarity is a congruence has been proved
to extend to PRISMA Calculus on any SAM.

0.5 Outline of the thesis

The main contributions of this thesis are related in different ways, and these relations
can not be well represented by the linear structure of chapters needed in a thesis,
thus, after a description of the content of the thesis in order of appearance, we will
show a graph representing the relationships between the different topics.

Chapter 1 introduces some technical concepts necessary in order to understand
the following chapters. In particular:

e Section 1.1 introduces the basic mathematical notations and the terminology
used throughout the thesis.

e Section 1.2 introduces labeled transition systems, bisimilarity and the bial-
gebraic techniques used to prove that bisimilarity is a congruence. Even if a
large part of this material will be used only in Part III we will introduce it first
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since, e.g., the concept of labeled transition system will be used throughout
the whole thesis, included the following part of background.

e Section 1.3 presents Winskel’s synchronization algebras [Win84].

e Section 1.4 presents the syntax and the semantics of Fusion Calculus, following
the approach of [Vic98].

e Section 1.5 introduces the representation of graphs as syntactic judgements
and the details of Synchronized Hyperedge Replacement (SHR), using both
Hoare and Milner synchronization models. Since SHR is central in our work,
and since the existing literature proposes different variations and applications
of it, we give also a short overview of the different forms in which it has been
presented.

e Section 1.6 gives a rapid overview of Logic Programming. Since this framework
is known worldwide we concentrate our attention on the particular use of Logic
Programming needed for modeling GC systems.

The original contributions of the thesis are organized in three different parts.
Part I presents the comparison between Fusion Calculus, SHR with both Hoare and
Milner synchronization models, and Logic Programming. In particular:

e Chapter 2 concentrates on the first part of the comparison, between Fusion
Calculus and SHR. The relation is explicitly stated in Section 2.1. Section 2.2
introduces the inference rules for Interleaving Milner SHR, a subset of Milner
SHR which has an interleaving semantics and which thus corresponds to the
image of Fusion Calculus along the mapping. Finally, Section 2.3 presents a
concurrent semantics of Fusion Calculus obtained via the mapping as a sample
application.

e Chapter 3 presents a detailed comparison of the expressive power of Hoare
and Milner synchronization models in the framework of SHR. In particular,
Section 3.1 introduces the used concept of expressiveness. Some results proving
the different expressive power of the two models are presented in Section 3.2.
Section 3.3 continues the comparison in a more restricted setting, where there
is no interface toward the environment and each node is attached to exactly two
hyperedges, showing that here Hoare synchronization can be easily simulated
using Milner synchronization, and introducing a suitable translation for graphs
to have a simulation also in the opposite direction. Section 3.4 goes back to
graphs with any number of connections (but again without interface) and it
presents some simulations between the two synchronization models exploiting
the above mentioned translation for graphs.
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e Chapter 4 concentrates on the last part of the mapping, from Hoare SHR

into Logic Programming. In particular, it introduces Synchronized Logic Pro-
gramming (SLP) (Section 4.1), a variation of Logic Programming exploiting a
transactional mechanism to synchronize Logic Programming steps, and Logic
Programming with hiding (Section 4.2), an extension of Logic Programming
with an operator of variable hiding taken from SHR. Section 4.3 exploits the
fact that the two extensions are orthogonal to merge them and to present a
mapping from Hoare SHR into SLP with hiding.

Part II presents frameworks that are parametric w.r.t. the concepts of synchro-

nization model and mobility patterns, thanks to the use of Synchronization Algebras
with Mobility (SAMs). In particular:

e Chapter 5 introduces SAMs (Section 5.1) and it presents the formalization of

commonly used synchronization policies as sample SAMs (Section 5.2). Also,
Section 5.3 defines a category of SAMs and it shows how to compose simple
SAMs to define more complex ones using categorical constructions.

Chapter 6 presents some applications of SAMs in the field of SHR. Section 6.1
introduces parametric SHR, a general SHR framework which can be instan-
tiated with a SAM that defines the interaction model used. SHR for het-
erogeneous systems (Section 6.2) generalizes the above approach by allowing
different SAMs to be used at once, one for each node.

Chapter 7 introduces the PRISMA Calculus (Section 7.1), a generalization of
Fusion Calculus with a parametric synchronization obtained using SAMs, as
done for SHR by parametric SHR. The relations of PRISMA Calculus with
Fusion Calculus, m-calculus and br-calculus are analyzed in Section 7.2.

Part III analyzes the observational semantics of the different frameworks pre-

sented and in particular it looks for compositional semantics where the chosen ob-
servational equivalence (bisimilarity or hyperbisimilarity) is a congruence w.r.t. the
different operators for system composition. In particular:

e Chapter 8 generalizes and applies the theory developed in Section 1.2 to para-

metric SHR. The basic definitions have to be restated in the bialgebraic frame-
work (Section 8.1) in order to prove that the defined notion of bisimilarity is
a congruence for a large class of SAMs (Section 8.2).

Chapter 9 analyzes instead the observational properties of Fusion Calculus
(Section 9.1) and of PRISMA Calculus (Section 9.2). For Fusion Calculus, we
prove that the bisimilarity relation derived from the concurrent semantics of
Section 2.3 is a congruence, while this is not the case for standard semantics.
For PRISMA we prove that hyperbisimilarity is a congruence for any SAM,
and we relate PRISMA processes on different SAMs.
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Figure 1: Graphical schema of the thesis.

Finally, Chapter 10 summarizes the obtained results (Section 10.1) and it de-
scribes some lines for future work, together with some ideas on the expected problems
and results (Section 10.2).

As promised, we conclude this section with a graph summarizing the connections
between the different topics presented in the thesis (Figure 1). Background topics
have rounded corners, while original contributions are drawn as rectangles. The
arrows are used to denote both formal mappings (and in this case they are labeled
with a reference to the corresponding result), or just general correlation.

0.6 Origins of chapters

Many results of this thesis have been already presented in some conferences and
some of them have been already published in a preliminary form. Although some
improvements have been done w.r.t. published material, and many concepts have
been extended or refined, the basic ideas behind the results remain the same. Hence,
we give here a list of pointers to published papers, together with a short description
of their contents. We recall that the whole work has been carried on inside the
European GC project Agile [AGI]| on architectures for mobility.
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The ideas of Synchronized Logic Programming, Logic Programming with hid-
ing and the mapping from Hoare SHR into SLP with hiding were already
present in our Master’s Thesis [Lan02].

The mapping from Hoare SHR (without restriction) into SLP, together with
an application to the Ambient Calculus (not reported here, since done be-
fore the beginning of our Ph.D.), has been published as an invited talk of
Ugo Montanari titled “Software Architectures, Global Computing and Graph
Transformation via Logic Programming” [LM02] in the proceedings of the 16th
Brazilian Symposium on Software Engineering.

The interleaving SHR and the mapping from Fusion Calculus into interleav-
ing SHR have been published as “A Graphical Fusion Calculus” [LMO04a] in

the ENTCS proceedings of the Final Workshop of the COMETA Project on
Computational Metamodels.

The whole chain of mappings (skipping the intermediate step of Milner SHR,
and without restriction) has been published as “Mapping Fusion and Synchro-
nized Hyperedge Replacement into Logic Programming” [LM04b] in a special
issue of Theory and Practice of Logic Programming on Multiparadigm Lan-
guages and Constraint Programming (still to appear).

A less technical but probably more suggestive presentation of the whole chain
of mappings (including Milner SHR, and restriction) has been published as “In-
sights emerged while comparing three models for global computing” [LMO5b]
in the electronic proceedings of Dagstuhl Seminar n. 05081, on Foundations
of Global Computing (still to appear).

Synchronization Algebras with Mobility and their applications to paramet-
ric SHR have been published as “Synchronization Algebras with Mobility
for Graph Transformations” [LMO04c] in the ENTCS proceedings of the 3rd
EATCS Workshop on the Foundations of Global Computing.

SHR for heterogeneous systems has been published as “Synchronized Hyper-
edge Replacement for Heterogeneous Systems” [LT05] in the LNCS proceed-

ings of COORDINATION’05, Seventh International Conference on Coordina-
tion Models and Languages.

The comparison between Hoare and Milner synchronization in the SHR frame-
work has been published as “Hoare vs Milner: Comparing Synchronizations
in a Graphical Framework with Mobility” [LMO05a] in the ENTCS proceed-
ings of GT-VC’05, Workshop on Graph Transformation for Verification and
Concurrency (still to appear).
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We give now a very short overview on some works that have been part of our
Ph.D. work but have not been included in the thesis since their topic is a bit outside
our main line of research.

e Paper “On Graph(ic) Encodings” [BLO04], published in the electronic proceed-
ings of Dagstuhl Seminar n.04241, on Graph Transformations and Process
Algebras for Modeling Distributed and Mobile Systems presents a summary
of different encoding techniques for mapping process calculi and distributed
formalisms to graphic frameworks.

e Paper “New Insights on Architectural Connectors” [BFL*04], published in the
Kluwer proceedings of IFIP TCS’04, 3rd IFIP International Conference on
Theoretical Computer Science presents a translation of CommUnity [FM97]
(an architectural specification language with a categorical semantics) into the
Tile Model, together with insights on the comparison between categorical and
algebraic approaches to system compositionality.

e Paper “Complete Axioms for Stateless Connectors” [BLMO05], published in the
LNCS proceedings of CALCO’05, First Conference on Algebra and Coalgebra
in Computer Science presents an algebra of connectors for enforcing synchro-
nization and mutual exclusion between different components, together with a
complete axiomatization for its bisimilarity.
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Chapter 1

Technical background

1.1 Notation, symbols and terminology

This section summarizes the notation that will be used through the different parts of
this thesis. More specific notation will be introduced in each chapter, when needed.

Basic mathematical notation. We use the usual notation for sets and opera-
tions over sets, with U for set union, N for set intersection, \ for set difference and )
for the empty set. The cartesian product is x, and it has higher priority w.r.t. the
other set operators. S™ is the cartesian product of n copies of set S. Furthermore,
|S| is the cardinality of S, and p(S) is its powerset. N is the set of natural numbers.

We write a vector & as (zi,...,%,), and its length n as |Z|. The i-th element
x; of vector Z is denoted as Z[i]. Given a set S we denote with vect(S) a vector
containing the elements in S (in any order).

We denote a (possibly partial) function f from A to B as f : A — B. We use id
to denote an identity function. Moreover we define:

dom(f) = {a € A|f(a) is defined}
Im(f) ={b € B|3a € A.f(a) = b}

We denote function composition with o, i.e., (f o g)(x) = f(g(z)). Also, we
denote with f|g (resp. fl\s) the function f’ such that f'(z) = f(z) if z € S
(resp. z € dom(f)\ S), and f’ is undefined otherwise. We use set operators also on
functions, referring to their representation as sets of pairs.

We use W to denote disjoint set union, with inj; and inj, as the left and right
inclusions, respectively. When no confusion can arise we write inj;(z) simply as z.
If inj,(z) € AW B we denote with comp(z) the element inj;_,(z) in B W A. Given
two functions f : A — C and g : B — D we denote with [f,g] : AW B — C& D the
function that applies f to the elements in A and ¢ to the ones in B.

Given an element x in set S and an equivalence relation £ on S we denote with
[z]z the equivalence class of x modulo E.
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Finally, S* is the set of strings on alphabet S.

Substitutions. Given a (possibly infinite) set of names A and a signature X,
let Tx » be the set of terms built with variables in A and functions in . We
omit A~ when empty. A substitution on N is a function o : N' — Ty » such
that {a € N|o(a) # a} is finite, whereas for the other names o behaves as the
identity. We will use postfix notation ac for substitution application. Also, given
two substitutions o and o', oo’ is the substitution that applies o first, and then o’.
We denote with {b;/ai,...,b,/a,} the substitution o that concurrently replaces all
instances of a; with b; for each 7 € {1,...,n}, and it is the identity otherwise. We
denote with eqn(o) the set of equations {b; = ay,...,b, = a,}. Domain and image
of o contain only the elements a; and b; respectively with a; # b;. A renaming
is a substitution o such that Im(c) C M. We allow to apply a substitution to
any syntactic structure containing names (e.g., terms, sets, ... ), with the intended
meaning that the substitution is applied to each name in the syntactic structure.
Given a set of equations E, we denote with mgu(FE) any idempotent substitution
o which is a relevant most general unifier of E, if it exists (see [Llo93] for more
details).

Names and binders. Given any syntactic structure S, we denote with n(S) the
set of names occurring in S. Furthermore, if the structure contains binders, we
denote with fn(S) the set of its free names (i.e., names which are not bound), while
bn(.S) is the set of bound names. Note that only fu(S) is meaningful if the structure
is considered up to a-conversion (i.e., renaming of bound names). The structure S
is closed iff fn(S) = (. Also, when a substitution is applied to a structure defined
up to a-conversion, capture-avoiding substitution is used, that is bound names that
appear in the substitution are a-converted to new names before the substitution is
applied.

1.2 Labeled transition systems and techniques for
compositionality proofs

We present here the basic notions of labeled transition system and bisimilarity,
together with some bialgebraic techniques to prove that bisimilarity is a congruence.

A labeled transition system is a formalization of the behaviour of a system with
state.

Definition 1.1 (Labeled transition systems).
A labeled transition system (LTS) over a set of states S and a set of labels L is a
triple lts = (S, L, —) where -C S x L x S is a labeled transition relation.

Notation. For (p,l,q) €— we write p N q.
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Intuitively, p N g means that the system in state p can evolve to state g by
performing an action /.

We are mainly interested in LTSs whose states have an algebraic structure.

We recall that an algebra A over a signature . (X-algebra in brief) is defined by a
carrier set | A| and, for each operation op € ¥ of arity n, by a function op” : |A|" —
|A|. The term algebra Ty on the signature ¥ has as carrier sets the sets of ground
terms (i.e., terms without variables) built using the operators in ¥, and operators op
mapping the tuple of terms t1, ..., %, into the syntactic term op(t,...,%,). Given a
set of axioms F, the term algebra T(y; gy on ¥ and E has as carrier sets the sets of
equivalence classes [t]x of terms modulo the smallest congruence including axioms
in E, and functions defined by op([t1]g, - - -, [ta]r) = [op(t1, ..., tn)]E-

A morphism between two X-algebras (called X-morphism) A and B is a function
h:|A| — |B| that commutes with all the operators in ¥, namely for each operator
op € ¥ of arity n we have op®(h(ai),...,h(a,)) = h(op?(ai,...,a,)).

Notation. We denote with Alg(X) the category of ¥-algebras and X-morphisms
(see [AHS90] for an introduction to category theory). If A is an algebra, we write
lts = (A, L, —) to denote the LTS with states in |A|, labels in L and labeled transition

relation —.

We now introduce bisimilarity, a notion of observational equivalence between
LTSs that refines trace equivalence by keeping into account also the branching struc-
ture of the allowed computations.

Definition 1.2 (Bisimilarity). Let lts = (S, L,—) be a LTS. A relation R over
S is a bisimulation iff p R q tmplies:

e for each p LN p' there is some q N q" such that p' R ¢';
e for each q EN q' there is some p AN p' such that p' R ¢'.
Bisimilarity = is the largest bisimulation.

More refined notions of bisimilarity, apt to deal with specific features such as
name mobility, will be introduced later.

A collection of SOS rules [Plo81] can be regarded as a specification of those LTSs
that have a transition relation closed under the given rules.

Definition 1.3 (SOS rules). Given a signature ¥ and a set of labels L, a sequent

P AN q s a triple where | € L and p,q are Y-terms with variables in a given set X.
An SOS rule r takes the form:

l ln
DL Pn = g

!
p—q
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where p; LN q; as well as p LN q are sequents.
We say that a LTS lts = (A, L, —) satisfies a rule r like above if each assignment

to the variables in X that is a solution' to p; LN q; for eachi € {1,...,n} is also a

solution to p 4 q.

Definition 1.4 (Transition specifications). A transition specification is a tuple
A = (X, L, R) consisting of a signature ¥, a set of labels L and a set of SOS rules
R over ¥ and L. A LTS over A is a LTS over ¥ and L that satisfies rules R.

It is well known that LTSs can be represented as coalgebras for a suitable func-
tor [Rut00].

Definition 1.5 (Coalgebras). Let F' : C — C be a functor on a category C. A
coalgebra for F, or F-coalgebra, is a pair (A, f) where A is an object of C and
f:A—= F(A) is an arrow of C. A F-morphism h : (A, f) — (B, g) is an arrow
h:A— B of C such that h;g = f; F(h).

Notation. We denote as Coalg(F) the category of F-coalgebras and F-morphisms.
We denote with SET the category of sets and functions.

Proposition 1.1. For a fized set of labels L, let P, : SET — SET be the functor
defined on objects as Pr,(X) = P(Lx XUX), where P denotes the countable powerset
functor, and on arrows as Pr(h)(S) = {{l,h(p))|{l,p) € SNL x X} U{h(p)|p €
SNX}Y, forh: X =Y and S C L x XUX. Then Pp-coalgebras are in one-to-one
correspondence with LTSs on L. The correspondence associates to the LTS lts the

coalgebra f given by f(p) = {{,q)|p Lge lts} U {p} and, conversely, p Lqeits
iff (1, q) € f(p).

We present now some results that exploit bialgebras, that is coalgebras for a
functor on Alg(X). In bialgebras the algebraic structure of terms and the coalgebraic
structure provided by the LTS are coherent, thus bisimilarity is a congruence w.r.t.
all the operators in the algebra. These results are taken from [PT97].

Theorem 1.1. Let ¥ be a signature, F : Alg(¥) — Alg(X) a functor and f an
F'-coalgebra. Then bisimilarity is a congruence for the LTS represented by f.

Bialgebras correspond to LTSs whose states have an algebraic structure, using
the correspondence in Proposition 1.1, but the inverse correspondence holds only
for well-behaved LTSs. We show now how to prove that a LTS has a bialgebraic
structure and thus it enjoys the congruence property.

We start by introducing a syntactic condition on SOS rules called De Simone
format [de 85].

'Given h : X — A and its extension to terms with variables in X, h : Tx(X) — A, his a
solution to p - ¢ for Its if and only if h(p) 4 h(q).
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Definition 1.6 (De Simone format). A rule r over ¥ and L is in De Simone
format iff it has the form:

li .
{z; > y;liel}

1
op(T1y...,Ty) =P

where op € ¥, I C{1,...,n}, the variables y; are distinct from variables x;, except
for y; = z; if i ¢ I, each of them occurs in p at most once and no other variable
oCCurs in p.

The first result that we present concerns term algebras without structural axioms.

Proposition 1.2 (Lifting of Pp). Let A = (X, L, R) be a transition specification
with rules in De Stmone format.
Let us define Pa : Alg(X) — Alg(X) as follows:

o |[Pa(A)| = Pr(|Al]);
lj .

e whenever r : —{w"_)yme{}

op(Z15eeesTn) 2P ) . )

such that op,(S1,...,S,) = {{,p{pi/vili € I}{q;/y;l7 ¢ I1})|{li,pi) € Si,i €

INg €8j,j¢1};

€ R then there exists an operator op, in Pa(A)

o if h: A — B is a morphism in Alg(X) then Pa(h) : Pa(A) — PaA(B) and
Pa(R)(S) = {{: h(p))[{l,p) € SN L x [A]} U{h(p)lp € SN |A]}.

Then Pa is a well-defined functor on Alg(X).

Corollary 1.1. Let A be a transition specification with rules in De Sitmone format.
Then the category Coalg(Pa) is a category of bialgebras.

Note that until now nothing guarantees that a Pp-coalgebra can be lifted to a
PA-coalgebra, since it is possible that the morphism can not be lifted to a morphism
in Alg(X). A simple and important case when this is guaranteed is when f : A —
PA(A) with A =T..

Proposition 1.3. A Pj-coalgebra f defined by rules in De Simone format can be
lifted to a Pa-coalgebra f' if f: A — Pp(A) with A =Ty

The above result is guaranteed since f’ exists and it is unique since Ty is the
initial object in the category.

The following result is due to [BM02] and it provides sufficient conditions to lift
the morphism from Tx to 1(s g).

Theorem 1.2. Let us consider an algebra Tis gy for a signature ¥ and a set of
aztoms E. Let us consider a LTS with stales in Tis gy specified by rules in De
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Simone format. Let us assume that for all equations ty =g t| in E, with free variables
{z;|i € I}, we have proofs of:

li . li .
Ty iel implies Ti " Yi '€ I und th=pt)

t Lty L

and vice versa. Then the LTS has a bialgebraic structure.

The additional condition essentially requires that each axiom bisimulates, namely
the LHS and the RHS are bisimilar, and this implies that =g is a bisimulation.

1.3 Synchronization algebras

We present here synchronization algebras (SAs), which were proposed in [Win84]
to deal with synchronizations among processes, as they are performed e.g. in
CCS [Mil82]. We use a slightly different presentation in order to be consistent
with standard SHR notation that will be introduced in Section 1.5.

In general, we consider a framework where processes can perform actions, and
actions may or may not synchronize. Suppose that two processes P and P’ can
perform respectively actions a and a'. If actions a and o’ synchronize then their
synchronized execution corresponds to just one action, otherwise a and o’ can not
be executed together. Since an action can also be performed asynchronously, we
must introduce also an action e that denotes “not taking part to the synchroniza-
tion”. Thus the synchronized execution of a and € corresponds to the asynchronous
execution of a.

Definition 1.7 (Synchronization algebras).

A synchronization algebra (Act,e,¢€) consists of a binary, partial, associative and
commutative operator e on a set of actions Act, which includes a distinguished ele-
ment €. We require that Va,b € Act.aeb=c iffa =b=c¢.

The binary operator e specifies how actions combine to form synchronized ac-
tions: if a e b is undefined then a and b can not synchronize, otherwise a e b is
the composed action. Associativity and commutativity are required to ensure that,
when many actions synchronize, the final result depends only on the actions and
not on how the result is computed. The additional condition requires that actions
never disappear, thus the result of synchronizing two non € actions can never be e.

Category theory [AHS90] has shown to be a useful tool to reason about SAs.

Definition 1.8 (Morphisms between SAs). Let (Acta,®4,€4) and (Actg, ®p,€p)
be two SAs. A SA morphism from the first to the second is a function h : Acty —
Actp such that h(es) = €g and a @4 b= c < h(a) eg h(b) = h(c).

Furthermore a morphism is called synchronous (strict in original Winskel’s ter-
minology) if h(a) = €p < a = €a.
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The following proposition is taken from [Win84].

Proposition 1.4. SAs and SA morphisms form a category SA with function com-
position as composition and identity functions as identities. SAs with synchronous
SA morphisms form a subcategory sSA of SA.

For some examples on SAs and on the use of category theory to combine them we
refer to [Win84|. However, in Section 5.3 we analyze the structure of the category of
Synchronization Algebras with Mobility, which is our original generalization of the
category of SAs.

1.4 Fusion Calculus

The Fusion Calculus [PV98, Vic98] is a calculus for modeling mobile systems, and
it is an evolution of the m-calculus [MPW92|. The interesting point is that it adds
to the m-calculus the concept of fusion, that is the ability to merge arbitrary names,
and nevertheless it is obtained by simplifying the calculus. In fact, the two action
prefixes for communication (input and output) are symmetric whereas in the 7-
calculus they are not, and there is just one binding operator called scope whereas
the m-calculus has two (restriction and input). As shown in [PV98] the 7m-calculus
can be encoded as a subcalculus of the Fusion Calculus (the key point is that the
input of 7-calculus is obtained using input and scope). An asynchronous version of
Fusion Calculus, where name fusions are handled explicitly as messages, is described
in [GW00, GWO04]. Here we follow the approach of [PV98, Vic98|.

We present here in detail the syntax and the SOS semantics of Fusion Calculus.
In our discussion we distinguish between sequential agents S (which have a summa-
tion as topmost operator) and general agents P.

We suppose to have an infinite set N of names ranged over by u, v, ...,z and an
infinite set of agent variables with metavariable X. Names represent communication
channels.

Notation. We use ¢ to denote an equivalence relation on N, called fusion, which
can be represented by a finite set of equalities (we denote with id the identity rela-
tion). The set of names n(¢) in a fusion ¢ contains the names in non singleton
equivalence classes.

We introduce free actions first.

Definition 1.9 (Free actions). The free actions are defined by:

Z  (Input)
7 (Output)
¢ (Fusion)

o=

IS



8 CHAPTER 1. TECHNICAL BACKGROUND

(AF1) (P|P)|Ps = P1|(P|Ps) (AF2) P |P, = P| Py (AF3) Pl0O=P
(AF4) (2)P = (y)P{y/z} if y ¢ n(P)
(AF5) rec X.P =recY.P{Y/X} if Y ¢ var(P)
(AF6) (2)0=0 (AFT) (2)(y)P = (y)(x)P
(AF8) (z)(P1|P,) = Py|(z) P, if z ¢ fn(P))
(AF9) rec X.P = P{rec X.P/X}

Table 1.1: Structural congruence for Fusion agents.

In the above definition, u is called the subject of the action, while names in 7
are the parameters of the action.

Notation. For uniformity with standard Fusion notation, in actions we shorten
(T1,.. ., Tp) AS T1 ... Tp.

The syntax of Fusion agents is defined below.

Definition 1.10 (Syntax of Fusion Calculus). The Fusion agents are defined

by:
S:i= Y .0;.P (Guarded sum)

P::= 0 (Inaction) rec X.P  (Recursion)
S (Sequential agent) X (Agent variable)
P|P  (Composition) [x =y|P (Match)
()P (Scope) [ #y|P (Mismatch)

The scope operator is a binder for names thus z is bound in (z)P. Similarly rec
is a binder for agent variables.

Notation. We denote with var(P) the set of free agent variables in agent P. We
use infixr + for binary sum.

Note that binary sum is associative and commutative. Note also that this syntax
allows only agents with guarded summation. Furthermore we only consider agents
which are closed w.r.t. agent variables and where in rec X.P each occurrence of X
is within a sequential agent (guarded recursion).

Processes are agents considered up to structural axioms defined as follows.

Definition 1.11 (Structural congruence). The structural congruence = between
Fusion agents is the least congruence satisfying the axioms in Table 1.1.

Rules (AF1), (AF2) and (AF3) are the abelian monoid laws for parallel compo-
sition (associativity, commutativity and 0 as identity) while (AF4) and (AF5) are
the a-conversion laws for names and for agent variables respectively. We have then



1.4. FUSION CALCULUS 9

P& p

———— PREF = sum
a.P — P P+Q— P

uT ’ uy ’ T
PlQ % P|Q Pl =2, prig

pop 20x z# T

oy SCOPE
(2)P — P'{z/z}
(7)a3 I _
P % P z¢ n(a) PES P cen@\n@) ag{nzh oo
p — PASS (2§)a -,
(2)P — (2)P (2) P —— P
(e ! P (07 P,
— P2 P yarcH 2P T7Y rsmarcH
[z =z]P = P [z #£y]P — P’
P=Q PSP P=q
Q 0h g @ srrRUCT
_)

Table 1.2: SOS semantics for Fusion Calculus.

the scope laws (AF6) and (AFT), the scope extrusion law (AF8) and finally the
recursion law (AF9).

Note that the set of free names occurring in a process does not depend on its
representation, thus function fn(—) is well-defined on processes.

Definition 1.12. A bound action is of the form (Z)aZ where |Z| > 0 and all elements
i Z are also in £. Names in Z are bound names. The actions consist of the free
actions and the bound actions.

Notation. We use « to denote an action. We define ¢\ z to mean (N ((N\{z}) x

NA\{z1) U{(z 2)}-

We have now all the tools needed to define the operational semantics of Fusion
Calculus.

Definition 1.13 (SOS semantics for Fusion Calculus). The SOS semantics for
Fusion Calculus is the least LTS satisfying the rules in Table 1.2.

When only closed agents are considered one can use the simpler reduction se-
mantics [Vic98]. We need the following auxiliary definition.

Definition 1.14 (Substitutive effect). A substitutive effect of a fusion ¢ is any
idempotent renaming o : N — N such that xo = yo iff vdy and o sends all members
of each equivalence class of ¢ to the same representative in the class.
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The reduction semantics for Fusion Calculus (we present here just the rules for
Fusion Calculus without match and mismatch, see [Vic98| for the complete ones) is
the least relation satisfying the following rules.

Definition 1.15 (Reduction semantics for Fusion Calculus).
(2)(R|(P"+ ui.P)|(ug.Q + Q) — (2)(R|P|Q)o
where |Z| = |§] and o is a substitutive effect of {¥ = ¢} such that dom(o) C n(Z2).
(2)(R|(P" + ¢.P)) = (2)(R|P)o
where o is a substitutive effect of ¢ such that dom(o) C n(Z2).

P=Q P—P P=Q
Q—Q

The relation between SOS semantics and reduction semantics is given by the
following theorem, taken from [Vic98|.

Theorem 1.3. Let P be a closed Fusion process without match and mismatch. Then
P QifrP—Q.

The concept of bisimilarity can be applied to Fusion Calculus, but special care
is required to deal with names.

Definition 1.16 (Bisimilarity for Fusion Calculus). A bisimulation for Fusion
Calculus is a relation R on Fusion processes such that P R () implies:

e PS5 P Abn(a)nfn(Q)=0=Q > Q APoR Qo where o is an mgu of o

if « is a fusion, the identity otherwise
and vice versa. Bisimilarity ~; is the mazimal bisimulation.

As shown in [Vic98], bisimilarity is not a congruence for Fusion Calculus. To get
a compositional equivalence hyperbisimilarity is used.

Definition 1.17 (Hyperbisimilarity).
A hyperbisimulation s a substitution-closed bisimulation. Hyperbisimilarity ~ is
the maximal hyperbisimulation.

The following theorem, taken from [Vic98| ensures compositionality.
Theorem 1.4. Hyperbisimilarity is a congruence for Fusion Calculus.

We show here an useful decomposition that can be defined for Fusion agents.
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Definition 1.18 (Standard decomposition for Fusion agents). The standard
decomposition of an agent P w.r.t. a standard sequence Sy of names is defined as:

P:PO'p

where op s called the standard renaming and P the standard agent of P. P is
obtained by substituting the n-th occurrence of a free name in P (according to some
fized order dictated by the structure of P) with the n-th name in Sy. We denote
with fnarray (P) the array of the free name occurrences in P, ordered according to

A

the fized order above. We require op = {fnarray(P)/ fnarray(P)}.

The following lemma ensures that the decomposition is well-behaved w.r.t. re-
namings.

Lemma 1.1. The decomposition of Definition 1.18 satisfies:
P = Qo implies P= Q Nop = 0qo
for each pair of agents P and Q) and each renaming o.

Proof. The first part is trivial, since the renaming does not change neither the
structure of the agent nor the ordering on names. The second part follows from the
definition of standard renaming. O

The standard decomposition can be easily extended to processes, by taking for
each process an agent in the equivalence class as representative and by decomposing
it. Equivalent agents give rise to equivalent decompositions, thus the choice of the
representative is not important.

1.5 Synchronized Hyperedge Replacement

In this section we present Synchronized Hyperedge Replacement (SHR), an approach
to graph transformation where local productions are synchronized to get global tran-
sittons. Since SHR is central in our work, and since different variations of it have
appeared in the literature, we give also a short overview of them, analyzing their
differences.

SHR is mainly aimed at modeling distributed systems (but also software archi-
tectures or process calculi) by using hypergraphs, that is graphs where each edge (or,
more precisely, hyperedge) can be connected to any number of nodes (instead of just
two). In the following we shorten hypergraph with graph and hyperedge with edge.
Usually edges model subsystems that are connected via shared nodes representing
communication channels or ports.

The allowed transitions of a system are obtained by combining context-free pro-
ductions that specify the behaviour of single edges. In particular, productions define
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how a single edge can be rewritten into a generic graph, the effect of the rewriting
on the interface, and the conditions that this rewriting imposes on adjacent nodes.
Thus global transitions are obtained by applying in parallel different productions
whose conditions are compatible. What exactly compatible means depends on which
synchronization model is used. The Hoare model (so called since it extends the
synchronization model of CSP [Hoa80]), for instance, requires that all the edges
connected to the same node execute the same action on it. The Milner model (ex-
tending the model of CCS [Mil82]) instead requires exactly two edges to interact
by performing complementary actions while the other edges must stay idle on that
node.

SHR has been introduced in [CM83] with the name of “Grammars for Distributed
Systems”. Here Hoare synchronization was used, and the emphasis was on analyz-
ing the history of the computation, obtained by explicitly representing past events
as part of the graph. Infinite computations and concurrency issues have been con-
sidered in [DM87]. The framework has been extended in [CDM85] by allowing to
merge and split nodes. In [RM99] there is a presentation of SHR inside the Tile
Model [GMO0O], and an approach to find the allowed transitions of a distributed
system using constraint solving techniques is also proposed. A main extension is
given in [KMO1], where node mobility is added. This is obtained by allowing actions
to carry tuples of nodes. When actions synchronize the carried tuples of nodes are
merged. This allows to create new connections at runtime. In particular, in [KMO1]
only newly created nodes can be communicated and merged. Also, a mapping into
the Tile Model [GMO0] is used to prove that an ad hoc defined bisimilarity is a
congruence. Finally, a notation for representing graphs as syntactic judgements (see
Definition 1.19 below) is introduced. Another important step is made in [HMO1],
where also old nodes can be communicated, but they can be merged only with new
nodes. This kind of SHR, with Milner synchronization, is shown to be strictly re-
lated to m-calculus [MPW92]. A last improvement is presented in [FMTO01], where
fusions of arbitrary nodes are allowed. These are exploited to give semantics to
Ambient Calculus [CG98], and, in particular, to the open primitive. Many appli-
cations of SHR can be found in the literature, in particular in the field of process
calculi [Tuo03], of software architectures [Hir03, HIM00, CH04] and of quality of
service [HT05].

We start the technical part of this section by introducing graphs, and their
representation as (syntactic) judgements [KMO1].

An edge is an atomic item with a label and with as many ordered tentacles as
the rank, rank(L), of its label L. A graph is composed by a set of nodes and a set of
such edges, and each edge is connected, by its tentacles, to its attachment nodes. A
graph is connected to its environment by an interface which is a subset of its nodes.
Nodes in the interface are called free nodes, while other nodes are called bound (or
restricted).

We consider graphs up to graph isomorphisms that preserve free nodes, labels of
edges, and connections between edges and nodes. We denote with Graphs the set
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(AG1) (G1|G2)|Gs = G1](G2|G3) (AG2) G1|G2 = G2|G1 (AG3) Glnil =G
(AGY) vz vy G=vyvz G (AGH) vz G =G if z ¢ fin(G)
(AG6) vz G =vy G{y/z} if y ¢ fn(G)
(AG7) vz G1|G2 = Gilvz G if z ¢ tn(Gh)

Table 1.3: Structural congruence for graph terms.

of such graphs.

In the definition of graphs as judgements nodes correspond to names, free nodes
to free names and edges to basic terms of the form L(zy,...,x,), where the x; are
arbitrary names and rank(L) = n. Also, nil represents the empty graph, | is the
parallel composition of graphs (merging nodes with the same name) and vy is a
declaration of a bound node y.

Definition 1.19 (Graphs as judgements). Let N be a fized infinite set of names
and LE a ranked alphabet of labels. A judgement is of the form I' = G where:

1. T C N is a finite set of names (the free nodes of the graph);

2. G is a graph term generated by the grammar
G:=L() | GIG | vy G | nil
where T is a vector of names, L is an edge label with rank(L) = |Z] and y is a
name.

We define the restriction operator v as a binder, and we demand that fn(G) C T

Note that by requiring just one inclusion we allow free isolated nodes in the
graph.

Notation. We assume that restriction has lower priority than parallel composition.
When defining the interfaces, we use the notation I',x to denote the set obtained
by adding x to ', assuming x ¢ T' and I';,T'y to denote the union of I'y and T,
assuming 'y N Ty = 0.

Next definition introduces a notion of structural congruence on judgements.

Definition 1.20 (Structural congruence on graph judgements). Graph terms
are considered up to the axioms of structural congruence = in Table 1.3. As far as
judgements are concerned, we define'FG=T"FG iff T =T" and G = G'.

Axioms (AG1), (AG2) and (AG3) define respectively the associativity, commu-
tativity and identity over nil for operator |. Axioms (AG4) and (AGbH) state that
nodes of a graph can be restricted only once and in any order. Axiom (AG6) defines
a-conversion of a graph w.r.t its bound names. Axiom (AGT7) defines the interaction
between restriction and parallel composition.
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Note that axiom (AGbH) garbage-collects isolated bound nodes, and axioms (AG4)
and (AGbH) allow to write just v{z,...,z,} instead of vz, ...vz,. We will drop
the braces if no confusion will arise. Note also that function fn is well-defined on
equivalence classes.

Judgements up to structural axioms are isomorphic to graphs up to graph iso-
morphisms. For a formal statement of the correspondence see [Hir03].

We define now SHR transitions, and then we show some inference rules to derive
them from basic productions. As far as mobility is concerned, we follow the approach
of [FMTO1], since it is the most general approach. As we will show in Chapter 2
and in Chapter 4, it provides the same mobility primitives used in Fusion Calculus
and that correspond to unification in Logic Programming.

Definition 1.21 (SHR transitions). Let Act be a set of actions, and given a € Act
let ar(a) be its arity. A SHR transition is a relation of the form:

rrg2% o @

where I'F G and ® - G' are judgements for graphs, A : T' — (Act x N*) is a total

function and 7 : I' — T is an idempotent renaming. Function A assigns to each node

x the action a € Act and the vector i of node references sent to x. If A(x) = (a, 7)

then we define acta(x) = a and np(z) = §. We require that ar(acty(z)) = | na(z)).
We define:

o n(A) ={z|3z.2 € np(x)}  set of communicated names;
e 'y =n(A)\T set of communicated fresh names.

Renaming m allows to merge nodes. Since w is idempotent, it maps every node into a
standard representative of its equivalence class. We require that Vo € n(A).xm = z,
i.e., only references to representatives can be communicated. Furthermore, we require
& = I'rUl'y, namely free nodes are never erased (2) and new nodes are bound unless
communicated (C).

In the above definition, 7 is necessary to allow merges among old nodes, since in
the derivation of a transition these merges may interact with new merges (see, e.g.,
condition 2 of rule (merge-H) in Definition 1.23) and so they must be traced.

Note that w.r.t. [FMT01] we choose a slightly different presentation: we use for
A a total function instead of a partial one. The two presentations are equivalent,
we use in fact an action € (see Definition 1.7) standing for “not taking part to the
synchronization” to make the function total. Naturally, € carries no parameters and
thus it has arity 0. This presentation allows frequently a more succinct description
of inference rules.

Note that in a transition the set of free names ® of the resulting graph is fully
determined by A and 7 (since I' = dom(A)), thus when writing the inference rules
the definition of ® for the conclusion can be left implicit.
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Notation. When writing A as set of pairs we write the triple (x,a,¥) for the pair
(z,(a,7)). To make the notation more concise, in the examples if no triple for x is
written, then it is (z,€,()).

Graphically, we draw edges as rectangles and nodes as bullets. Tentacles are
lines. We may write numbers to make explicit the order of tentacles attached to
each edge. Bound modes are drawn in white while free nodes are black. Also, we
represent A by decorating every node x in the LHS with acta(x) and na(x).

Productions are special transitions specifying the behaviour of one edge.

Definition 1.22 (Productions). A production is an SHR transition of the form:

X1y ey Tp F Lz, ..., 2) Moo -G
where x1,...,T, are all distinct.

For each edge label L of rank n there is a special idle production z1,...,x, F
L(zy,...,2,) Actd, T1ye-y Ty B Lz, ..., 2,) where A(x;) = (€,()) for each i.
Idle productions are included in all sets of productions, which are also closed under
a-conversion of names in {xy,...,T,} U .

A transition is obtained by composing productions, which are first applied to dis-
connected edges. Composition is performed by merging nodes and thus connecting
the edges. Finally, nodes can be bound.

We present now the set of inference rules for Hoare SHR (HSHR for short). These
rules have first appeared in [Lan02], and we give here an equivalent but hopefully
clearer presentation.

Definition 1.23 (Inference rules for Hoare SHR). The admissible behaviours
of Hoare SHR are defined by the following inference rules.

THG 250G, TI'FG 250G,
I,I'FGy|G) 2™ ¢ & F Gy Gl
where (T U ®) N (T"U ') = 0.

(par-H)

TG 25 &k G,
FOFGlUﬂ)QIFGQUp

where o : I' = " is an idempotent renaming and:

(merge-H)

1. Vz,y € I'zo = yo = actp(x) = actp(y)

2. p = mgu({(na(z))o = (na(y))olzo = yo} U {zoc = yolzm = yn}) where p
maps names to representatives in I'c whenever possible

3. VzeT.N(zo) = (A(2))op
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4 = pl«FU
(ros-E) Tz-G 25 ok G,
ke Gy 220 & - v7 G
where:

5. yelTan=yn)=>ar #x
6. Z = ({z} Un(A)) \ n(Alr)

TG ~5 oG,
ok G 2T 4 g,
where t ¢ TU® and n(y) N (TUP U {z}) = 0.

(new-H)

Rule (par-H) deals with the composition of transitions which have disjoint sets of
nodes and rule (merge-H) allows to merge nodes (note that o is a projection into rep-
resentatives of equivalence classes). Condition 1 requires that all (connected) edges
exhibit the same action on merged nodes. Condition 2 defines the most general uni-
fier p of the union of two sets of equations: the first set identifies (the representatives
of) the tuples associated to nodes merged by o, while the second set of equations
adds previous merges traced by w. Thus p is the merge resulting from both 7 and
o. Note that (condition 3) A is updated with these merges and that (condition 4) 7’
is p restricted to the nodes of the graph which is the source of the transition. Rule
(res-H) binds node z, guaranteeing that x is not a representative if it belongs to a
non trivial equivalence class and binding also all the nodes that were extruded on
node z in the starting transition (z too is bound if it does not appear in the final
label). Rule (new-H) allows to add to the source graph an isolated free node where
arbitrary actions (with fresh names) are performed.

Notation. We write P IFy T F G 25 & F Gy iff T - G 25 & - Gy can be
obtained from the productions in P using Hoare inference rules.

A similar set of rules can be defined also for Milner SHR (MSHR for short)
[FMTO01]. Milner synchronization models point-to-point communication. Milner
synchronization requires that actions can be either normal actions a (representing
input) or coactions @ (representing “output”). We also assume @ = a. Furthermore,
there are two special actions, the usual € and an action 7 of arity 0 representing
a completed binary synchronization. Thus, Milner synchronization on a node x
requires two complementary actions to interact, while other connected edges must
stay idle on z (i.e., they all exhibit action € on z). The final result of the binary
synchronization is 7.
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Definition 1.24 (Inference rules for Milner SHR). The admissible behaviours
of Milner SHR are defined by the following inference rules.

THG 250G, TI'FG 2506
DT GGy 25T & & - GGl
where (T'U®) N (I"U ') = 0.

(par-M)

TG, 25 a0 Gy
To b Gio X% & - vU Gaop

where o : I' = I' is an idempotent renaming and:

(merge-M)

1. Va,y € T.wo = yo Nacty(z) ZeNacta(y) ez £y =
(Vz e T\ {z,y}.20 = x0 = actp(z) = ¢)A
acta(z) =aANactpy(y) =aANa#T

2. p = mgu({(na(z))o = (na(y))o|zo = yo} U{xo = yolzr = yn}) where p
maps names to representatives in I'c whenever possible

(1, () ifxo=yo=zAx #yAacty(x) # e Aactp(y) # ¢
3. N(2) =< (Az))op if xo =z ANacta(z) # €
(6,()) otherwise

TzskG 25 dFa,
Tz Gy 2200 & -7 G

(res-M)
where:
6. (Jyelar=yn)=zr#x

7. actp(z) = eVacty(z) =7

8. Z=A{z} if x ¢ u(Alr), Z =0 otherwise

TG, 2% 6 G,
ok G 20 6 0 q,

(new-M)

where x ¢ T U ®.
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Figure 1.1: Star graph.

Rules are similar to those for Hoare synchronization. The main differences are
that in rule (merge-M) during action synchronization we require to have (at most)
two complementary non e actions (condition 1), and that their composition is 7
(condition 3). Thus we may have to reintroduce restrictions (condition 5) if some
nodes were extruded by the synchronized actions. In rule (res-M), just nodes z
where € or 7 actions are performed can be restricted (condition 7), and since these
actions have arity 0 only node x may have to be restricted in the final graph. Finally,
in rule (new-M) only action € is allowed on the newly created node.

Notation. We write P by T' '+ G, ﬂ) d+Gyiff T Gy ﬂ> d - Gy can be
obtained from the productions in P using Milner inference rules.

We show here a simple lemma, stating that transitions are closed w.r.t. injective
renamings.

Lemma 1.2. Let ¢ be an injective renaming and P a set of SHR productions. If
PlFs T' F Gy AT @ F Gy where either S = H or S = M, then P kg Ty +
Grp 22T By - G,

Proof. By rule induction. O
The definition of computation is standard.

Definition 1.25 (SHR computations). A SHR computation is a sequence of
SHR transitions such that for each i the final graph of transition i is the starting
graph of transition i +1. A SHR computation is called trivial iff the starting graph
1s equal to the final graph.

We present now an example of HSHR computation.

Example 1.1 ([HIMOO]). We show here how to use HSHR to derive a 4 elements
ring starting from a one element ring, and how we can then specify a reconfiguration
that transforms the ring into the star graph in Figure 1.1.
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Figure 1.2: Productions.

We use the set of productions P generated by:

vyt Ray) SOOIy Re ) REY) (L)
(I,T,(w)),(y,r,(w))’id

z,yF R(z,y) >z, y,wk S(y,w) (1.2)

The two productions are graphically represented in Figure 1.2. The production 1.1
allows to create rings. In fact, we can create any ring with computations like:

z R(.@,x) M T vy R(x,y)|R(y,$) (z,6,()),id

— z vy, z R(z,y)|R(y, 2)|R(z, z)
— zFvy,z,v R(x,y)|R(y, 2)|R(2,v)|R(v, T)

(z,6,()),id

The above transitions are generated by applying a renamed version of production 1.1
to one edge, and idle productions to the other edges.

In order to perform the reconfiguration into a star, we need productions with non
€ actions, such as production 1.2. By applying suitably renamed productions to each
edge we can derive the wanted transition:

(@,r;(w)),id
Tk vy, z,v R(J?, y)|R(ya Z)|R(Za U)‘R(Ua .’L’) S
— aw vy, 2,0 S(y,w)|S (2 w)|S(v, )] Sz, w)

More in details we take four renamed versions of production 1.2:

T,y l_ R(I, y) (z,r,(H))),(y,r,(UJ)),id> T, y,w l_ S(y, ’LU)

> Y1, 2,wp E S (z,wy)

(z1,r,(wz)),(v,r,(wz)),id} 21,0, Wy - S(U, wz)

('Ul’T’<w3))7(ml;r5<w3)):id> V1, T1,Ws = S(./El, w3)

Y1, 2 - R(yl,z

21,0 F R(z1,v

) (1,75 (w1))5(2,m (w1 )),id
)

v, T R(Ulaxl

We can apply rule (par-H) three times to put all the edges in parallel (notice that
this can be done since we have chosen productions with disjoint sets of names, and
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Figure 1.3: Ring creation and reconfiguration to star.

that the result is independent on the order in which we compose the productions, up
to structural equivalence), obtaining the transition:

xr,Y,Yi,%,21,0,V1,T1 |_ R(.’E, y)|R(y1’ Z)|R(Zl’ U)‘R(Ul’ ‘rl)
(z,r,(w)),(y,r,(w)),(yl,r,(wl)),(z,r,(wl)),(zl,T,(wz)),(v,r,(wz)),(vl,T,(wg)),(:vl,r,(wg)),id\

7

x,Yy,w, Yy, =z, W, 21,0,W2,V1,T1, W3 - S(y,’LU)|S(Z,’U)1)|S(’U,’U)2)|S($1,’UJ3)

Now we can apply rule (merge-H), with a renaming o = {y/y1,2/z1,v/v1,x/x1}.
The condition on actions given by Hoare synchronization s trivially satisfied, since
the same action r is executed on each node. The renaming p that we obtain s
{w/wy, w/we, w/w3}. Thus we get as transition:

T,Y, 2,0 - R(IL', y) ‘R(y, Z) ‘R(Z, U) |R(U, 33) (w,r,(w)),(y,r,(w)),(z,r,(w)),(v,r,(w)),id)
— @,y,2,0,wk Sy, w)|S(z,w)[S(v,w)|S(z, w)

Note that we could get the same result by applying many times the rule, using any
sequence of renamings whose composition amounts to o.

Finally, we can restrict nodes by applying rule (res-H) (one time for each node
to be bound in the starting graph), obtaining, as desired:

v+ vy, 2,0 R(z,9)|R(y, 2)| R(z, )| R(v, z) 200,

Sz, E vy, 2,0 S(y,w)|S(zw) (0, w)|S (@, w)

Note that, after having chosen to apply production 1.2 to one of the edges R, then
all the edges in the ring must use the same production, since they must synchronize
via action r. They must agree also on ny(z) for every x, thus all the newly created
nodes are merged. Thus the shown transition is the only one that can be derived
using the set of productions P and at least one production 1.2 (up to the choice of
the name of the new node).

The whole computation is represented in Figure 1.3.



1.6. LOGIC PROGRAMMING 21

1.6 Logic Programming

Since we think that Logic Programming is worldwide known, in this section we do
not present a detailed description of Logic Programming techniques, for which we
refer to [L1093], but we just fix the notation that we will use and we describe the
particular way in which we use Logic Programming, because it is a bit non standard.

In fact, we are not interested in logic computations as refutations of goals to
discover which computed answer substitutions make a goal true, such as usually
done for theorem proving, problem solving or artificial intelligence. We consider
instead Logic Programming as a goal rewriting mechanism. We consider logic atoms
as concurrent communicating processes that evolve according to the rules defined
by the clauses and that use unification as the fundamental interaction primitive. A
similar view of Logic Programming has been used in [BMRO1].

In order to stress the similarities between Logic Programming and process calculi
we present a semantics of Logic Programming based on a L'TS. Let us introduce the
syntax first.

Definition 1.26 (Syntax for clauses and goals). Clauses (C) and goals (G)
are defined by the following grammar:

C ::= A+(G
G := G,G|A|O

where A is a logic atom (i.e., a predicate), “,” is the AND conjunction and O is the
empty goal. We assume “,” to be associative and commutative and with unit L.

The informal semantics of A «— By, ..., B, is, in the common intuition, “for every
assignment of the variables, if By,..., B, are all true, then A is true”. However, in
our case, we consider as intuitive meaning “goal A can evolve to the system contain-
ing goals By, ..., B,, while interacting with other concurrent goals by performing
substitutions on the common variables”.

Remark 1.1. For historical reasons G is used to denote both a goal and a graph
term, however we will always make clear in which way it is used.

A logic program is a finite set of clauses. Computations in Logic Programming
are also called SLD-derivations (from “Linear resolution for Definite clauses with
Selection function”). In common Logic Programming one is interested in refutations,
that is computations ending with the empty goal. In our setting instead refutations
are not so interesting, since they represent computations that completely destroy the
system. We are interested instead in partial computations describing the evolution
of the system from one state to the other.



22 CHAPTER 1. TECHNICAL BACKGROUND

Definition 1.27 (SLD-steps). Let P be a logic program. The allowed SLD-steps
are given by the LTS defined by the following inference rules:

H«+ By,...,B,€P 6 = mgu({A = Hp})

7 atomic goal
PlFA— (By,...,Bg)pb

where p is an injective renaming of variables such that all the variables in the clause
variant (H < By, ..., Bg)p are fresh (i.e., not already used in the computation) and

A is an atom.
PFGLF

PG G % F G
We will omit P I if P is clear from the context.

conjunctive goal

The definition of SLD-computation is standard.

Definition 1.28 (SLD-computations). A SLD-computation is a sequence of
SLD-steps allowed by some program P and starting from some goal G, such that
for each v the final goal of step i is the starting goal of step i + 1. The substitu-
tion associated to a SLD-computation is obtained by composing (in the order) the
substitutions observed at each step.

An example of our use of Logic Programming is, e.g., Example 4.2.
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Comparing Models for Global
Computing
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Roadmap to part I

We present here some comparisons between different frameworks used in the lit-
erature for modeling GC systems. In particular, we present a chain of mappings
starting from Fusion Calculus [PV98], going through SHR [HMO1] and arriving to
Logic Programming [L1093].

In the first step (Chapter 2) the correspondence is stated at the level of LTS,
and it concerns Fusion Calculus without match and mismatch and Milner SHR.
The mapping is essentially an injective homomorphism, in fact it maps parallel
composition and scope into the corresponding operators of SHR. The main point is
that both the graph structure and the productions specifying the behaviour of the
system are derived from the structure of Fusion process. Milner SHR adds to the
Fusion framework the ability of performing many actions inside the same transition.
The subset of SHR that more tightly corresponds to Fusion Calculus, which we call
interleaving Milner SHR, is formally characterized. As a simple application, we show
a concurrent semantics for Fusion Calculus obtained via the mapping.

The second step (Chapter 3) is internal to the SHR framework, and it corresponds
to change the basic synchronization primitive from Milner synchronization (i.e.,
message passing) to Hoare synchronization (agreement). Instead of simply providing
a mapping, we give a full comparison between the two models. Formal results prove
that in general the two models have different expressive power. An important case
in which the expressive power is the same is found in closed 2-shared graphs, graphs
with no interface and where each node is shared by exactly two tentacles. The case
of general closed graphs is recovered by introducing a suitable translation for graphs,
based on the concept of amoeboid. As final result, a translation is given from Hoare
SHR to Milner SHR in the case of closed graphs, and the inverse translation is proved
to work only when at most three actions are performed on each node. In particular,
interleaving Milner SHR satisfies this constraint. The correspondence is in terms
of reachability for the unlabeled transition system. A correspondence between the
LTSs is not meaningful since our approach works only for closed graphs.

The final step (Chapter 4) is from Hoare SHR into Logic Programming. Here
again we have a correspondence at the level of LTS, and again the correspondence is
essentially an injective homomorphism. To get the mapping however, two variations
of Logic Programming have to be used. Synchronized Logic Programming (SLP),
which adds to Logic Programming a transactional mechanism, is considered to mimic
SHR Hoare synchronization. Moreover, an hiding operator is added to model SHR
restriction.
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Chapter 2

From Fusion Calculus to Milner
SHR

In this chapter we present a mapping from Fusion Calculus into Milner SHR, ex-
tending the work of [HMO1] for the monadic w-calculus [MPW92]|. The mapping
is essentially an injective homomorphism, since it maps parallel composition into
parallel composition and scope into restriction. This proves that the two models are
strongly related, e.g., they use the same primitives for synchronization (Milner syn-
chronization) and mobility (i.e., they allow to merge arbitrary names/nodes). SHR
proves to be more general, since it allows to concurrently execute many synchro-
nizations, both because many actions can be executed in the same transition and
because the same edge can perform multiple actions at the same time (this allows
multi-party synchronization). The image of Fusion Calculus along the mapping does
not allow these possibilities, and it is characterized by a particular set of productions
and inference rules, giving rise to interleaving Milner SHR. As an application we use
the mapping to define a concurrent semantics for Fusion processes.

2.1 Mapping Fusion Calculus to Milner SHR

We define here the translation from Fusion Calculus into Milner SHR. It refers only
to Fusion processes without match or mismatch. The mapping shows tight analogies
between the two formalisms, that is the same underlying structure based on parallel
composition and scope/restriction, the same synchronization model, i.e., Milner
synchronization, and the same techniques for name-handling, based on fusions. This
is a bit surprising since the two formalisms come from different areas (process calculi
and graph transformation) and they have been developed independently. Clearly,
the two formalisms have been chosen exactly since they showed interesting analogies,
and even if SHR can be used as a general framework for giving visual representations
to process calculi, in other cases (see, e.g., [FMTO01] where the case of Ambient
calculus [CG98| is analyzed) the mapping is not so straightforward.



28 CHAPTER 2. FROM FUSION CALCULUS TO MILNER SHR

The mapping allows to give a visual presentation to Fusion Calculus, and it also
provides a clean separation between the topological part represented by the graph
and the behavioural part defined by productions, which are instead mixed in Fusion
Calculus and in general in process calculi. Furthermore, since Fusion Calculus proves
to correspond to a subset of MSHR, the translation suggests many generalizations
for Fusion Calculus. Among the others, a concurrent semantics can be derived and
action prefixes can be generalized to allow different forms of synchronization (see
PRISMA Calculus in Section 7.1).

We present now the different parts of the mapping. First of all, we must extract
from the Fusion process the topology of the system, and represent it as a graph. The
general idea is to map sequential processes into edges, and names into nodes. In order
to have a finite number of productions that describe the evolution of each process, we
use edges and productions only for standard sequential agents (see Definition 1.18).
The actual names are instead tracked by nodes, and the name-handling ability of
SHR allows to animate general agents.

Definition 2.1 (Translation of Fusion agents). The translation [~y from
Fusion agents to graph terms is defined by:

[0] gHR = nil

[S154r = Lp(tnarray(S)) where P is the process for agent S and fnarray(S)
1S the sequence of free name occurrences in agent S

HPl‘PQHEHR = [[Pl]]gHR|[[P2]]§HR

[(@)Plsur = vz [Plsur

[rec X.P)tyr = [P{rec X.P/X}]|Err

Note that essentially the translation is an isomorphism, and the most important
part is the translation of sequential agents, which are decomposed according to
Definition 1.18 to separate their structure from their names. In the translation we
have not to deal explicitly with agent variables, since they can occur only inside
sequential agents since recursion is guarded. Also, note that the last rule can not
cause the translation to cycle since after a step a sequential agent is reached. It is
interesting to note that labels of edges are just suitable placeholders, used to provide
a link between edges and their behaviour. Similarly, standard names link positions
in the agent and the corresponding tentacles.

For simplicity, we suppose that the set of nodes in SHR coincides with the set
of names in Fusion Calculus (otherwise we need a bijective translation function).

Next lemma shows that the translation [—]%;r maps structurally congruent
agents to structurally congruent graph terms (and vice versa), thus it can be used
also on equivalence classes.

Lemma 2.1. Let Py and P, be Fusion agents. Then Py = Py iff [P )5k = [Po]5ur-
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Proof. Rules (AF1), (AF2) and (AF3) are the exact counterparts of rules (AG1),
(AG2) and (AG3), up to the translation. Also, rule (AF4) corresponds to (AG6),
(AF7) to (AG4), and (AF8) to (AGT).

Rules (AF5) and (AF9) can be applied only inside a sequential agent, since
recursion is guarded. Thus, since the translation of a sequential agent considers
only its equivalence class, applying these rules can not change the result of the
translation. As far as the inverse implication is concerned, by definition the labels of
two edges are equal only if the two corresponding agents are structurally congruent.

Also, rule (AF6) is a particular case (up to the translation) of rule (AG5). For
the inverse implication, rule (AG5) can be proved using rules (AF3), (AF8) and
(AF6), up to the translation. O

The lemma shows that the two formalisms have the same underlying structure,
that is a parallel composition operator and a binder for names, ruled by equivalent
congruences. Thus the translation can trivially be extended to processes.

Next lemma shows that the translation is also well-behaved w.r.t. renamings.

Lemma 2.2. Let P be a Fusion process and o a renaming. Then [P]igro =
[PolSr-
Proof. By structural induction on an agent representation of P. O

Fusion communication actions (and in particular Fusion communication prefixes)
are translated into SHR actions according to the following definition.

Definition 2.2 (Translation of communication actions). Communication ac-
tions are translated as follows:

o [(Nu]Eyr = (ing, T) where n = |7
o [(NuZ]tyr = (out,, T) where n = |Z|
We define in,, and out, as complementary actions, i.e. in, = out, and out, = in,.

Note that for each Fusion action (that is, either input or output), we have a
family of SHR actions, indexed by their arity. This allows to manage the side
condition |Z| = || of Fusion rule COM using only standard SHR primitives.

Note that the translation makes the distinction between free names and bound
names in the label to vanish, since 7 is discarded. However for any transition P — P’
we have bn(a) = n(a) \ in(P) = n([a]sgr) \ M([P]%;R), thus we can retrieve the
set of bound names when necessary. However, the fact that this information does
not appear in the label will influence the observational semantics. We will discuss
this issue in more detail in Section 9.1.

As the last step in our translation, we need to define the set of productions
specifying the behaviour of the graphs. In particular, productions are required for
each edge label, that is for each standard sequential agent that can be generated
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by the computation. Even if this defines an infinite number of productions, only
a finite amount of them are required for all the possible derivatives of one process.
For a proof of that fact, see the analogous result for 7-calculus in [Hir03].

Definition 2.3 (Productions for Fusion agents). We define productions only
for translations of standard sequential agents Y, ;. P;. Let I' be In([>-, ;. P&y g)-
We have a production for each i, whose form depends on «; being a communication
or a fusion action.

For communication actions:

Aaysid
N [[z @-Plsyr —— T F [Plsur

where Ay, (2) = [au]b g if T is the subject of a;, Ay, (z) = (€,()) otherwise.
For fusion actions:

'k [[Z @-PJ§ur 2% Iy - [Pl§ur

where A(x) = (€, () for each x in T and 7 is a substitutive effect of «;.

Note that since in MSHR computations nodes are never deleted, then the graphs
obtained during the computation will have some unused nodes (but these are isolated
nodes, so they do not influence the computation).

We want to show now that the translation preserves the behaviour of processes.
We start with a simple lemma relating substitutive effects of fusions and mgus.

Lemma 2.3. Let ¢ be a fusion and o be a renaming. Then the following two
propositions are equivalent:

e 0 is a substitutive effect of ¢;
e 0 is a relevant (i.e., it does not add new names) mgu of ¢.

Proof. First of all, note that ¢ contains just equations between names, thus the
mgu of ¢ always exists and it is a renaming. The condition that zo = yo iff z¢y
is exactly the definition of most general unifier. The additional condition specifies
that it is relevant. O

An interesting characteristic of transitions obtained from Fusion Calculus is that
they cause no generation of new names as shown by the following lemma (but they
can cause extrusions of bound names). However we can have infinitely many names
since the axiom for recursion allows a finite representation of an infinite agent (which
may contain infinitely many names).

Lemma 2.4. For each process P, if P = P' then fn(a) C fn([P]545)-
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Proof. Just note that all the productions satisfy the lemma, and that the property
is preserved by all the inference rules. O

Next lemma shows a correctness result for the translation, namely that all the
transitions of a Fusion process P give rise to corresponding transitions for its trans-
lation.

Theorem 2.1 (Correctness). Let Pr be the set of Fusion productions. For each
Fusion process P and each T' D tn([P]5yz) if P = P and I Nbn(a) = 0 then:

e if « is a communication action, Pp IFy T F [PlEyr Aostd, 0, Ce + [P)Egr
where Ay () = [a] kg if o is the subject of a, Ao(z) = (6,()) otherwise and
I'g = bn(a);

e if a is a fusion action, for each substitutive effect m of o, Pr IFay I'

[PlEgr AT Tk [P'7] Ly R where either A(z) = (¢,()) for each z € T or there
exists y € I' such that A(y) = (7,()) and A(x) = (¢,()) for each x € T'\ {y}.

Proof. The proof is by rule induction on the derivation of P 2 P’. In the following,
we will consider explicitly only the case I' = fn([P]%z). For the general case where
I D fn([P]%,R) we have just to add the missing names using rule (new-M) (notice
that this can be done since by hypothesis I' N bn(a) = 0).

Rule PREF) Let us consider the standard decomposition c@aa_ p of a.P, and
let us denote with ¢ its prefix and with P’ its continuation. Since a.Dis a standard
sequential process, then we have a production for the edge with label a.P of the
form defined in Definition 2.3. We can thus apply SHR rule (merge-M) to that
production with ¢ = o, p. Let us consider the case of a communication prefix first.
We have p = id, thus we obtain:

Aoy pyid

I —50a.p - [0.P]§gRr0a.p T —~0a.p F [PEgroar

Thanks to Lemma 2.2 we get the thesis.

Let us consider now the case of a fusion prefix.

We have p = mgu({zo = yo|zm = yn}) where 7 is an mgu of fusion «/. Also, 7’
in the consequence of rule (merge-M) equals p thanks to Lemma 2.4. Thus we have:

—=F Ae,r! , F ,
Fﬁgaa_P F [[Of.P]]SHRO-a.P — Fﬁgaa_Pﬂ— F [[P ]]SHRO-OZ-PW

The only thing to prove is that 7’ can be any substitutive effect of o = /o, p,
but this follows easily from the definition.

Rule SUM) Since we have only guarded sums, P must be of the form a.P’. Thus
the proof is essentially equal to the one for rule PREF, considering now a production
for the standard agent for a.P’ + Q.

Rule PAR) We have that [P|Q]5 5k = [PlEurl[Q]E s R By inductive hypothesis
we have a SHR transition 7" corresponding to P 2 P'. Let us now consider a
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bijective renaming o such that fn([Q]%;z0) contains only names that are new w.r.t.
T. As specified in Definition 1.22, we have idle productions for each edge in [Q]% &
We can easily derive from those productions an idle transition for [Q]5;ro. Since
all the names therein are new w.r.t. T, then we can apply rule (par-M) to the two
transitions. After that, we can apply rule (merge-M) with a renaming o ' which
is the inverse of 0. The result is exactly a transition for [P]Eg|[Q)5gr. If o is
a communication action, then the only non € action is the one from «, as desired,
and no new merges are produced since p and thus 7’ are identities. If « is a fusion
action instead, then 7’ = 7 up to a change of representatives, and it is applied to
the occurrence of [Q]% ;5 in the RHS, as required.
Rule COM) By hypothesis we have two transitions of the form:

Ayzyid

Ty F [PlSag Uy F [P Sur (2.1)
Aggyid

Do b [Qlsnr —— Tot [QTSur (2.2)

where A,z and Ayy perform the corresponding action on node u and actions
(¢, ()) on the other nodes.

Let us consider a bijective renaming o that maps each name in transition 2.1
to names not occurring in transition 2.2. Thanks to Lemma 1.2, we can take the
renamed version of transition 2.2 according to ¢ and we can use rule (par-M) to
compose it with transition 2.1. Finally, we can apply rule (merge-M) with the re-
naming o~ ! that is the inverse of 0. With respect to the case for rule PAR, when
applying the rule a synchronization happens. In fact, the two transitions perform
non € actions on both the nodes mapped to u, and the two actions are complemen-
tary. The resulting transition has as starting graph [P|Q]%z, a synchronization
A which is (¢, () on each node but u, and which evaluates to (7,()) on u. Also,
renaming 7' = p = mgu({Z¥ = ¢}) is the required one. Notice that it is applied to
the RHS of the transition.

Rule SCOPE) By hypothesis we have a transition of the form:

' [[P]]gHR ﬂ> I [[P,W]]gHR

where 7 is a substitutive effect of ¢ and either A(x) = (¢, ()) for each z € T or
there exists y € I' such that A(y) = (7, ()) and A(z) = (¢,()) for each z € T\ {y}.

We want to bind z. Since z € fn([P]%,z), then we can apply rule (res-M) to
bind it. The synchronization Al\(,; has the wanted form (notice that the only node
on which a 7 action was executed may be the one to be restricted). As far as the
renaming 7 is concerned, because of the first side condition we have to choose a
transition where the representative of the equivalence class of z is z (we always
have such a transition, since any node in the class can be chosen as representative).
Restricting the domain of 7 amounts to delete the binding {z/z}. Notice that there
is no need to apply it in the SHR framework, since it has already been applied
when the fusion has been computed. Also, no additional node is restricted in the
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Figure 2.1: Fusion process translated into a graph.

RHS since the restricted node z does not appear there, thus the restriction can be
garbage-collected using the axioms of structural congruence.

Rule PASS) This case is trivially proved by using SHR rule (res-M).

Rule OPEN) Here again rule (res-M) is used. The difference w.r.t. the previous
rule is that now z appears in the free names of A|\(,; and thus it is extruded and
added to I'g.

Rule STRUCT) Changing the starting agent from P to Q with P = @ has no
effect on the allowed transitions, since equivalent agents are mapped into equivalent
graphs and the corresponding productions coincide (note that the transitions for
graphs are defined directly on the equivalence classes). The same holds also for the
result of the transition. O

The mapping can also be extended to deal with match and mismatch operators,
since they can be distributed on sequential processes and embedded in the labels of
edges. After that, however, the rules of MSHR must be extended to perform checks
on equality or inequality of names. We will not deal further with this issue since we
want to stick to the standard semantics of MSHR.

We present now the translation of a sample transition.

Example 2.1. Let us consider the Fusion transition:

(2)(y2.Plazy.Qluzw.R) X2 (y2.P|Q|R){z/2}
The translation of the starting process into a graph term is:

vz Lzlwg.P’ (y; Z) |LT1£L‘2.’E3.Q’ (U, xZ, y) ‘L$1w2$3.R’ (U, Z, U))

where P', Q' and R' are such that the processes labeling the edges are the ones from
standard decompositions of the corresponding Fusion processes. For simplicity we
also suppose that these are closed processes (otherwise the nodes corresponding to
their free names should be added to the corresponding edges), thus we can choose
I' =wu,z,y,w as context. The resulting graph is in Figure 2.1.
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Furthermore we have the following productions (the first one is an idle produc-
tion, the other ones are from Definition 2.3):

id
Y,z F Lzlzz.P’(yaz) - Y,z = L.’L‘1$2.P’ (yaz)

U, r, Y1 + [[Q]]gHR

Ui, 21, w E [[R]]gHR

(u,outa,{z,y1)),id
05,1 F Lagage (7, g7) L2es)id,

U1, 21, W H L$1w2$3.R’ (ula 21, w) (e, (z1,0)) 1
Since the three productions have disjoint sets of names we can apply two times rule
(par-M) to combine them, obtaining:

Y,z2,U,T,Y1,U1,21,W F LJJ1:E2.P’ (y: Z) |Lﬁzzz3.Q’ (U, x, yl) |Lmlzzm3.R’ (ula 21, ’LU)

(u,outa,(z,y1)),(u1,in2,(z1,w)) ’id\
7

Y,2,u, T, Y1, U1, 21, W = L$1$2-P’(y’ z)||IQ]]§HR|[[R]]§HR

Now we have to merge corresponding names, using rule (merge-M) with renaming
o = {y1/y,u1/u,z1/z}. This causes the synchronization between the two actions
performed on u and uy, since these are complementary actions. We get a renaming
p = {z/z,y/w} (but we could have chosen also different representatives for the
equivalence classes). The obtained transition is:

) (u,T,()),{ﬂv/z,y/w}>

u,r,y,z,w F Lw1$2.P’ (ya Z) |Lﬁ$2$3.Q’ (U, x, y) |Lw1$2$3.R' (U’7 Z,w
—u,, Yy - (L$1$2-P' (ya Z)HIQ]]EHR‘ HR]]EHR){‘I/Z’ y/w}

As a last step, we have to bind z using rule (res-M):

(u,7,()){y/w}
u,r,y,w Frz Lz1w2.P’ (y: Z) |Lﬁw2w3.Q’ (U'a z, y) ‘mezws.R’ (U, Z, U)) w)

= U, 2,y = (Layao.p (4, 2) [QUs e [R50 {2/ 2, y/w}

Notice that if we would have chosen z as representative instead of x, then this step
would not have been allowed. The transition is the desired one, since {y/w} is a
substitutive effect of {y = w}.

Figure 2.2 shows how the mapping allows to give a visual representation to Fusion
computations (Gg and G are the graphs given by [Q5yr and [R] %y 5 respectively).

Until now, there is still a mismatch between the SHR framework, which allows
to execute different synchronizations in different parts of the graph inside the same
transition, and Fusion Calculus, which forces a strict interleaving among synchro-
nizations.

In the following two sections we work to bridge that gap, in particular we in-
troduce interleaving Milner SHR (Section 2.2), which is an SHR framework where
interleaving is forced and which characterizes the image of the mapping from Fusion
Calculus. On the opposite side, in Section 2.3 we present a concurrent semantics for
Fusion Calculus, defined through the mapping, and accounting also for the missing
transitions.
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2
\ 4N\
3 2 (u,1,<>),{y/w}
X w
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T 1
u u
out ,<x,y> inp,<zw> [

Figure 2.2: Graphical representation of a Fusion transition.

2.2 Interleaving Milner SHR

In this section we introduce interleaving Milner SHR, (also referred as iMSHR), a
subset of Milner SHR allowing only transitions which are “interleaving”, i.e., where
just one action can happen: either a communication action or a fusion action.

The main aim of the introduction of iMSHR is to have a strict correspondence
with Fusion Calculus, and more in general to show how to deal with the problem of
forcing interleaving in a framework where distribution and the absence of a central-
ized control push naturally toward concurrent semantics. The same approach can
be applied also when different synchronization models are used, but we concentrate
here on Milner synchronization since it is the one involved in the mapping from
Fusion Calculus to SHR.

We give two characterizations of iMSHR, one as stand-alone framework, defined
by restricting the allowed kind of productions w.r.t. standard SHR and by giving
a suitable set of inference rules to compose them, and the other one as subset of
MSHR. The two different characterizations are proved equivalent in Theorem 2.2.

In order to have a more direct connection with Fusion Calculus, we drop the 7
action, using € instead. Notice that this can not be done in the standard framework,
where distinguishing 7 from € allows to recognize the nodes where a synchroniza-
tion has already happened, and thus no further synchronization can be performed.
Instead, in the interleaving framework, each transition contains just one synchro-
nization, and this constraint can be imposed directly by the structure of the inference
rules.

We give now the formal definition of interleaving transition.

Definition 2.4 (Interleaving transitions). An SHR transition I' - G N
G5 is an interleaving transition iff it is of one of the two following kinds:

communication transitions: they have A(x) = (¢,()) for each z € T' but (at
most) one and they have ™ = id;

fusion transitions: they have A(z) = (¢, ()) for each x € T.

The following inference rules are used to combine interleaving productions.
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Definition 2.5 (Inference rules for interleaving Milner SHR). The admissible
behaviours of interleaving Milner SHR are defined by the following inference rules.

TG 250G, TFG,

(par-iM) -

re6 2 oG, a2 ora,

T'FGi|GL 295 &7 - wU (Gy|GY)p

(com-iM)

where:
1. el Ve e T\ {y}Alz) =A'(z) = (6, )) ANA(y) = (a,2) AN (y) = (@, )
2. Vr € T Ac(z) = (,())

3. p = mgu({Z = Z'}) where p maps names to representatives in I' whenever
possible

4. ™= plr
5 U=(@Ud)p\ "

TGy 25 @k G,
Fal—Gloﬂﬂb’l—Ggap

where o : I' = I is an idempotent renaming and:

(merge-iM)

6. p=mgu({xoc = yolzm = yn})
1 ) = { (D o =210 £ 00

(€,()) otherwise
8. ' = plrs
A
ra+FGy —=o+G
(res-iM) & AE 1 2
T'Fvr Gy =255 @' FuvZ Gy
where:

9. yelar=yr)=>an#z
10. actp(z) =€

11. Z ={z} if z ¢ n(Alr), Z = 0 otherwise



2.2. INTERLEAVING MILNER SHR 37

TG, 2% 6,

(new-iM)
ok G @O 6 0,

where x ¢ T U .

With respect to the rules in Definition 1.24, here rule (par-iM) allows to add only
idle parts of the graph. Also, note that the two contexts I' must be equal, but this
is not a restriction since rule (new-iM) can be used to add names to contexts. Rule
(com-iM) allows the reaction of two communication transitions to form a fusion
transition. Rule (merge-iM) is used for non injective renamings: it is necessary
when two tentacles of one edge performing an action are connected to the same
node. Rules (res-iM) and (new-iM) are the standard ones, apart from the fact that
7 is no more used.

Notation. We write P iy TGy 25 & F Gy iff T - Gy 25 & - Gy can be ob-
tained from the productions in a set P of interleaving productions using interleaving
Milner inference rules.

The following lemma shows that the inference rules for iMSHR indeed produce
interleaving transitions.

Lemma 2.5. Let P be a set of interleaving productions. If P Ik ' Gy AT -
Gy then ' F G4 ﬂ) ® F G5 is an interleaving transition.

Proof. By rule induction. More in details, rule (par-iM) preserves both A and 7, thus
it transforms communication transitions into communication transitions and fusion
transitions into fusion transitions. Rule (com-iM) combines two communication
transitions into a fusion one. Rule (merge-iM), (res-iM) and (new-iM) just preserve
the kind of the transitions. O

We present now a simple application of interleaving Milner SHR to a case which
has no relation with Fusion Calculus. Here the interleaving behaviour allows more
control on the allowed computations.

Example 2.2. Let us consider as example the problem of growing a ring graph,
as done in the first part of Example 1.1. Instead of using the simple context free
production used there, we use a couple of synchronizing communication productions:

M x,y = vz R(-Ta Z)|R(Z7 y)

z,y = R(z,y)
ryF Rzy) % 2y Rzy)
Let us consider as starting graph a four elements ring:

z vy, z,0 R(z,y)|R(y, 2)| R(z, v)| R(v, )
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We can take two suitably renamed instances of the productions and then apply
rule (new-iM) two times for each production to get:

(yﬂ’())zid

‘/'E7yi Z7w }_ R('T7 y) '/'E7yi Z7w }_ I/t R("I;7 t)‘R(t’ y)

vy 2wk Ry, z) L2 o wk R(y, 2)

Since the two transitions have the same context we can apply rule (com-iM) to
get:
2,9, 2w E R(z,9)|R(y, 2) > @y, 2,w b vt R(z,8)|R(t,y)|R(y, 2)
We can then apply rule (par-iM) to add the idle part of the graph:

z,y,2,w - R(z,y)|R(y, 2)|R(z,v)|R(v, z) %

— z,y,z,w vt R(z,t)|R(t, y)|R(y, 2)| R(z, v)|R(v, z)
and finally rule (res-iM) (three times) to bind nodes y, z and w:

x b vy, 2w R(z,y)|R(y, )| R(zv)|R(v, 2) =
—z,y,z,w - vt,y, z,w R(z,t)|[R(t,y)|R(y, 2)|R(z,v)| R(v, )
Note that using the interleaving inference rules we can have only transitions that
add at most one new edge to the ring, while with the same productions but with

the standard rules we can add many edges concurrently (in particular, each pair of
adjacent edges can synchronize to add a new edge).

We now consider again the Fusion transition of Example 2.1, in order to empha-
size the differences between the two sets of inference rules.

Example 2.3. Let us consider the Fusion transition of Example 2.1:

(2)(yz.Plazy.Qluzw.R) =% (y2.P|Q|R){x/2}

and the corresponding graph term:
vz mez-P’ (ya Z) |Lﬁmz3-Q’ (u, Z, y) ‘LI1E2I3-R’ (u’ 2 w)

with context I' = u,x,y,w (see Figure 2.1).
Here we use as productions:

(u,0utz,(z,y))
u,r,y - Lﬁwzwg.Q’(u,xa y) M u,r,y H [[Q]]gHR
u,z,w |_ wazws-R' (U, 2 w) M) u,z,w |_ HRﬂgHR

We can use rule (new-iM) (by applying it twice to each production) to make the two
conterts equal:

) (u,out2,(z,y))

F
u,a:,y,z,wl—LﬁMS_Q:(u,x,y U’ax:y: Zawl_ [[Q]]SHR

) (uain27<zaw))

F
U,fL‘,y,Z,UJFLzlxzxs_Rl(u,Z,w U/axayazaUJ'— [[R]]SHR
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We can then apply in sequence rules (com-iM), (par-iM) and (res-iM) to have re-
spectively:
{z/zy/w}
u,x,y,z,w H LTlZ2$3.Q’ (U, x, y) ‘L$1$2w3.R' (U, Z, w) —_—
u, 2,y = ([Qlsurl[Rlspr){z/2 y/w}
u,x,Y,z,w H L$1$2.P’ (ya Z) |Lﬁw2w3.Q’ (U, z, y) |L$1w2z3.R’ (U, Z,y 'LU)

U, 2,y = (Loyar.p (y: 2)|[QLs gl [Rlsur) {2/ 2, y/w}

U, T, Y, w Fvz LIII2-P' (y7 Z) |LI_1$213.Q' (’U,, T, y) ‘mezzs.R’ (u, Z, ’LU) {y/w}}

u, 2,y = (Layao.rr (4, 2) | [QLsrl [Rlsur){z/ 2, y/w}

As expected, the derived transition is almost the same of FErample 2.1 (see Flig-
ure 2.2), but it uses € instead of T on node u.

{z/zy/w}

As shown in the example, the set of inference rules for iMSHR forces a different
style of derivation w.r.t. the one for MSHR. First, just the non idle productions
have to be considered, and instead of choosing instances with disjoint sets of names,
instances with the same names must be chosen. Names appearing in just one of
the productions must be added to the other one using rule (new-iM). Rule (merge-
iM) must be used if a rewritten edge is attached many times to the same node. If
the transition is the synchronization of two communication productions, then rule
(com-iM) is used to combine them. Finally, the rest of the graph (which is idle) can
be added using rules (par-iM) and/or (new-iM). Restrictions can be introduced as
usual, using rule (res-iM).

We can state the following correspondence theorem between iMSHR and MSHR.
Essentially, IMSHR is the restriction of MSHR to the case of just one edge performing
a non idle production, or two edges synchronizing their communication productions
on a shared node.

Theorem 2.2 (Correspondence between iMSHR and MSHR). Given a set
of interleaving productions P and a starting graph I' = G1 we have P Ik ' F

G 25 3 Gy iff we have P Ik T' F Gy Mg Gy where A(z) = (¢,()) if
N(z) = (1,()) and A(z) = AN (x) otherwise, and the second derivation uses either at
most one non idle production or two communication productions which synchronize
their non € actions on a shared node.

Proof. The proof is in two steps: first of all we have to prove that each iMSHR rule
can be simulated using MSHR rules (apart from the possible exchange of € for 7), and
this will prove the forward implication. Note, in fact, that iMSHR inference rules
can not generate other kinds of transitions (since these are exactly the interleaving
transitions, and thanks to Lemma 2.5). For the backward implication we have to
prove that all the transitions obtained with MSHR inference rules using either at
most one non idle production or two communication productions which synchronize
their non € actions on a shared node can be generated by the iIMSHR inference rules.
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Let us consider the different iMSHR rules to prove the first part.

Rule (par-iM): let us consider a bijective renaming o that maps all the names
in [' to names not in I'. Using MSHR rules applied to idle productions we can
easily derive an idle transition for the graph I'c F Go. We can then apply rule

(par-M) to compose it with the transition I' - G N G, and then rule
(merge-M) with the renaming 0! that is the inverse of o. Notice that here p = T,
and since it is idempotent we can suppose that it is applied only to G). Also, no
real synchronization is performed, since for each node we have two actions, and one
of them (the one from the idle transition) is always e. Thus A does not change. This
proves the thesis.

Rule (com-iM): again, we have to take a renamed version with fresh names of the
second transition, which exists thanks to Lemma 1.2. Again, this allows to apply
rule (par-M) and then rule (merge-M) with the inverse renaming. By hypothesis the
only two non trivial actions are performed on the same node, thus this is the only
real synchronization that is performed by rule (merge-M). The only merges produced
by p are those from the synchronization as required, since the two premises carry
just identity renamings. The resulting A contains a 7 as only non € action, but this
is replaced by € too when moving to the interleaving framework.

Rule (merge-iM): this is just a subcase of MSHR rule (merge-M), when at most
one non € action exists (thus no real synchronization can happen).

Rules (res-iM) and (new-iM): these correspond exactly to the MSHR rules (res-
M) and (new-M).

Let us consider the second implication. Let us consider the case of at most one
non idle production first. Rule (par-M) can be applied in this case just to add an
idle part of the graph, but nodes can be added in the iMSHR framework using rule
(new-iM), and edges can then be added using rule (par-iM). MSHR rules (merge-M),
(res-M) and (new-M) reduce to their instances (merge-iM), (res-iM) and (new-iM).
We can consider now the case of two communication productions. In that case,
applying rule (par-M) produces a non interleaving transition. To get back to the
case of productions synchronizing on the same node, rule (merge-M) must be used.
The total effect of these two rules is mimicked by the only rule (com-iM), with the
only difference that first the two contexts must be made equal (but it is easy to
see that Lemma 1.2 holds also for the iMSHR inference rules). After that we get a
transition that is analogous to a fusion transition, apart for a 7 on the node where
the synchronization has been performed, and the above reasoning applies. O

Now we can consider again the case of Fusion Calculus, and show that iMSHR
characterizes the image of the mapping. First of all notice that all the Fusion pro-
ductions are interleaving productions. We can restate here, in the new framework,
the correctness result of Theorem 2.1.

Theorem 2.3 (Correctness). Let Pr be the set of Fusion productions. For each
Fusion process P and each T' D fn([P]%, ) if P~ P' and T Nbn(a) =0 then:



2.2. INTERLEAVING MILNER SHR 41

e if a is a communication action, Pp lbiny U F [Pligr Aedd P Ty b [PEar
where Ay (z) = [a]Egr if T is the subject of a, Ay(x) = (6, () otherwise and
I'g = bn(a);

o if a is a fusion action, for each substitutive effect m of a, Pr lkipy T F
IPlsur A Tk [P'7] &y r where A(z) = (€, ()) for each z € T.

Proof. The proof is by induction on the derivation of P % P', and it just composes
the correctness result of Theorem 2.1 with the proof of the correspondence between
iMSHR and MSHR of Theorem 2.2. O

The main improvement obtained thanks to iMSHR is that now we can have also
a completeness result.

Theorem 2.4 (Completeness). Let Pr be the set of Fusion productions. For each

Fusion process P if Pr Ik T'F [PlEgr AT oG for some T D fn([P]EyR) and
the transition is not idle then there exists P' such that:

e cither P = P', A(w) = [a] 5y x if © is the subject of a, A(z) = (¢, () otherwise,
7 =1d, [P'|igr = G and ® =T, Ty where Ty = bn(a);

eorP % P', m is a substitutive effect of ¢, A(x) = (¢,()) for each z in T,
[P'r]iyr =G and ® =T'r.

Proof. The proof is by induction on the derivation of T' - [P]%, AT B G

Production) If the transition is a production, since it is not idle by hypothesis,
it must be one of the productions defined in Definition 2.3. For each of those
productions to exist, the Fusion process P must have a particular structure: in
particular it must be a sum containing a summand of the form «.P’. Thus the
required Fusion transition exists thanks to Fusion rules PREF and SUM.

Rule (par-iM)) Let us consider the case of a fusion transition, which falls in
the second case of the theorem (the case of communication transitions, which falls

in the first case, is simpler). We know that ' - G;|G] A b Go|Gm with
G1|G| = [P]Eyr- Thus P must be of the form P;|P] with [P]%,, = Gi and
[P]]% s = G- From the hypothesis of rule (par-iM) there is a transition of the form
L+ [P]Egr AT - (G,. By inductive hypothesis we have a transition Py 2, P,
and 7 is a substitutive effect of ¢, A(z) = (¢, ()) for each z in T, [Por]fyn = Go
and ® = I'r. Using Fusion rule PAR we have P;|P| 2 P,|P], which is the required
transition since [(Po|P)7]5gr = [Pom]sgrl P75 = G2|G)7-

Rule (com-iM)) By inductive hypothesis we have two transitions of the form
[PEgr = Gy Also, @ and o' must be an input and an output, with the same
arity and performed on the same name. Let us consider first the case where the two
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actions are free actions. We can apply Fusion rule COM to get P;|P| 2 P,|Pj. This
is the Fusion transition that corresponds to the conclusion of rule (com-iM) since
[P P]syr = G1|GY, 7 is a substitutive effect of ¢ and [(P|Py)7]tnr = (Ga|Gh)p
since m = p thanks to Lemma 2.4. For the same reason U is empty.

In order to prove the general case, we have to show that any transition that can
be derived using iMSHR inference rules can also be derived by applying rule (com-
iM) before any application of rule (res-iM). More in general, we have to show that
all the applications of rule (res-iM) can be moved to the end of the proof without
changing the result. Since the proof of this fact is simple, but long, we present
just one interesting case as example. We consider the application of a rule (res-
iM) restricting one of the parameters, let us call it z, of the first premise of rule
(com-iM). If (res-iM) is applied first, then z appears in the label of the premise, and
no restriction for z is added to the final graph. When applying rule (com-iM) z is
neither in I' nor in the final label, thus it is in U and the restriction is added. Also,
it is not used as representative, thus if it is in a non trivial equivalence class it is
just substituted. By applying rule (com-iM) first, no restriction is added since z is
free in the LHS, but when applying rule (res-iM), since  no more appears in the
label, then the restriction is added also to the RHS. Also, only transitions where x
is not a representative of a non trivial equivalence class in 7 can be chosen (and, if
it is not a representative, it is substituted). Thus the two derivations produce the
same result.

Rule (merge-iM)) One can simply prove by rule induction on Fusion derivations
that given a renaming o and a transition P = P’, then there is also a transition
Po 2% P'o. This is enough to prove the thesis for communication transitions, where
7 = id and thus also 7’ = p = id. To prove the theorem also for fusion transitions
we have to show that p is a substitutive effect of ¢o, that is p = mgu(¢po) thanks
to Lemma 2.3. By definition mgu(¢o) = mgu({zo = yo|r =y € ¢}) = mgu({zo =
yolxm = yw}) where the second step is from the definition of substitutive effect.
Since this is exactly the definition of p then the thesis holds.

Rule (res-iM)) Different cases have to be considered here. If the restricted name
z is not a name appearing in the label, then Z = {z} and this corresponds to an
application of rule PASS. Notice that in that case the restriction of the iMSHR
observation has no effect on the corresponding Fusion label. Let us consider now
the case of z appearing in the label. In any case, z can not be the subject of the
non trivial synchronization performed by the transition (if any exists), since the
action performed on z must be €. Thus, for communication transitions, it can just
be one of the parameters. In that case, Z = (), z is added to 'y and an extrusion
must be performed in the Fusion setting. This is done by rule OPEN. The last
case is the one dealing with a fusion transition, where z is merged. In that case z
can not be a representative, and a binding {z/z} appears in 7. Similarly, z = z
appears in ¢, but this equality is removed by going to ¢ \ z, and the corresponding
binding is deleted from 7 by the operation of domain restriction, thus preserving the
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Fusion MSHR Fusion MSHR

Process Graph Transition Interleaving trans.
Sequential process | Edge Parallel comp. | Parallel comp.
Name Node Scope Restriction

Prefix execution Production 0 Nl

Table 2.1: Comparison between Fusion and MSHR.

correspondence between the two labels. In the Fusion setting the binding is applied
to the final process, but this is not required in the SHR setting, where 7 has already
been applied.

Rule (new-iM)) Here the same Fusion transition corresponds to both the premise
and the conclusion, the only thing that changes is in fact the chosen context I'. [

We end this section with a simple schema (Table 2.1) summarizing the corre-
spondence between Fusion Calculus and MSHR. The correspondence is built on the
isomorphism that maps parallel composition into parallel composition and scope
into restriction. Thus a process is translated into a graph whose edges stand for
sequential processes and whose nodes are names. From a dynamic point of view,
prefix executions give rise to productions, and whole Fusion transitions become in-
terleaving MSHR transitions.

2.3 A concurrent semantics for Fusion Calculus

In this section we present a simple application of the mapping from Fusion Calculus
to MSHR, namely we derive essentially for free a concurrent operational semantics
for Fusion Calculus. This semantics is obtained by mapping Fusion processes into
graphs, and then computing their behaviour using MSHR inference rules instead
of the iMSHR ones. In particular, we consider here all the transitions instead of
just the interleaving ones. This approach will be used also later, since it provides a
simple way to export results from SHR to Fusion Calculus.

From a different point of view, this semantics is an approach to bridge the gap
between MSHR and Fusion Calculus which is dual w.r.t. the one of the previous
section: instead of constraining MSHR, here we generalize Fusion Calculus.

The semantics that we present can be considered a set semantics, but the term
set is not referred to the representation of the state (which is however a multiset
of edges) as in [Eng93], but to the structure of the labels. In fact, our observation
includes a set of performed actions. There is no need to use multisets of actions since
each action has a different subject. This happens because we force interleaving inside
nodes.

Most of the concurrent semantics presented in the literature for process calculi
are built on top of a sequential semantics, and they are based on a suitable equiva-
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lence between computations that makes equal all the computations that differ only
on the ordering of some independent transitions. This can be done directly at the
level of process calculi [BC94, CFM90], or obtained via a mapping into a framework
with a developed concurrency theory such as Petri Nets [BG95] or graph transfor-
mation [MP95].

Our approach instead adds further transitions to the normal LTS. Each of these
transitions concurrently executes many independent actions. This approach allows
to analyze standard computational steps (with more complex labels) instead of com-
putations, and it allows to distinguish between nondeterminism and parallelism.

Here we present just a simple semantics, straightforwardly derived from MSHR
semantics, and we give some insights on its main features. Some variations of this
semantics, together with a detailed analysis of the effect of this semantics on the
observational properties of Fusion processes will be presented in Section 9.1, in the
part of the thesis devoted to the observational semantics.

Definition 2.6 (Concurrent operational semantics). The concurrent opera-
tional semantics for Fusion Calculus is given by the LTS with Fusion processes as
states, SHR labels and transition relation —. defined by:

P, P iff Pe b in([Plhyn) b [PV own 5T F G and [P]5u, = G
where Pr 1s the set of Fusion productions.

An easy corollary of Theorem 2.1 guarantees that this concurrent semantics
indeed extends the usual semantics, in the sense that for each standard transition
we have a corresponding transition in the concurrent L'TS.

Corollary 2.1 (Preservation of transitions). For each Fusion process P if P
P’ then:

1. if a is a communication action, P Aadd, Pl owhere Ao(z) = [a]E R if x is the
subject of a, Ao(x) = (€,()) otherwise;

2. if a 1s a fusion action, for each substitutive effect m of o, P Mn P'n where
either A(z) = (¢,()) for each x € fn(P) or there exists y € fn(P) such that

A(y) = (7, () and A(x) = (¢,()) for each x € fn(P) \ {y}.

Proof. The proof is straightforward, given Theorem 2.1 and the definition of the
concurrent LTS (Definition 2.6). O

As an example we analyze here the concurrent semantics of the Fusion process
from Example 2.1.
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Example 2.4.
Let us consider the Fusion process (2)(yz.P|uzy.Qluzw.R) from Example 2.1. Using
standard Fusion semantics we can have the two following computations:

(2)(yz.Plazy.Quzw.R) =% (y2.P|Q|R){z/2}
= (P|QIR){x/z}

(2)(yz.Pluzy.Qluzw.R) QN (Pluzy.Qluzw.R)
These are mimicked by the following computations in the concurrent LTS (re-

member that the labels contain an action for each free name of the process, and
actions not written are of the form (z,¢,()) for some free name x).

(ua7—7<)) 7{y/w}

(2)(yz.Pluxy.Q|uzw.R) ¢ (yz.P|Q|R){x/z,y/w}

e (PIQIR){z/zy/w}

(yainl 7("'6)) 71d

(yainl 5(2))’id

(2)(yz.Pluzy.Quzw.R) —F—=, (Plury.Quzw.R)
(u,T,()),{m/Z,y/w}>c (P|Q‘R){.’E/Z, y/w}

Also, different representatives can be chosen when computing the fusion renaming
(but, in the first transition, z can not be a representative since it is bound in the
starting process), and an idle transition to the process itself is always available.

In the concurrent semantics we can also execute both the actions in the same
transition.

— (u577<>)7( ,in1,<1)),{$/2, /w}
(2)(yz.Pluxy.Q|uzw.R) Y ASN (PIQ|R){z/z,y/w}

As shown by the example and by the correspondence theorem, there are many
differences between the concurrent semantics and the standard semantics. Some of
them are just syntactical, others have a more semantic meaning. Also, different
concurrent semantics can be defined, removing the differences that are simply due
to the structure of SHR labels and LTS.

We will analyze now those differences, and we will also come back to that topic
later, when we will consider the observational semantics (see Section 9.1):

concurrent vs interleaving: this is clearly the main difference. We think that
having a concurrent semantics can be useful, since it allows to analyze the
degree of parallelism of a system. For instance, the two processes zy.zw.0 +
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zw.zy.0 and zy.0|zw.0 have the same interleaving transitions, but the second
one has also a transition corresponding to the concurrent execution of the two
prefixes, emphasizing its higher degree of parallelism. Note that prefixes can
be executed concurrently only if they have different subjects (but two prefixes
with the same subject can clearly synchronize, if they are complementary).

located 7: in the concurrent semantics synchronizations on a free channel x pro-

duce a 7 action on zx, thus the channel on which the synchronization has been
performed can be distinguished. The 7 action performed on a bound channel
is instead discarded by the rule for restriction. Having the 7 on z is necessary
in the concurrent semantics since the 7 guarantees that no other action can be
performed during the same transition on the same channel. This feature can
also be added to the interleaving semantics, where distinguishing synchroniza-
tions performed on different channels can be useful for cost or performance
reasons. We will come back to that topic later, when discussing different
synchronization models (see Section 7.2).

renamings vs fusions: in the concurrent semantics a renaming 7 is used instead of

a fusion ¢. Renamings add to the corresponding fusions the choice of a repre-
sentative for each equivalence class. However the different allowed choices can
always be easily computed, thus the two approaches are equivalent (actually,
this is the difference between Fusion Calculus and Update Calculus [PV97],
but in the latter the choice of {z/y} instead of {y/z} can not be changed dur-
ing the derivation, and this makes renamings and fusions no more equivalent).
However, also when using fusions in the label, a substitutive effect must be
chosen in order to apply the fusion to the resulting process.

application of fusion renamings: in the concurrent LTS the whole fusion in the

label is applied to get the new process, instead of being applied only for the
part concerning restricted names as done by the standard LTS. The choice
done in the standard LTS is due to implementation reasons, since applying
renamings at each step may be difficult. However this choice requires a par-
ticular definition of bisimulation that essentially applies the renaming (see
Definition 1.16), and it produces, in our opinion, less intuitive computations.
Notice for instance that in Example 2.4 the two computations in the standard
LTS produce different final processes, while the results of the two correspond-
ing computations in the concurrent LTS coincide.

free names: in the concurrent semantics labels contain an action for each free

name, thus the whole set of free names is observed. This difference can be
avoided by defining a slightly different concurrent semantics.

idle transitions: in the concurrent LTS idle transitions are available for each pro-

cess. This difference can be avoided by defining a slightly different concurrent
semantics.
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extrusions: in the concurrent semantics extrusions are not explicitly marked in the
label. This is usually unnecessary in the SHR framework, where names are
tracked by judgements, thus extruded names are names not appearing in the
judgement of the source graph. However adding this information to the label
causes no problem, and this can be a valuable information to reason about the
observable behaviour of processes (see Section 9.1).

other differences: there are other differences, for instance in the syntax of ac-
tions, but these differences have no real impact on the LTS since they are just
due to the different syntaxes used in the two frameworks to carry the same
information.
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Chapter 3

Milner synchronization vs Hoare
synchronization in SHR

In this chapter we present a detailed comparison between the expressiveness of
Milner and Hoare synchronizations in the SHR framework. The only compari-
son in the literature between these two synchronization models we are aware of
is [Hoa05, HHO5], but it deals with the simple process calculi CCS [Mil82] and
CSP [Hoa80], thus neglecting issues such as mobility and distribution. Also, the
comparison deals with all the features of the two calculi, which are quite different,
while we are mainly interested in analyzing the two synchronization models abstract-
ing away from other differences that can make the comparison more difficult. We
have chosen SHR as framework for that comparison for various reasons. First of all,
SHR was already equipped with both the synchronization mechanisms. Also, SHR
provides a very general framework for this comparison, allowing both mobility and
multi-party synchronization. Finally, the links between Milner SHR and Fusion Cal-
culus studied in the last chapter, and between Hoare SHR and Logic Programming
to be presented in the next one make this comparison a key ring in the chain of map-
pings from Fusion Calculus to Logic Programming. Since SHR is mainly aimed at
modeling topological reconfigurations of systems (networks, software architectures,
processes, ... ) specified via productions, our comparison will concentrate on which
such reconfigurations can be specified using either Hoare or Milner synchronization
model. In other words we are interested in analyzing the reachability relation in
the LTS defined by a fixed set of productions in each synchronization model. In
particular, we analyze under which conditions the two models are able to specify
the same class of reconfigurations, and, when this is not the case, what can be done
to bridge the expressiveness gap.
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3.1 Expressiveness measures

As already said, we want to study the expressiveness of Hoare and Milner synchro-
nization models in the SHR framework. In general, there exist different possible
definitions of expressiveness, and different ways to measure it, concentrating on
different aspects of the behaviour of the specified system. The choice of the best
expressiveness measure is not unique, but it depends on the intended use of the
model. Since we are mainly interested in expressing topological reconfigurations of
systems, we choose as aspect to measure the class of reconfigurations that can be
expressed by a fixed set of productions together with a synchronization model. It is
also useful to fix a set of allowed computations, which may be smaller than the set
of all the computations in the LTS. This choice essentially specifies some constraints
that must be satisfied by computations, concerning, e.g., their lengths or the kind
of rewritten graphs.

The concept of behaviour captures the above notion of expressiveness. Intuitively,
the behaviour of a set of productions P on a graph I' F G w.r.t. a synchronization
model S is the set of graphs that are the results of “suitable” computations derived
using synchronization model S and starting from graph I' = G. The choice of which
computations are “suitable” determines the kind of behaviours of the system we
concentrate on.

Definition 3.1 (Behaviour function).

The function C-behav® (P)(I' F G) is the function that computes the set of graphs
reachable from graph I' = G using computations in the set C' derived from the pro-
ductions in set P using synchronization model S.

Using the behaviour function we are now able to compare different models, thus
defining an expressiveness preorder on the set of pairs (S, C) where S is a synchro-
nization model and C' is a set of computations.

Definition 3.2 (Expressiveness preorder >). Let S; and Sy be synchronization
models and let C7 and Cy be sets of computations. The C1-expressiveness of S1 is
greater than the Cy-expressiveness of Sy, written (S1,C1) > (S, Cs), iff there exists
a translation function f from sets of productions to sets of productions such that for
each set of productions P and for each graph I = G the following equation holds:

Cy-behav™?(P) (I F G) = Cy-behav™ (f(P))(T + Q)

Intuitively the above equation requires that reconfigurations that can be specified
in (S, Cs) can be also specified in (S1,C7). The translation function f determines,
given a set of productions P, which is the set of productions f(P) that specifies the
same class of reconfigurations, but in (S, C;) instead of in (S,, Cy).

The following proposition proves that the expressiveness preorder > is indeed a
preorder.
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Proposition 3.1. > is a preorder.

Proof. Reflexivity is trivial using as translation function f the identity function.
Transitivity is trivial too, using as translation function the composition of the two
translation functions. O

Notation. We use H to denote the Hoare synchronization model, and M for Milner
one.

For the moment we consider just three sets of computations, that are the follow-
ing ones:

1: one-step computations, that is computations composed by one transition (which
may also be idle);

all: all possible finite computations, that is computations of any finite length (we
consider only finite computations since a graph which is the result of the
computation must always be found);

max: maximal computations, that is computations of any finite length such that
there is no transition from their final graph I' - G to a different graph (there
can be however transitions to the graph I' - G itself).

We think that the above defined sets of computations are interesting for our aim,
since set 1 analyzes reconfigurations that can be done in one step, set all considers
all the possible reconfigurations and set max concentrates on the reconfigurations
that are obtained by letting the system reconfigure until it reaches a stable (from a
topological point of view) state.

Clearly other sets of computations or other measures can be considered, for
instance to study the infinite behaviour of the system, but these are less relevant for
our aim, and thus these are left for future work.

3.2 The expressiveness of HSHR and MSHR are
not comparable

In this section we show that for each of the above defined sets of computations the
expressiveness of Hoare and Milner synchronization models are different, but no one
is greater than the other, i.e. for each set of computations C1,Cy € {1,all, maz},
both (H, 01) %(M, CQ) and (M, CQ) %(H, 01)

We first study some properties of LT'Ss of SHR useful for the comparison.

Definition 3.3 (Parallel closure). We define the following partial order on tran-

sitions: TUT F G1|GY ﬂ; dUI'm b Go|G'7 is greater than T F G4 A - Go iff
I+ G is a graph and A = A'|r. The partial order is extended to computations by



52 CHAPTER 3. MILNER SHR VS HOARE SHR

requiring the ordering condition to hold between each pair of transitions in the same
position in the two computations. A set of SHR computations is parallel closed iff
it 18 upward-closed under the above defined partial order.

Intuitively, a set of SHR computations is parallel closed iff we can always add to
the rewritten graph I' - G another graph I'' = G which stays idle (up to possible
fusions of nodes in I' N [ determined by 7) and still have an allowed computation.
Note that computations of different lengths are never comparable.

Proposition 3.2. For each set of productions P, the following two sets of MSHR
computations derived using productions in P are parallel closed:

e 1, the set of one-step computations;
e all, the set of all finite computations.

Proof. The proposition holds for set 1 since in MSHR it is always possible to use rule
(par-M) to add an idle part to the graph (the idle transition can be easily derived
by combining idle productions for the edges there, and adding isolated nodes using
rule (new-M)). In order to apply rule (par-M), nodes must be chosen distinct w.r.t.
the nodes in the main transition. The last step is to apply rule (merge-M) to merge
common nodes. Since all the actions performed by the idle transition are of the
form (e, ()), rule (merge-M) can be applied, and the synchronizations on the nodes
from the main transition are just preserved.

The second part follows by induction since the same approach can be applied to
each transition in the computation. O

Intuitively, the above proposition holds because Milner synchronization allows
any number of idle participants. The same is not true for Hoare synchronization,
because there is a universal quantification on the participants connected to the node
where the synchronization is performed, and all those participants are forced to join
the synchronization by performing an action which, in general, is not (¢, ()).

We can apply the above developed theory to prove a first gap of expressiveness
between HSHR and MSHR.

Theorem 3.1. (M, C1) % (H, Cy) for each Cy € {1,all} and each Cy € {1, all, max}.

Proof. Let us consider the set of productions P generated by the only production:
z = D(z) @a0, D'(z)

For Cy € {1, all} we have:

Cy-behav? (P)(z - D(z)) = {z - D(z),z - D'(z)}

Cy-behav? (P)(z - D(z)|D(x)) = {x F D(x)|D(z),z + D'(z)|D'(z)}
For max-expressiveness instead we have:

maz-behav? (P)(z - D(z)) = {« F D'(z)}
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maz-behav? (P)(x F D(z)|D(x)) = {z F D'(z)|D'(z)}
since the idle transitions do not lead to stable states.

Since, for each choice of Cy € {1,all,max}, these HSHR behaviours are not
parallel closed, the thesis follows from Proposition 3.2. 0

For maz-expressiveness of MSHR the above approach can not be applied, since
Proposition 3.2 can not be generalized to the set max of maximal computations, as
shown by the following example.

Example 3.1. Let us consider the set of productions P generated by the only pro-
duction:

z - D'(z) LLUNSR D(xz)

We have the two following MSHR behaviours:

maz-behav" (P)(z - D(z)) = {z F D(z)}

maz-behav™ (P)(z - D(z)|D'(z)) = {z - D(z)|D(z)}

that show that the set max of mazximal MSHR computations is not parallel closed.
Intuitively this is possible since adding a new part to the graph may allow new tran-
sitions, which must be taken in order to reach a stable state. Thus the computations
required by the parallel closure condition exist in the LTS, but they may not belong
to set mazx.

Thus we need a slightly more refined approach to deal with the case of max-
expressiveness.

Theorem 3.2. (M, maz)%#(H,C) for each C € {1,all, maz}.
Proof. Let us consider the set of productions P generated by the only production:

xl—D(x)Mml—m’l

For each C € {1, all} we have:

C-behav? (P)(z - D(z)) = {z + D(z), z - nil}

C-behav” (P)(z + D(z)|D'(z)) = {z - D(z)|D'(z)}

For max-expressiveness instead we have:

maa-behav? (P)(z - D(z)) = {x F nil}

maz- behav” (P)(z - D(z)|D'(x)) = {z - D(x)|D'(z)}

Suppose that we can obtain these behaviours with maxr MSHR computations. By
parallel closure from the first case, a transition from z - D(z)|D'(z) to z + D'(z)
should exist. If z = D’(x) has no outgoing transitions to different graphs, then we
have a contradiction, since it is not in the behaviour. Otherwise by parallel closure
also z + D(z)|D'(xz) must have outgoing transitions to different graphs, and so it
can not be in the behaviour for maximal computations, as it is. This proves the
thesis. O
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We prove now that a similar expressiveness gap exists also in the other direction.
To this end we will not consider parallel closure, but the effect of the restriction
operator on the allowed transitions.

Notice that, if all nodes are free, Milner synchronization can not force productions
to be executed together, i.e., each production can always be applied in isolation.
Hence, restriction is fundamental for constraining the behaviour of components using
Milner synchronization (and this is not a surprise, since even in CCS, which is the
simplest used framework based on Milner synchronization, restriction is necessary
to reach Turing equivalence [CHM94]).

Notice that in HSHR instead restriction just performs hiding of part of the obser-
vation, i.e., no allowed transition can be forbidden by adding restriction operators.
This is formalized by the following proposition.

Proposition 3.3. Given a set of productions P, if P lFg I',x - G, AT - Gy

then Plrg ' vx Gy LN Gy where ', " and ®' are subsets of A, m and
® respectively, and Z = @ \ P'.

This result can be used to prove the desired expressiveness gap.
Theorem 3.3. (H,Cy) #(M,Cy) for each Cy,Cs € {1,all, maz}.
Proof. Let us consider the set of productions P generated by the only production:

T l_ D(./E) (:E:a"())

z - D'(z)

For each Cy € {1, all} we have:

Cy-behav™ (P)(z + D(z)) = {z F D(z),z - D'(2)}

Cy-behav™ (P) (O F vz D(z)) = {0+ vz D(z)}

For maz-expressiveness instead we have:

maa-behav (P)(z - D(z)) = {z F D'(z)}

max-behav™ (P)(0 - va D(z)) = {0 - v D(z)}

Since these behaviours do not satisfy Proposition 3.3, then they can not be obtained
using Hoare synchronization (with any set of computations). O

We have thus proved that in the general case we have an incomparability result
for all the sets of computations of interest. Next section presents instead some
equivalence results, obtained by constraining the class of allowed graphs.

3.3 Reconciling Hoare and Milner synchroniza-
tions

Until now we have shown that the expressiveness of HSHR and MSHR are quite dif-
ferent. We concentrate now on a particular class of graphs, and on the computations



3.3. RECONCILING HOARE AND MILNER SYNCHRONIZATIONS 55

internal to that class, and we show that in this particular case MSHR can simulate
HSHR (when the same set of computations is used in both the frameworks). To get
a similar result in the opposite direction a suitable translation of graphs is needed.

We restrict our attention to closed 2-shared graphs. We remember that a graph
is closed when its set of free names is empty. The following definition introduces
2-shared graphs.

Definition 3.4 (2-shared graphs). A graph I' b G is a 2-shared graph iff for
each node x occurring in G there are exactly two tentacles in G attached to z.

In practice, each non isolated node in a 2-shared graph can be attached two
times to just one edge, or it can be attached one time each to two edges (isolated
nodes occur in I' but not in G). Note that the constraint applies also to bound
nodes (remember however that bound nodes can not be isolated, since in this case
they are garbage-collected).

This class of graphs has been chosen because of the results presented in the
previous section. In particular, parallel closure is not meaningful for 2-shared graphs
(since adding additional edges in parallel changes the number of tentacles attached
to common nodes), thus Theorem 3.1 and Theorem 3.2 can not be applied. Also, for
closed graphs Theorem 3.3 can not be applied, since there is no free node to bind.

Even if this class of graphs is quite simple, it is worthwhile to study it. In fact,
it shows some interesting features of the two synchronization models and it is a first
step towards the more general results in the next section.

Since we are interested in computations internal to this class of graphs, we have
to check that transitions preserve the two required properties. Closedness is always
preserved, as shown by the following proposition.

Proposition 3.4. Let P be a set of productions. If P Ik O - G Mo & - G with
S e {H, M} then ® = 0.

Proof. Notice that both A and 7 are empty. Thus, from Definition 1.21, I'y is empty
t00, and ® = @7 U 'y is empty. O

The 2-shared property is not preserved in general, as can be easily seen (consider
for instance the ring-to-star reconfiguration in Example 1.1). We will present a
syntactic condition on productions, and we will show that all the computations using
only productions satisfying this condition preserve the 2-shared property. However,
the definition of the syntactic condition and the proof that it is enough to guarantee
the preservation of the 2-shared property are quite complex and technical. We think
that for most readers it is enough to know that such a condition exists, and that
all the constructions that we will show use productions satisfying it. For a deeper
understanding, but avoiding however some technical difficulties, just the case of
productions with 7 = id can be considered, since it is enough in most the cases (but
the case of 7 # id must be considered in the proof).
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Let us consider the application of a production to one edge: when the rewritten
edge is removed, all the nodes attached to it lose one attached tentacle (two if the
edge was attached two times to the same node). Thus when inserting the graph in
the RHS of the production, the same number of tentacles attached to those nodes
must be provided, and two tentacles must be attached to each new node. However,
new attached tentacles are provided also when nodes are merged, since merging two
nodes with one attached tentacle each produces a node with two attached tenta-
cles. Essentially, attached tentacles are resources that must be preserved, but to
correctly count them, not only actual attached tentacles must be considered, but
also occurrences of nodes as parameters in A (which cause merges when synchroniza-
tion is performed) or in m must be accounted for, since they guarantee that further
tentacles will be provided by the environment.

We give now a formal way to count how many times a node is actually used in a
transition, dealing with both the left part of the transition, and the more complex
right part.

Definition 3.5 (Left counting). Given a transition T =T F G AT B - G the
left occurrences of a node x in T are the occurrences of x in G, i.e. the tentacles in

G attached to x. The left counting of x in T is the number of the left occurrences
of x inT.

Definition 3.6 (Right counting). Given a transition T =T+ G AT @G the
right occurrences of a node x in T are the occurrences of x in G', i.e., the tentacles
in G' attached to x, plus the occurrences of x as parameter in A, plus, for each node
y such that {x/y} is in 7w, the occurrence of y in the LHS if it is exactly one. The
right counting of x in T is the number of the right occurrences of x in T'.

A transition is connection-preserving iff for each node in the destination graph
its left counting equals (almost always) its right counting.

Definition 3.7 (Connection-preserving transitions).

A transition T =T F G 25 & - G is connection-preserving iff for each node x
occurring in T':

e if x occurs in both '+ G and in ® = G’ with left counting 0 or 1, then its right
counting equals its left counting;

e if © occurs in both I' H G and in ® = G' with left counting 2, then its right
counting 1s either 0 or 2;

e if x occurs in ® = G’ but not in T+ G, then its right counting is either O or 2.

Proposition 3.5. Let P be a set of connection-preserving productions and 0 = G a

closed 2-shared graph. If PlFs 0 - G AT - G with S € {H, M} then ® + G’ is
a closed 2-shared graph.
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Proof. Clearly, ® - G’ is closed thanks to Proposition 3.4. Also, A and 7 are empty.
We will prove that in each step of the derivation of the transition, the intermediate
transition is connection-preserving.

Since the derived transition has empty A and 7, then the only summand of the
right counting for a node = that can be non zero is the number of occurrences of = in
G'. Since the LHS is a 2-shared graph and the transition is connection-preserving,
this number of occurrences must be either 0 or 2. Thus the thesis will follow.

Notice that no derivation for a transition with left counting at most 2 can have
a premise with left counting more than 2, thus we have to deal only with transitions
with left counting at most 2. Also, no rule can change the left counting of a bound
node, thus left countings for bound nodes must be 2 (bound nodes with left counting
0 are garbage-collected).

We will prove the above property by rule induction on the derivation (we use
suffix S for rules, where S must be instantiated with either H or M).

Productions) By hypothesis.

Rule (par-S)) The theorem holds, since each node z occurs in just one of the
premises, and thus its left and right countings in the conclusion are equal to the
ones in the premise where it occurs.

Rule (merge-S)) We can consider the simpler case of the merge of just two nodes,
i.e. a renaming 0 = {z/y} since any renaming ¢’ can be decomposed as a compo-
sition of such renamings, and the application of rule (merge-S) with renaming o’
produces the same transition as the one derived by applying rule (merge-S) for each
renaming in the decomposition.

By definition, both z and y must occur in I'. If one of them has left counting 0,
and if it occurs in ® F G’, then it also has right counting 0, and nothing happens
when merging it with the other one. Since the sum of the two left countings is at
most 2, the only other possible case is that both x and y have left counting 1.

We will consider the application of ¢ first, and then the effects of the synchro-
nization. Notice that o is applied to both the left and the right graphs, and to
the synchronization A. Also, it transforms the renaming 7 into a new renaming
7 = mgu({z0 = wo|zr = wr}). Apart from the effect on 7, it makes y to dis-
appear from the transition, while the countings for x become each the sum of the
corresponding previous countings for x and y. The same happens also if we consider
the effect on 7, since it merges the equivalence classes of z and y according to the
relation z R w iff zr = wm, but thus the parts dealing with 7 of the two right
countings are just added (remember that y disappears).

Now we have to consider the effect of the synchronization. For each pair of
matched parameters z and w with z # w, their right countings are decreased by
1, since they disappear from A. Clearly, their right countings in the premise are at
least 1. We will consider different cases according to these right countings.

Both 1: z and w occurred in the premise just in A and thus in @, and also their left
countings were 1. The only possibility is that they are both in I', since neither
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bound nodes nor newly created nodes can have left counting 1. Thus the
renaming {z/w} (or {w/z}) is added to 7, and this gives exactly a contribution
of 1 to the right counting for z, while w disappears from ® - G'.

1 and 2: the first node (suppose that it is z) must be in I', and we can suppose that
it is chosen as representative, while w disappears. The other old occurrence
of w gives the required contribution to the right counting of z in the result.
Notice that, also if both the nodes are in I" and the renaming {z/w} is added to
7, since w has not left counting 1, it does not contribute to the right counting
of z.

Both 2: as in the previous case if at least one of the two nodes is in I'. Otherwise
no renaming is added to 7, two occurrences are deleted from A, but the other
two become occurrences of the node chosen as representative, giving 2 as right
counting as required.

If z = w instead, the two occurrences simply disappear, thus we have in the con-
clusion a left counting 2 and a right counting 0 (since the previous right counting
was 2). The case of many matchings among the same nodes (such as (z,w), (2, w))
reduces to the one above since we consider matchings one by one.

Rule (res-S)) This rule clearly does not influence the countings of nodes different
from the bound node z. Also for x however the left counting is not changed, and
for the right counting neither the part dealing with the graph nor the one dealing
with A are changed. The part dealing with 7 also does not change, since z is not a
representative if it is part of a non trivial equivalence class. This proves the thesis.

Rule (new-S)) Trivial. O

We present now some examples of connection-preserving productions, and of
transitions derived from them.

Example 3.2. Let us consider the simple production:

bhat ] ’id
o,y b Clz,y) S2DH, oy O(a)
This production s connection-preserving since both x and y have countings 1, in
particular the right counting of y is 1 since y occurs in A. Using Milner synchro-
nization we can combine this production with:

z,zFC(z, z) @@, z,zF C(x)

to derive:
) (2,7, {2/y}

z,y, 2 F C(x,y)|C(z, 2 z,z F C(z)|C(z)
Here both the countings for x are equal to 2. Also, z has left counting 1, and right
counting 1 too since {z/y} C 7 and y has left counting 1. Finally, y does not occur
inx,z F C(x)|C(x), thus its right counting is not important.
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We can compose the above transition with an idle production for graph x,y b
C(y, z) (notice that idle productions are always connection-preserving) obtaining:

2,9, 2+ C(2,9)|C(z, 2)|Cly, z) EEPE 4 b O(@)C ()| C (2, 2)

Now all the countings are equal to 2. In particular, notice that the left counting of
y does not contribute to the right counting of z. Also, both the graphs are 2-shared
graphs, and adding restrictions for all the nodes produces exactly a transition between
closed 2-shared graphs.

We consider now a slightly different example to show a particular case: let us
consider the composition of the first production with the following production.

vy b Cz,y) 22D 0 0 O(a)

The resulting transition is:

(z,7())id
z,y = C(z,y)|C(z,y) —— =,y = C()|C(z)
Here x has both countings 2, while y has left counting 2 and right counting 0, but
this is again a connection-preserving transition.

We will show in Section 3.4 (Theorem 3.7) that connection-preserving produc-
tions are expressive enough to simulate general Hoare transitions via a translation
of graphs.

From now to the end of Section 3.4 we will concentrate on transitions between
closed 2-shared graphs. In particular we will consider suitable restrictions of the
sets of computations 1, all and mazx.

Notation. We denote with 2s—1, 2s—all and 2s—max the subsets of the sets of
computations 1, all and mazx respectively containing only transitions between closed
2-shared graphs.

Next theorem shows that for these sets of computations Milner synchronization
can be used to simulate Hoare synchronization.

Theorem 3.4. (M,C) =(H,C) for each C € {25—1,2s—all,2s—max}.

Proof. We have just to consider the synchronizations that are performed on nodes
with two attached tentacles, since nodes with zero attached tentacles are garbage-
collected since they are bound. Hoare synchronization allows a transition only if
the same action is performed by both the edges, and it merges the corresponding
parameters.

With Milner synchronization the two actions must be complementary. The effect
performed on the parameters is equal to the one performed by Hoare synchroniza-
tion. For each Hoare action a (different from €) we introduce a pair of complementary
actions a and @, with the same arity of the Hoare action.
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The translation function f maps each set of productions to the set including,
for each Hoare production, productions with the same structure and with all the
possible combinations of actions and coactions for each Hoare action (e actions are
preserved). Thus each production with n non € actions gives rise to 2" productions.

All the transitions allowed by the Hoare model are allowed also by the Milner
one, in fact for each pair of synchronizing actions we can always complement one of
them, and form a pair of complementary actions. No more transitions are possible,
since in the Milner model all the edges must use actions that correspond to the same
Hoare action. Notice that action € has the same behaviour in both the models. [

We present a simple example to clarify the theorem above.

Example 3.3. Let us consider the set of productions generated by:

(2,8,00)5(y,05())id

z,y = R(z,y) r,y vz R(z,2)|R(z,y)

This production in HSHR has a similar effect to the first production of Example 1.1,
that s it allows to grow a ring graph, but here all the edges replicate themselves at
each step, thus the size of the ring doubles at each step. We can have for instance
the transition (between closed 2-shared graphs):

OFvz,y R(z,y)|R(z,y) — OFwvz,y z,w R(z,2)|R(z,y)|R(z,w)|R(w,y)

where on both x and y we have a synchronization between two actions a.
In order to have the same effect using MSHR, the following four productions can
be used:

(2,0,()):(y,a,())id

z,yF R(x,y) ———""— x,yt vz R(z,z2)|R(z,y)
z,y F R(x,y) &m0 gaiid, z,y vz R(z,2)|R(z,y)
z,y F R(z,y) o), z,y vz R(z,2)|R(z,y)
z,y - R(z,y) L@ )i, z,y vz R(z,2)|R(z,y)

For instance we can choose for the first edge two actions a, and this requires the
second edge to perform two actions a. This can be done by using the first and the
fourth production respectively.

Here two of the productions above are enough, however in more complezr cases
all of them may be necessary.

This proves that, for closed 2-shared graphs, Hoare synchronization is equal
to Milner synchronization where the distinction between actions and coactions is
dropped. In that case, Milner synchronization is strictly more expressive than
Hoare synchronization and the additional expressiveness is given exactly by the
asymmetry, as shown by the following theorem for 2s—1-expressiveness and 2s—all-
expressiveness of Hoare synchronization.
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Theorem 3.5.
(H,Ch) % (M, Cs) for each Cy € {2s—1,2s—all} and Cy € {25—1,25—all,2s—maz}.

Proof. Let us consider the graph () - vz D(x)|D(z). This is a closed 2-shared graph
and it is symmetric. Using Hoare synchronization, for any choice of production for
the left edge, the same production can always be applied in the same transition also
to the right edge, and the result is again a symmetric graph. In general, given a
symmetric graph, for each choice of productions for the first half of the graph, if a
transition exists, then also a transition that preserves the symmetry exists.

Let us consider the set of productions P generated by:

z - D(x) e, D'(x)
z = D(x) e, D(x)

For each C € {25—1,2s—all} we have:

Cy-behav (P) (0 F vz D(x)|D(x)) = {0 vz D(z)|D(z),0 F va D'(z)|D(z)}

For 2s—max-expressiveness instead we have:

2s—maz- behav™ (P) (0 - vz D(z)|D(z)) = {0 - v D'(z)|D(z)}

Since these behaviours contain no symmetric final graph for the choice of applying
a non idle production to the first edge, then these behaviours can not be obtained
using HSHR and any set of computations that, if it contains a computation, contains
also all the computations of the same length. Notice that both the sets of computa-
tions 2s—1 and 2s—all satisfy this assumption since the productions are connection-
preserving (thus all the generated computations satisfy the 2-shared condition). [

Whether the above result holds also for 2s—maz-expressiveness is still an open
problem. The above approach does not work since the set of computations 2s—max
does not enjoy the required closure property (there can be two computations of the
same length, one reaching a stable state and one reaching a non stable state).

We show in particular that the above behaviour can be specified using HSHR
and 2s—max computations.

Example 3.4. We show here that the particular behaviour shown in the proof of
Theorem 3.5 can also be specified using 2s—max computations and HSHR. Let us
consider the set of productions P generated by:

z+ D(x) @o0)id D'(z)
xzF D(x) a0, D(z)
z+ D'(z) @bid, D(z)

Starting from the graph O - vx D(z)|D(x) we can have either transitions to
0 F vax D(z)|D(x) itself, or to either O - vax D'(z)|D(z) or § + va D'(z)|D'(z).
However the only graph that has no outgoing transitions is ) - vax D'(x)|D(z). Thus
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we have:
2s—maz-behav” (P) () - vz D(x)|D(z)) = {0 vz D'(z)|D(z)}

The trick is that each computation leading to a symmetric graph can be ez-
tended to obtain an infinite computation, thus only asymmetric graphs appear in
the 2s—max behaviour.

It is not clear whether such a technique can be extended to deal also with mul-
tiple concurrent synchronizations and mobility, or if more complex behaviours can
be obtained using Milner synchronization but not using Hoare synchronization.

To bridge the gap between HSHR and MSHR we consider now a different form
of simulation, that uses a translation for graphs. Intuitively, we want to simulate a
computation by translating the starting graph, performing a corresponding compu-
tation derived using another synchronization model (or belonging to another set of
computations), and then translating back the result. First of all we need a syntax
to denote the forward and backward translations.

Definition 3.8 (Forward and backward translations). The forward and back-

ward translations are two functions [—],[~]~" : Graphs — Graphs such that for
each allowed graph T'+ G we have [[T - G]]7' =T+ G.

Note that we may have [[I' = G]™'] # ' = G. Also, we will consider only
graphs to be translated where some particular edge labels do not occur, since they
are introduced by the translation and they have a particular behaviour. This is not
a strong restriction, since edge labels can be coherently changed without altering
the behaviour.

Notation. We denote with [—] and [—]~" also the trivial extensions of [—] and
[=]7" to sets of graphs.

The new form of simulation allows to define a new expressiveness preorder, which
we call T-expressiveness preorder (where T stands for translation) and which we
denote as .

Definition 3.9 (T-expressiveness preorder 7). Let Sy and Sy be synchroniza-
tion models and let Cy and Cy be sets of computations. We say that (C1,S1) can
simulate (Cy, Ss), written (Cy, S1) 7Z(Cq, Sa) iff there exists a translation function f
from sets of productions to sets of productions and forward and backward transla-
tions [—] and [—]~! such that for each set of productions P and for each allowed
graph I' = G the following equation holds:

Cy-behav® (P)(T - G) = [C-behav* (f(P))([T - G])]

The main difference w.r.t. Definition 3.2 is that here the forward and backward
translations are used.

The following proposition proves that the T-expressiveness preorder 77 is indeed
a preorder.
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Lemma 3.1. = is a preorder.

Proof. Reflexivity is trivial using identity functions both for the translation function
f and for the forward and backward translations [—] and [—]~!. Transitivity is
trivial too, by composing the translation functions, the forward translations and the
backward translations. O

The expressiveness preorder > is included in the T-expressiveness preorder 7,
as proved by the following proposition.

Proposition 3.6. = C ~.

Proof. 1t is enough to choose identity functions as forward and backward transla-
tions. n

In general different kinds of forward and backward translations can be used.
However, for our aims, translations based on the concept of amoeboid are enough.
Amoeboids are particular graphs whose behaviour simulates the behaviour of nodes.
In particular, an amoeboid with an interface Int (which is a set of nodes) such
that [Int| = n is used to simulate a node where n tentacles are attached. We
present here the general definitions of amoeboids and the corresponding forward
and backward translations, that will be instantiated in this and in the next section
to model different kinds of synchronizations.

Notation. When a particular kind of amoeboids is used, we will label the forward
and backward translations with the kind of the amoeboids, e.g. [—]n is the forward
translation that uses Hoare amoeboids.

Definition 3.10 (Amoeboids). We suppose that the ranked set of edge labels LE
18 partitioned into two subsets, the subset LEy of labels for normal edges, and the
subset LE 4., of labels for amoeboid edges. Let Int be a set of nodes. An amoeboid
Am(Int) with interface Int is any connected graph whose edges are amoeboid edges,
and whose set of nodes can be partitioned into the interface Int and the auxiliary
nodes in Aux. Nodes in Int are attached to just one tentacle of one amoeboid edge
and free. Nodes in Aux are attached to two tentacles of amoeboid edges and bound.

Note that fn(Am(Int)) = Int.

We need slightly different features for amoeboids modeling free nodes (which
are used just inside productions, since we will always deal only with closed graphs),
and amoeboids modeling bound nodes. We call them free amoeboids and bound
amoeboids respectively.

Definition 3.11 (Free and bound amoeboids). Each kind K of amoeboids has
two subkinds, free amoeboids K f and bound amoeboids Kb. We require that by
joining 3 bound amoeboids of kind Kb by merging pairs of nodes of their respective
interfaces we get a bound amoeboid of kind Kb. We require that by joining a free
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amoeboid of kind Kf and a bound amoeboid of kind Kb by merging two nodes of
their respective interfaces we get a bound amoeboid of kind Kb. Free amoeboids with
a singleton as interface are always composed only by the node in the interface itself.

Intuitively, the forward translation just takes each node z and it replaces x with
an amoeboid with a suitable interface. To do that, a node for each tentacle attached
to z must be added. A node for x is preserved in free amoeboids. Then the inverse
translation just removes the amoeboids in the graph and it inserts the nodes they
stand for at their place.

In order to formally define the forward translation, we have to introduce first
a standard decomposition for graphs. A weaker form of decomposition would be
enough here (dealing with graphs instead of with graph terms), but we introduce
this form since it will be used also later (see Section 8.1).

Definition 3.12 (Standard decomposition for graphs). Given a graph T - G,
its standard decomposition has the form:

I'+vX Gog

where G is a parallel composition of edges (or nil if there are no edges), left associated
and in a canonical order and where names not in I' are canonical ones, and they
appear in a fixed order in G, each name in G occurs at most once, TNX = 0,
X C fn(éoG), restrictions are in o fived order, og s an idempotent renaming such
that all the bindings in o¢ are of the form {x/y} with y occurring in G after x,
rel'UX, and vX Goe =G.

Essentially the above decomposition chooses a particular graph term for the
graph, and it ensures that each name occurs in G at most once (as done for Fu-
sion Calculus agents by Definition 1.18). Notice that we suppose to have ordered
sequences of canonical names and of canonical labels.

Notation. In the examples we may use suggestive names instead of always the same
sequence of canonical names to improve the readability.

The following lemma ensures that each graph can be uniquely decomposed, and
that two graphs can have the same standard decomposition iff they are isomorphic.

Lemma 3.2. Let ' - GA and I+ G' be two graphs. There exists a unique standard
decomposition I' - vX Gog of I' = G. Also, the standard decompositions of I' - G
and I"' = G" are equal iff T G and T' = G' are isomorphic.

Proof. First, we have to show that the decomposition exists. In graph I' - G all the
restrictions can be moved to the outside, obtaining I' - v X; G; where G, is a parallel
composition of edges. Then we can make the names in X; canonical and disjoint
w.r.t. names in I' using a-conversion. Also, restrictions for names not occurring in
(G can be deleted. After that the set of restrictions is the desired one. We can now
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fix the order of restrictions, the order of edges, and enforce left associativity. Finally
we can decompose GG as Gog as follows. For each occurrence of a name z in Gy
but the first one, the occurrence is replaced by the next unused canonical name y,
and the renaming {z/y} is added to og.

As required each decomposition is structurally congruent to the original graph.

No two different standard decompositions can be structurally congruent since
axioms can not change labels of edges, free names or connections among the edges,
and all the other elements are fixed by the decomposition. Thus two decompositions
are equal iff the starting graphs are structurally congruent and so isomorphic. [

We can now formalize the forward translation for closed graphs. Closed graphs
are enough for our purposes.

Definition 3.13 (Forward translation). For each set of nodes Int let Amy (Int)
be an amoeboid of kind K with interface Int. Let ) = G be a closed graph and

0+ vX Gog be its standard decomposition. The forward translation of § - G using
amoeboids of kind K is:

bFG]xk=0FvY G‘\ LveX Amgpy({yly € fn(é) Nyog = z})

where Y contains all the free names in the graph term. We also allow the forward
translation to add bound amoeboids with empty interface.

Last possibility is necessary to have a correspondence between a computation
and its translation, since these amoeboids are created when two extremities of an
amoeboid are merged.

We need an auxiliary definition in order to define the inverse translation too.

Definition 3.14 (Standard-amoeboid decomposition). Given a graph T' - G,
its standard-amoeboid decomposition has the form:

['FvY std(G)| amoeb(G)

where std(QG) is a parallel composition of standard edges and amoeb(G) is a parallel
composition of amoeboid edges and G = vY std(G)| amoeb(G).

We can now define the inverse translation for closed graphs. Closed graphs are
enough for our purposes.

Definition 3.15 (Inverse translation). Given a closed graph O = G, let =g be
the equivalence relation on nodes in (a term representing) G defined by: x =g y iff x
and y are connected in amoeb(G). Let o be a substitutive effect of Z. The inverse
translation of 0 = G is:

-G =0FvX std(G)o

where X contains all the nodes in std(G)o.
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Next lemma proves that the translations based on amoeboids are correct forward
and backward translations for closed graphs, i.e., they satisfy the condition from
Definition 3.8. Note that this result does not depend on which kind of amoeboid is
used.

Lemma 3.3. For each closed graph ) = G containing only standard edges, [[0 F
Gl 't=0FG.

Proof. The edge part of G is clearly preserved since the forward translation adds
amoeboid edges that are removed by the backward translation, while standard edges
are always preserved. As far as nodes are concerned note that two nodes are con-
nected by an amoeboid in [} - G] (and thus merged by o in the inverse translation)
iff they correspond to instances of the same node in the starting graph. Since all the
nodes are a-convertible their names do not matter, and the above proved preserva-
tion of connections guarantees that the node part is preserved. O

We present here a simple example of the translations, at the abstract level defined
so far. More concrete examples will be presented later, when the framework will be
instantiated on particular kinds of amoeboids.

Example 3.5. Let us consider the graph O b vz,y,z C(z,y)|C(y, z). Its standard
decomposition is O + vx,y,z,n; C(z,y)|C(n1,2){y/n1}. Thus one of its forward
translations (the one without added bound amoeboids with empty interface) is:

[0+ ve,y,z C(z,9)|Cly, 2)] =
=0F vz, y,z,m C(x,y)|C(n, 2)| Am(z) | Am(y, n1)| Am(2)

In order to compute the backward translation we have to consider the standard-
amoeboid decomposition, which hasY = {z,y,z,n}, std(G) = C(z,y)|C(n4, z) and
amoeb(G) = Am(z)|Am(y,ni)|Am(z). Thus the substitutive effect o is e.g. {ni/y},
and the result of the translation is:

[0+ va,y, 2,m C(z,y)|C(n1, 2) | Am(z)|Am(y, ni)|[Am(2)] =
=0+ vz, z,n; C(x,n)|C(ny, 2)

which 1s equal to the starting graph up to a-conversion.

We have to extend the forward translation also to productions, since the produc-
tions that we want to use in the simulating framework are the translations of the
productions used in the simulated framework, plus the productions for amoeboids.
We will present the translation for productions at a less formal level w.r.t. previous
definitions, since its formalization is quite complex, while the ideas behind it are
simpler and technicalities are similar to the ones emerged while translating graphs.
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Definition 3.16 (Translation of productions).

Let P = zy,...,2, &b L(z1,...,2,) ModF G obea production. The forward
translation of P using amoeboids of kind K 1s:

[Plic = %1y ey - L(x1, o 20) ~2% & - X G'|G | G

where A" and G' are obtained by replacing each right occurrence of each name x but
the first one with a fresh name. Let o be the renaming mapping each fresh name to
the corresponding name. Then G ., contains amoeboids of kind K connecting ezxactly
the names merged by o (free amoeboids for nodes in ', and bound amoeboids for
the other ones). Also, G, contains bound amoeboids connecting the nodes merged by
7, but for representatives the name of the corresponding occurrence is used instead
of the name of the node. Finally, X binds nodes not in @'.

The following example illustrates the definition.

Example 3.6. We show now some examples of the translation of productions, with
still unspecified amoeboids. We start with a stmple connection-preserving production.

2,y Cla,y) “25% oy b vz Oz, 2)| D()]k =
=z,yF C(z,y) oaty)id, z,y vz, 2z Clx,2)|D(21)|Amgs(z, 21)
Amoeboids for x and y are not shown since they are just the nodes x and y respec-
tively. We show now a non connection-preserving production, requiring explicit free
amoeboids:

T,a, ,id
[o,y b Cla,y) 229 o ok C(a,y)]k =

z,a, ,id
=z,yFC(z,y) Botu)id, z,y,y1 Fvys Cz,y2)| Amk (Y, y1, Y2)

We conclude with a production where w # id:
Lo, 9,2 b Flo,y,2) S22 4y - Cla, )| D(y) I =

— .’,E, y’ 2 l_ F(./L" y’ Z) (z’a’(ylnaid

— 2,9, 2,51 F vya, ys, ya C(x,y2) | D(ys) | Am s (Y, Y1, Y2, Y3, Ya) | Ak (s, 2)

Note that we have a bound amoeboid for m, connecting the occurrence y, of y with
z.

Now that we have defined the general framework, we can present the first ap-
plication of amoeboids. We define 2M amoeboids, which are amoeboids useful to
implement Milner synchronization on top of Hoare synchronization in the case of
closed 2-shared graphs. Since we deal with 2-shared graphs only, it is enough to
have bound amoeboids with either 0 or 2 nodes in their interface. Free amoeboids
are required only with singletons as interfaces, thus they are simple nodes.
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Definition 3.17 (2Mb amoeboids). A 2Mb amoeboid with two nodes in its in-
terface is a chain composed by an odd number of edges of rank 2 labeled with L (for
link). A 2Mb amoeboid with empty interface is either empty or it is a ring composed
by an even number of L edges. L edges have, as only non idle productions, one
production of the following form for each action a of arity k:

z,y b L(z,y) S0 m0,

>,y (@) n(@) - L) L L 710)
where & and § are vectors of new names such that |Z| = |§| = k.

The idea behind this definition is that an action a performed on one element of
the interface of a 2Mb amoeboid is matched by an action @ performed on the other
node attached to the first edge in the chain (note that here coactions are normal
Hoare actions). Then the other edges are in pairs, thus they change the action from
@ to a and back to @, without influencing the allowed synchronizations. Nodes to be
merged are connected via L edges instead, and this explains why chains of arbitrary
length are required: the length increases when nodes should be merged. Note also
that 2Mb amoeboids satisfy the condition for bound amoeboids in Definition 3.11.

Next lemma shows that complex 2Mb amoeboids behave exactly as simple L
edges.

Lemma 3.4.

Let Amapp({x, y}) be a 2Mb amoeboid with interface {x,y}. Amaon({x,y}) has, as
only non idle transitions, one transition of the following form for each action a of
arity k:

,a,%),(y,a,7),id
2,y + Amop({z,y}) L2DLEDT

s,y n(@),0(7) F Amoans ({2, ¥ Tocqy _py Ao (301, 7011
where T and § are vectors of new names such that |¥| = |§| = k.

Proof. The proof is by induction on the number n of L edges in the amoeboid, by
keeping in mind that n is odd, thus n = 1 is the base case and the inductive step
must prove that the property holds for n + 2 if it holds for n. O

We can now instantiate the general framework using 2M amoeboids.
Example 3.7. Let us consider as closed 2-shared graph a (closed) ring of 3 elements:
OFva,y,z R(z,y)|R(y, 2)|R(z, z)
Its standard decomposition is:

O+ va,y,z (R(x,y)|R(n1, 2)|R(ng, n3)){y/m, 2/ne, v /n3}
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and thus one of its forward translations is:

@ F vr,Yy,z,ny,Na, N3, 21,22
R(z,y)|R(n1, 2)|R(n2, n3)|L(x, ns) | L(y, n1)|L(z, 21)| L(21, 22)| L(22, 13)

where we have used the most simple form for the amoeboids (which are all bound)
for nodes x and y and a more complex form, that is a chain of three edges instead
of just one edge, for the amoeboid for node z.

We will consider now a pair of simple productions that allow to enlarge the ring
when two connected edges agree by performing a pair of complementary actions. We
present the productions together with their forward translations.

z’€5 b ’a’ 71d
[#,y F R(z,y) S0 0w Rz, w)| R(w, y)]aa =
=,y - Rz, y) L@k wy R(w, w)|R(w, )| L(w, w)

a "y 7d
MWFR@w%LﬁﬁuﬁﬁmyFM%wkM=
Using MSHR and the two original productions we can derive the transition:

Ot vz,y,z R(z,y)|R(y, 2)|R(z,7) —
= 0k vz, y,z,w R(z,w)|R(w, y)|R(y, 2)|[R(z, x)

where the synchronization is performed on node y between action a from R(x,y) and
action @ from R(y, z).

Stmilarly, in HSHR the translation of the graph can be rewritten using the trans-
lation of the productions together with the auxiliary production for L edge on edge
L(y,n1) and idle productions on other edges. The derived transition is:

0+ vz, y, z,n1,n9, N3, 21, 22

R(z,y)|R(n1, 2)|R(n2, n3)| L(z, n3)| L(y, n1)|L(z, 21)| L(21, 22) | L(22, n3) —
0+ vz, y, z,n1, N9, N3, 21, 22, W, W1

R(z, w)|R(w1, y)|L(w, w1)|R(n, 2) | R(n2, n3)|

L(z,n3)|L(y, n1)|L(2, 21)| L(21, 22) | L(22, 3)

Now the synchronization of the two actions a and @ on y and nq respectively is
mediated by the actions a and @ performed on the same nodes by the production for
L(y’ nl) :

Notice that by applying the backward translation to the final graph of the HSHR
transition we get the final graph of the MSHR transition.

Next theorem shows that the behaviour of the above example can be generalized
to any transition, thus ensuring that for 2s—1 and 2s—all computations, HSHR can
simulate MSHR.
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Theorem 3.6. (H,C) = (M,C) for each C € {2s—1,2s—all}.

Proof. We have to prove that for each computation in (M,C), a corresponding
computation can be done in (H, C), and that in (H,C) no more computations exist.
It is enough to prove that there is a bijective correspondence between the transitions.

Let us consider a choice of productions for the edges of the starting graph. We will
show that the corresponding Milner transition is built using the same productions
on the corresponding edges of the translated graph, but using also productions
for the amoeboids. For each node z in the starting graph (which is closed and 2-
shared), there is a corresponding bound amoeboid in the translated graph. In Milner
synchronization the two attached edges must perform either two e actions, or two
complementary actions. The same possibilities are offered by the 2Mb amoeboid for
x, as proved by Lemma 3.4.

Nodes to be merged because of the synchronization are connected using bound
amoeboids instead. We have to prove that the backward translation of the final
graph is indeed the wanted one. The standard edges in the graph are the wanted
ones by definition. The only thing that we have to show is that two nodes are
connected iff they are instances of the same node in the final graph of the Milner
transition, and that the connections are provided by bound amoeboids.

Two nodes should be connected either if they were connected in the source
graph, or they were connected in the RHS of the production, or they are merged
by a synchronization or by 7. It is easy to see that in all the cases they are con-
nected using amoeboids. Note also that the connection is always provided by a
bound amoeboid. In fact preserved connections are bound amoeboids by hypothe-
sis, connections created in the RHS for bound nodes are given by bound amoeboids
and connections created for nodes free in the productions are given by free amoe-
boids, thus by connecting them with the existing bound amoeboids we get again
bound amoeboids. Finally, amoeboids for 7 and the ones created by the synchro-
nization are bound amoeboids, which connect pairs of bound amoeboids, thus the
result is again a bound amoeboid. Note that, if two extremities of an amoeboid are
connected by another amoeboid, then a bound amoeboid with empty interface is
created. However, this is deleted by the backward translation.

Finally, notice that the result is a transition between closed 2-shared graphs since
all the used productions are connection-preserving. Thus the built computation is
indeed in the desired class. O

The same result does not hold for the set of computations 2s—mazx, since bound
amoeboids with empty interface can be created during the computation, and they
are always able to replicate themselves. Thus, there can be no stable state after
one of these has been created, and this does not allow to have the desired maximal
computations. To be precise, these computations exist, and their image along the
inverse translation is the wanted one, but they are not maximal.

We conclude here our treatment of closed 2-shared graphs, and in the next session
we will get back to the case of general closed graphs.
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3.4 MSHR vs HSHR with general closed graphs

In the previous section we have built two simulations, from MSHR to HSHR and
viceversa, at the price of considering only closed 2-shared graphs and of using the
forward and backward translations. Now we want to exploit the second technique
to analyze the relationships between MSHR and HSHR when general closed graphs
are rewritten. In particular, we drop the 2-shared condition. To do that however we
rely heavily on the work done in the previous section, by reducing this more general
case to the 2-shared case by using a new kind of amoeboids.
We introduce suitable sets of computations for our aim.

Notation. We denote with c—1, c—all and c—mazx the subsets of the sets of compu-
tations 1, all and max respectively containing only transitions between closed graphs.

We start by analyzing Hoare synchronization. By reducing Hoare synchroniza-
tion for general closed graphs to Hoare synchronization for closed 2-shared graphs,
we can then exploit Theorem 3.4 to implement HSHR using MSHR.

As said, we introduce amoeboids of a new kind, called H (for Hoare) amoe-
boids. Intuitively H amoeboids perform the broadcast of the chosen action to all
the elements in the interface. Note that now we need amoeboids with interfaces of
arbitrary size. However we build them using just two kinds of edges.

Definition 3.18 (H amoeboids). An H amoeboid (either free or bound) with
interface Int is an amoeboid with interface Int composed by edges labeled with H
(for Hoare) of rank 3 and C (for closing) of rank 1. The above edges have, as only
non idle productions, one production of the following form for each action a of arity

k:
:L_, y, z |_ H(.’I,‘, y, Z) (m,a,i’),(y,a,g‘),(z,a,é’),id}
— 2,y,2,0(Z),n(7),n(2) = H(@,y, 2)| [, 4 H (@], 711), 211])
(z,a,i’),id — = -
2.0(#) F O@)| [ O

where T, § and Z' are vectors of new names such that |Z| = |y] = |2| = k.

zF C(z)

Such an amoeboid imposes the same action to be executed on each node and it
creates a copy of itself for each set of corresponding names, which are thus connected
in the resulting graph.

Next lemma characterizes the allowed transitions for H amoeboids.

Lemma 3.5. Let Amy(Int) be an H amoeboid with interface Int. Amg(Int) has,
as only non idle transitions, one transition of the following form for each action a
of arity k:

{(w,a,f)\zelnt},id\
[4

Int+ Amy(Int)
— Int, | J n(@) F Amy(Int)| ],

z€lnt

 Amy ({#i)| € Int})

e{l,....,k
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where we have a vector T of new names with |Z| = k for each x € Int.

Proof. The proof is by induction on the number of edges in the amoeboid, by adding
edges in such a way that at each step the considered graph is connected. O

Next theorem proves the desired simulation result.

Theorem 3.7.
(H, Cq) =(H, C.) for each (Cos,C,) € {(25—1,c—1), (25—all, c—all)}.

~J

Proof. The proof is similar to the one of Theorem 3.6, using Lemma 3.5 instead
of Lemma 3.4. The only difference is that now both the nodes in the simulated
framework and the amoeboids in the simulating framework require that all the
connected edges perform the same action, and all the corresponding nodes (which
may be more than 2) are connected using amoeboids. O

This result can be used together with Theorem 3.4 to get a translation from
Hoare synchronization to Milner synchronization for any closed graph.

As for Theorem 3.6, using amoeboids it is not possible to preserve maximal
computations, thus the result does not hold for them.

Let us see now an example of the simulation.

Example 3.8. Let us consider the following production, taken from Example 1.1:

) (a7, (w)) (y,r>{w)),id

z,y b R(z,y r 2, y,w bk S(y, w)
The forward translation of the production using H amoeboids is:

($7T7(w))(y77'7(w1 >)

z,y - R(x,y) > Ty Y, W, W1, W H C("E)’S(y,MQ),H(w:wlan)

Notice that this is a connection-preserving production. Let us consider a closed ring
of four elements:

OFva,y,z,v R(z,y)|R(y, 2)| R(2,v)|[R(v, z)
Its forward translation using H amoeboids 1is:
[0Fve,y,2z,v Rz, y)|R(y, 2)|R(2,v)| R(v, )]z =
= Q) = v, x1,%2,Y,Y1,Y2, 2, 21, 22, U, V1, U2
R(z,y)|R(y1, 2)|R(z1,v) | R(v1, 21|
H(z, 21, 22)|C(22)[H (Y, y1,¥2)|C(y2) [ H (2, 21, 22) |C (22) [ H (v, v1, 12) | C (v2)
The transition in Figure 3.1 can be derived using the production above and the
auxiliary productions for H amoeboids. In the figure, X s the set containing all the
nodes in the resulting graph.
Finally, the resulting graph can be translated using the backward translation, and
the result is:
0+ va,y,z,v,w S(y,w)|S(z,w)|S (v, w)|S(z, w)

as desired.
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@ - vr,xr1,T9,Y,Y1,Y2,%2, 21,22, V,V1, V2
R(z,y)|R(y1, 2)| R(21,v) | R(v1, 1)
H(z, 21, 22)|C(22) [ H (Y, y1,¥2)|C(y2) | H (2, 21, 22) |C(22) [ H (v, v1, v2)|C (v2) —
O+ vX C(x)[S(y, ws)|H(wi,wa, w3)|C(y1)|S (2, we) | H (wa, ws, we)]
C(z1)]S(vy, we) | H (wyr, ws, we)|C(v1), S(z1,w1s), H(wig, w11, w12)|
H(x, w1, 22)|H (w1, wa, 2")|C(22)|C(2") [H(y, y1, yo) [H (wa, ws, y") |Cy2) |C(y)]
H(z, 21, 20)|H (wr, ws, 2')|C(22)|C (") [ H (v, v1, v2) [H (w10, w11, v)|C (v2) |C (')

Figure 3.1: Translation of a HSHR transition into the 2-shared framework.

Now we want to apply the same approach to Milner synchronization, i.e. we want
to find amoeboids that allow to simulate computations between general closed graphs
based on Milner synchronization by using only 2-shared graphs. The amoeboids for
Milner synchronization, called M (for Milner) amoeboids, are essentially routers
that create a path from an action to the corresponding coaction. We have here, as
for H amoeboids, the need for amoeboids with interface of arbitrary size.

Definition 3.19 (M amoeboids). An M amoeboid (either free or bound) with
interface Int is an amoeboid with interface Int composed by edges labeled with M
(for Milner) of rank 3, L (for link) of rank 2 and I (for inactive) of rank 1. The edges
labeled by M and L have respectively, as only non idle productions, one production
of the following form for each action a of arity k and each permutation of the nodes
in the interface:

x,Y, 2 '_ M(.’E Y,z ) (.’E,a,f),(y,a,g),(z,e,()),id>

> 5,y 2n(@), 1) F M@,9,2)| [,y L 710
z,y - L(:v,y) (z,0,%),(y,a,79),id
s 2, ,0(@), 1) L) L, L, 310

where T and § are vectors of new names such that |Z| = |§] = k.
For edges labeled by I only idle productions exist.

Intuitively, an action a on x is matched by a coaction @ again on = done by the
amoeboid. Thus on another node y an action a is performed by the amoeboid, and
it is matched by a coaction @, as required for Milner synchronization. Adding other
edges does not change the behaviour.

The absence of productions for edges labeled by I guarantees that actions and
coactions are originated only by standard edges. Notice however that a synchroniza-
tion may happen between edges forming a cycle in the amoeboid. However such a
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synchronization has no effect on the outside, and it just creates a bound amoeboid
with empty interface, which is discarded by the backward translation.

Note that the behaviour of edges labeled with L is the same of the ones used in
2Mb amoeboids. Also, these edges are not strictly necessary here since L(z,y) and
vz M(z,y, 2)|I(z) have the same behaviour, but they simplify the presentation.

We are not able to prove a reduction theorem similar to Theorem 3.7, since there
is here an additional problem: many independent synchronizations may be allowed
inside an amoeboid during one transition, but this is not allowed in standard Milner
synchronization. In particular, this happens when the pairs of interacting elements
of the interface are connected by disjoint paths inside the amoeboid. Adding a
blocking action is not enough to solve this problem for symmetry reasons.

Thus graphs translated using M amoeboids can simulate any allowed Milner
synchronization, but they may allow also other transitions. This is shown by the
example below.

Example 3.9. Let us consider the following M amoeboid, which has {z,y, z,w} as
interface:
'/I’li y’ 27 w l_ 14 M(x7 y? /U)|M(,U7 Z? w)

As required the amoeboid can provide pairs of complementary actions on any pair
of nodes, such as in the transition:

z,y, 2, wE M(z,y,v)|M(v, z,w) (z.0,0),(w.3,0)1d, z,y,z,wk M(z,y,v)|M(v, z,w)

thus allowing to synchronize an action at x with the corresponding coaction at
w. Howewver also the transition:

2,1, 2w F M(z,y,v)|M(v, 2, 0) (%a,()),(yﬁ,()),(zab,()),(w,b,())7id>

= z,y,z,wkE M(z,y,v)|M(v, z,w)

is allowed. This transition synchronizes two (action,coaction) pairs, the first one
based on actions a and @ performed at x and y respectively, and the other one based
on actions b and b performed at z and w respectively.

The usual lemma describing the transitions allowed by the amoeboids in this
case guarantees only the existence of the desired transitions, but others exist too.

Lemma 3.6. Let Amy(Int) be an M amoeboid with interface Int. Ama(Int) has
at least one transition of the following form for each action a of arity k:

Int - AmM(Int) (z,0,%),(y,a,7),id
— Int,n(Z),n(§) b Amy (Int)| Le{l,___,k} Amp ({Z]1], 9T4]})

where T and ¥ are vectors of new names with |Z| = |y] = k.
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Proof. The proof is by induction on the number of edges in the amoeboid, by adding
edges in such a way that at each step the considered graph is connected. O

We thus have the following partial correctness result.

Theorem 3.8. For each pair of sets of computations (Ce, Cos) € {(c—1,25—1),
(c—all,2s—all)} there exists a translation function f from sets of productions to

sets of productions such that for each set of productions P and for each closed graph
0 = G the following inclusion holds:

Ce-behav" (P)(0 - G) C [Cas-behav™ (f(P))([0 F Glam)] ™

Proof. The proof is similar to the one of Theorem 3.7, using Lemma 3.6 instead
of Lemma 3.5. The only difference is that now we are only able to prove that the
required interactions can be simulated, but not to prove that no other interaction is
possible. ]

The other inclusion holds, e.g., for amoeboids connecting at most 3 nodes, since in
that case we can have at most one synchronization. Notice that this theorem can be
composed with Theorem 3.6 to have an implementation of Milner synchronization
using Hoare synchronization, at least in the case of nodes shared by at most 3
tentacles.

As usual maximal computations are not preserved.

We show now that the problem of guaranteeing interleaving inside amoeboids of
the above seen kind can not be solved.

Theorem 3.9. Let G C Graphs contain for eachn € N at least a graph with n nodes
wn its interface and let it be closed under composition of graphs by joining them by
merging pairs of nodes in their respective interfaces, or by connecting them using
graphs with two nodes in their interface taken from a fixed set. Then the mazrimum
k such that oll T + G € G allow only (HSHR or MSHR) transitions where at most
k actions on the interface are not €, if it exists is 0.

Proof. We consider first the case where the graphs are connected by merging nodes.
Suppose that such a k exists and it is not 0 and take a graph with more than &
nodes in its interface, and a transition where k of the actions are not €. Take a node
where action € is executed. By connecting two such graphs by merging these two
nodes, we get a graph which allows at least 2k non € actions on its interface. This
gives a contradiction.

If graphs are connected using another graph, just note that the idle transition
for that graph can be used to derive a transition like the one above, obtaining again
a contradiction. 0

This proves that we can not have a set of amoeboids for Milner synchronization
(since this requires k = 2), since the closure property is needed to model mobility.
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Notice in fact that if we want to model transitions without mobility we can use,
e.g., amoeboids with a tree structure whose leaves are the elements in the interface
of the amoeboid and whose roots check that the resulting action is a 7. When
mobility is allowed, the tree shape can not be preserved.

To summarize, we have proved that Hoare and Milner synchronizations have a
different expressive power, and that Milner synchronization is more expressive.



Chapter 4

Mapping HSHR into Logic
Programming

In this chapter we analyze the relationships between HSHR and Logic Programming,
which is used, as said in the introduction, as a mechanism for modeling concurrent in-
teracting systems, which are represented as goals. Interaction is performed using the
unification engine, and shared variables are used to communicate information. We
introduce two variations of Logic Programming: Synchronized Logic Programming
(SLP) and Logic Programming with hiding. The former introduces a mechanism
of transactions inside Logic Programming, in the style of zero-safe nets [BM00], to
allow more control on the execution of Logic Programming steps. In particular, in
SLP we can force different atoms to synchronize before being allowed to evolve fur-
ther. The latter instead adds to Logic Programming an operator of variable hiding,
similar to the one found in Fusion Calculus or in SHR. We will show that this is
related to the usual practice of restricting the computed answer substitution to the
variables in the starting goal, and to anonymous variables as can be found in some
implementations of Prolog, such as, e.g., Sicstus Prolog [Lab95]. The two presented
variations of Logic Programming are actually orthogonal and they can be combined
into SLP with hiding. As final result we present a mapping form HSHR into SLP
with hiding, thus further extending the chain of mappings whose starting point is
Fusion Calculus. As for the first step, the correspondence result is stated at the level
of LTS, and here too the correspondence is essentially an injective homomorphism,
showing the strict relation between the two frameworks. We will briefly discuss some
generalizations of HSHR that allow to extend the correspondence to larger subsets
of Logic Programming with hiding.

4.1 Synchronized Logic Programming

In this section we present the first variation of Logic Programming, called Synchro-
nized Logic Programming (SLP).
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We have introduced SLP because Logic Programming allows for many execution
strategies and for complex interactions. In some cases, one wants more control on
the order of execution of different SLD-steps, in order to have a more synchronous
behaviour. This is obtained by grouping the SLD-steps, and forcing all the SLD-
steps in the same group to be executed before the execution of the SLD-steps in
next group can begin. Essentially, this is obtained by introducing transactions,
which are called big-steps in this setting. The approach is similar to the zero-safe
nets approach [BM00] for Petri nets. In particular, function symbols are considered
resources, and they must be produced and consumed inside the same transaction.
A transaction can thus end only when the goal contains just predicates applied to
variables. No atom created inside a transaction can be rewritten inside the same
transaction. If some SLD-steps are performed, but there is no follow-up leading the
transaction to a successful completion, then the computation is not allowed (from
an operational point of view, backtracking must be performed). A computation is
thus a sequence of big-steps.

We start by introducing goal-graphs, which represent the states of the system
when there are no ongoing transactions. The name goal-graph has been chosen since
goal-graphs are the result of the translation of HSHR graphs into SLP.

Definition 4.1 (Goal-graphs). A goal-graph is a goal which contains no function
symbols.

Note that a goal-graph can not contain constant symbols too, since constant
symbols are just function symbols whose arity is 0.

Programs in SLP are called synchronized programs, to stress the introduction of
the synchronization mechanism.

Definition 4.2 (Synchronized programs). A synchronized program is a finite
set of synchronized rules, i.e. clauses such that:

1. the body of each rule is a goal-graph;

2. the head of each rule has the form p(tq,...,t,) where p is a predicate symbol
and each t;, i € {1,...,n} is either a term obtained by applying a function
symbol to a tuple of variables, or it is a variable;

3. if the head of a rule has the form p(ti,...,t,) and there is a variable x and
an index i € {1,...,n} such that x = t;, then x occurs also in the body of the
rule.

Next example clarifies the above constraints, while their motivations will be clear
when we explain the synchronization mechanism.

Example 4.1. We show here some clauses, and we discuss whether they are syn-
chronized rules or not.
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q(f(z),y) + p(z,y) synchronized rule;
(z, f(y)) mnot synchronized because p(x, f(y)) is not a
goal-graph;
q(g(f(x)),g(y)) < p(x,y) mnot synchronized because it contains nested
functions;
r(g(x), z,9(y)) < p(x,x) not synchronized because z is an argument
of r and it does not occur in the body.

Next definition formalizes the concept of big-step.

Definition 4.3 (Big-steps). Given a synchronized program P and a goal-graph
G4, a big-step allowed by program P starting from G1 is a SLD-computation P |-

Gy 0—I>* Gy such that:
e both G and Gy are goal-graphs;
e clauses are never applied to atoms introduced by previous steps.

We denote this big-step with:
PG %G,

where 0 = 0'| ). We will omit P I if P is clear from conteat.
A SLP computation is a sequence of big-steps.

Definition 4.4 (Synchronized Logic Programming computation). A SLP
computation is a sequence of big-steps such that for each i the final goal-graph of
big-step 1 is the starting goal-graph of big-step i + 1.

Notation. We denote a SLP computation as G A G, where 0 is the composition
of the substitutions computed by the different big-steps, in the same order of their
appearance in the sequence, and the empty substitution if the sequence is empty.

As we have already said, a big-step is a transaction composed by steps corre-
sponding to the application of different clauses. Each clause specifies how an atom in
the goal evolves. The evolution involves creating new atoms, and function symbols
are used as a synchronization mechanism. When a function symbol f appears in
the head of a clause, the unification procedure causes it to be substituted for some
variable x. Thus occurrences of f will appear in each atom containing x. In order
to derive a big-step, a goal-graph must be reached, but this is possible only if each
f will disappear from the goal. This may happen only if all those symbols f are
unified with other symbols f from other clauses (the last condition in Definition 4.2
ensures that f can not disappear by being unified with a variable x which is then
discarded). From another point of view, atoms have to agree on which function
symbol to unify with each variable. This clearly reminds Hoare synchronization,
and in fact this is the key for the translation from HSHR to SLP. Note that if a
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synchronized rule does not satisfy condition 1 in Definition 4.2 then it can not be
used in a successful big-step since there is no way to delete the function symbol in
the body from the resulting goal. The second condition forbids structured actions
(see the end of this chapter for a discussion on how to release it).

We present now a simple example of big-step to show how the synchronization
mechanism works. More complex examples will be presented later, after having
introduced hiding and having presented the mapping from HSHR into SLP with
hiding.

Example 4.2. Let us consider a simple system with a producer p(x,y), which is
able to produce a resource f with two arguments on either channel x or channel
y. Similarly, there is a consumer c(z,w) that can take from f its second argument
(notice that since the synchronization has no polarity, i.e. there is no real difference
between input and output, then the difference between the producer and the consumer
is minimal) and connect to it. Finally, we have two routers r, propagating the
synchronization from x to z and from y to w.

Thus the system has the form:

p(.T, y)a T‘(.?S, Z)’ T(ya w)v C(Z7 w)

The behaviour of the system is specified by the program P composed by the following
synchronized rules:

p(f(z,n),y) < plz,y)

p(z, f(y,n)) <+ p(z,y)
r(f(z,n), f(y,n) < r(z,y)

c(f(z,n),y) + d(z,y,n)

c(z, f(y,n)) « '(z,y,n)

Let us consider a sample big-step (we present its SLD-steps in the most intuitive
order, however they can be performed in any order, provided that at the end a goal-
graph is reached, and no steps from other big-steps are executed in between).

We first produce a resource, using e.qg. the first clause, obtaining the step:

) {f(@'n)/zy/y'}

p(x,y),r(z, 2), r(y, w), c(z,w p(x' ), r(f(2',n),2),r(y,w), c(z, w)

Now we have a function symbol in the predicate representing the first router, and we
must delete it:

) {z"/a' ;0" n.f(2';n") [ 2}

p(@',y),r(f(@',n), 2),r(y, w), c(z,w
= p(a",y),r(@", 2), r(y, w), c(f (', n'), w)
Finally, the resource can be consumed:

{Z”/Z’ ,,nl/nll,wl/w}\
[4

p(a",y),r(z",2), r(y, w), c(f (2, ), w)
—> p('/'Ll”7 y)7 T(xHJ Z”)? T(y7 w’)7 C,(Z"7 w,7 nl)
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Now we have no more function symbols, thus the big-step is finished. The substitution
0 obtained as observation for this big-step is:

0 ={f(=",n)/z, f(z", )/ 2,0 [w}

Note that in 0 we have neither the substitutions for the variables in the clauses (such
as {y/y'}) nor the ones for the intermediate results (such as {z"/Z'}).

As shown, SLP is a suitable framework for modeling interacting systems with
mobility, and its strong connections with Logic Programming allow to easily imple-
ment it. For instance, a toy interpreter allowing to perform SLP computations has
been presented in [Lan02].

We move now to the second promised variation of Logic Programming, namely
Logic Programming with hiding.

4.2 Adding an hiding operator to Logic Program-
ming

In the usual practice of modeling interacting distributed systems, such as GC sys-
tems, frequently local resources have to be modeled. A local resource is a resource
that is known only to a small part of the system. In particular, only components
in that part can access it, and they are aware of events generated by it. From a
naming point of view, the resource has a local name, and scoping rules guarantee
that this is kept distinct w.r.t. other syntactically equal names of resources which
are global or local to other parts of the system.

From a modeling point of view, these aspects are usually managed by adding
an operator of variable (or channel, or name, ...) hiding or restriction. Consider
for instance the scope operator in Fusion Calculus, or restriction in SHR. Such
an operator declares a resource as local, it fixes its scope, and via a-conversion it
guarantees that its name is kept distinct w.r.t. names of other resources (unless
they are explicitly merged).

The term “hiding” refers to the fact that observations of events performed on
that variable are removed from the global observation (i.e., from the label of the
transition in a LTS semantics).

In the Logic Programming world, this concept has usually been neglected because
Logic Programming has not been used as a model for interacting systems. This
feature becomes however very important for our aims. To cover this aspect, we
extend Logic Programming with a v operator of variable hiding, taking inspiration
from the v operator of HSHR (and in fact, the mapping from HSHR to SLP with
hiding will map the v operator of HSHR into the v operator of SLP with hiding).

We will show that this operator allows to further understand some features of
traditional Logic Programming. In particular, it allows to compute the computed
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(AL1) (G1,G2),G3 = G1,(G2,G3) (AL2) G1,G2 = G2, Gy (AL3) G,0=G
(AL4) vz vy G=vy vz G (ALS) ve G =G if ¢ ¢ In(G)
(AL6) vz G = vy G{y/z} if y ¢ fn(G)
(AL7) vz G1,G2 = G1,vz Go if x ¢ fIn(G1)

Table 4.1: Axioms for goals with hiding.

answer substitution restricted to the (free) variables of the starting goal in a step-by-
step way. Also we show that hidden variables are strictly connected to anonymous
variables, which can be found in some implementations of Prolog, such as, e.g.,
Sicstus Prolog [Lab95].

We start by extending the syntax of clauses and goals (see Definition 1.26).

Definition 4.5 (Syntax for clauses and goals with hiding). Clauses C and
goals G with hiding are defined by the following grammar:

C ::= A+ G
G = v G|G,G|A|O
where A is a logic atom (i.e., a predicate), x is a variable, “” is the AND conjunction

and O is the empty goal. The hiding operator v is a binder, thus free and bound
variables can be defined as usual for a goal G. We require that each free variable in
the body G of the clause A < G occurs also in A. The hiding operator has lower
priority w.r.t. AND conjunction.

We consider goals with hiding up to the axioms in Table 4.1.

We have chosen to state the properties of goals in the table as axioms so that
they induce a congruence which is essentially identical to the structural congruence
on graph terms.

Notation. To have a uniform presentation, variables will be called names in this
contert and we use the same notations used, e.g., for Fusion Calculus names. In
particular, we define as usual the functions n(—) and fn(—) that compute the sets of
names and of free names respectively.

Axioms (AL1), (AL2) and (AL3) define respectively the associativity, commu-
tativity and identity over O for AND composition. Axioms (AL4) and (AL5) state
that names can be hidden only once and in any order. Axiom (ALG6) defines a-
conversion of a goal w.r.t its hidden names. Axiom (AL7) defines the interaction
between hiding and AND composition.

Note that axioms (AL4) and (AL5) allow to write just v{zi,...,z,} instead
of vxy...vx,. We will drop the braces if no confusion will arise. Note also that
function fn is well-defined on equivalence classes.

The following lemma holds on goals with hiding.
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Lemma 4.1. Let G be a goal with hiding. We can always write the goal in the form:
G=vX Ay,..., A,
where X is a set of names and A+, ..., A, are atoms.

Proof. Goal G can be written in this form using the axioms to extend the scope of
hidden names, and using a-conversion to avoid name clashes. O

Computations on goals with hiding are very similar to standard SLD-computa-
tions, but in addition one must track which variables are hidden. Intuitively, a
variable is hidden after a SLD-step iff it was either hidden before or it is new, and it
has not appeared in the observable part of the substitution (in other words, it has
not been extruded).

We present here some auxiliary definitions useful to formalize this idea.

Definition 4.6 (Sets of ancestors). Given a substitution 0 and a variable x the
set of ancestors of x w.r.t. 0 is:

0~ (z) = {ylz € n(y8)}

Definition 4.7 (Sets of origins). Let G be a goal with hiding and 0 a substitution.
For each variable x we define the set of origins of x w.r.t. 8 and G as:

origy ¢(z) = 07 (z) N fn(G)

We can now extend the semantics of Logic Programming to goals and programs
with hiding.

Definition 4.8 (SLD-steps with hiding). Let P be a program with hiding. The
allowed SLD-steps with hiding are given by the LTS defined by the following infer-
ence rules:

H«+vX By,...,B,€P 6 = mgu({A = Hp})
Pi-A Y (X Bi,... Bt

atomic goal

where p is an injective renaming such that n(Hp) contains only fresh names and A
18 an atom.

PFGL. F
PIFG,G %, F .G
PFGL, F
Plrv:GS, vX' F

conjunctive goal

goal with hidden variables

where:
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o 0" =0l\(a);

o X' = {y € fa(F)| origy o(y) C {a}}.

We require that, when an hidden variable x occurs in a term substituted for a free
variable, the representative chosen for x by the mgu is a fresh name of the compu-
tation.

The observed substitution s called the restricted mgu.

The condition on the mgu amounts to say that when a name is extruded (and
this happens when it appears in a term substituted for a free name), a fresh name
is chosen. If this condition would be dropped then substitutions performed on
this name will affect substitutions on other occurrences of the same name, which
correspond to semantically different names.

A SLD-computation with hiding is a sequence of SLD-steps with hiding.

Definition 4.9 (SLD-computations with hiding). A SLD-computation with
hiding is a sequence of SLD-steps with hiding allowed by some program P and start-

ing from some goal G. If G' is the final goal then we write P I+ G in* G" where 0
1s obtained by composing the restricted mgus 6, ..., 0, as follows. Let:

o 0 =0,
o 0; = {ti0i/zilt:/7; € 0;_,} Ubil\n_,) for each i € {2,...,n}.
Then 6 = 0;,.
We show here a simple example of SLD-computation with hiding.
Example 4.3. Let P be the program defined by the following clauses with hiding:
p(z,y) « vz q(z,y,2),7(2)

q(z,z,2) « p(z,2)
r(f(z.y) « »plz,y)

Starting from the goal with hiding:

vz p(z,y)
we can perform the following SLD-computation with hiding:

— 1ol P n =Y

r VT, 2 q(x,y,z),T(Z) —r

= v p(a”, "), r(2") =,

=, Z/.%‘I", y/// p(x//, f(x//l7 y///)),p(xm, y///)

The restricted substitution 0 corresponding to the whole computation is {z"/y}.



4.2. ADDING AN HIDING OPERATOR TO LOGIC PROGRAMMING 85

Note that, even for goals without hiding operator, the observed substitution is
not the standard composition of the mgus of the different steps, but it is restricted
to the names in the starting goal, as proved by the following theorem.

Theorem 4.1. Let G be a goal without hiding operator and P a program with
hiding. Let Ppee be a program without hiding obtained by removing from P all
the v operators, and choosing for previously bound names corresponding free names

which were not already used in the same clause. If P I+ G in* G' then Pyree IF
G Y G where 6 = Ofrecln(c) and G' =vX G

Free for some set of names X.

ree

Proof. The proof is by induction on the length of the computation, and each step
requires a rule induction. For the base step consider that, as far as G’ is concerned,
the only difference between the two sets of inference rules is that the one for com-
putations with hiding adds some hiding operators. Notice also that in steps with
hiding any fresh name can be chosen for bound variables (when they are extruded, or
when hiding operators are removed to have the correspondence with the framework
without hiding). However since there are no hidden names in the starting goal, all
these names are introduced by clauses, thus the desired fresh names can be chosen
by tuning the renaming p. This implies the second part of the thesis, since the
inductive step is trivial.

Let us prove in detail the first part. The base step is trivial. Let us consider
the inductive step. We have to prove the thesis for a computation of ¢ steps. The
bindings in the restricted mgu 6, concern only free variables of G;. The first part
of the composed substitution (see Definition 4.9) updates bindings in €_,, which
concern names in the starting goal by inductive hypothesis. All the required updates
are made, since all the variables therein are free. The second part of the built
substitution concerns free names in G; which are not in n(f,_,). These names
must be in G since the only other free names in G; are introduced by applying
substitutions to free names, and in this case the names are in n(¢}_;). This proves
the thesis. O

Thus adding the hiding operator allows to compute the computed answer sub-
stitution restricted to the names in the starting goal. When hiding operators are
added to the starting goal too, substitutions performed on hidden variables are
deleted from the computed substitution, as proved by the following theorem.

Theorem 4.2. Let G be a goal with hiding, P a program with hiding and X a

set of variables. We have P I+ G in G iff PFvX G M vX" G" where

X' = {z € in(G")| origy (z) € {X}}.

Proof. We prove the theorem for a single step first, by induction on the number
of variables in X, and for whole computations later, by induction on the number
of steps. Let us start with the forward implication. The first part of the proof is
trivial.
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The first part of the proof is also the base case of the second part. Let us
consider the inductive case. Suppose we have a computation P I+ G 0—>T* G" a_}r

9 .
G'. By inductive hypothesis we have a computation P I vX G ﬂ)r v X" G"
where X" = {z € fn(G")|origy () € {X}}. Using the first part we also have
x!

PlFvX" G" LT* v X' G' where X' = {z € fn(G'")| origgn gn(x) € {X"}}. The
composition of the substitutions is the wanted one, since the bindings deleted from
the second part concern variables deleted from the first part. Also, variables in X'
are the desired ones, because of the definition of set of origins.

The backward implication is trivial, since the desired computation is obtained
just by removing the steps dealing with hiding. O

This is exactly what happens in Sicstus Prolog [Lab95] when a variable is declared
as anonymous (also, the variable is anonymous since its name is not meaningful
because of a-conversion). Summarizing, the hiding operator allows to track which
variables are important in a step-by-step way.

4.3 Mapping HSHR into SLP with hiding

In this section we present a mapping from HSHR into SLP with hiding, that is
into the combination of the two variations of Logic Programming presented in the
previous sections. This allows to complete the comparison among the chosen models
for GC systems.

In very broad terms, the correspondence is:

e graphs correspond to goal-graphs;
e HSHR productions correspond to synchronized clauses;
e HSHR computations are modeled by synchronized computations.

As we will see shortly, the correspondence can be stated at the level of LTS,
it covers the full HSHR and it is quite simple. This highlights the strong connec-
tion between the two frameworks, in particular between Hoare synchronization and
unification. The introduction of the synchronization mechanism of SLP into Logic
Programming is fundamental to show this connection, since it forces a “lock-step”
behaviour that corresponds to the one of HSHR, where each transition is derived
by using one production for each edge, and each edge performs one action on each
node in the interface. The introduction of the hiding operator is less fundamental,
since HSHR without restriction exists [HIM00] and it corresponds to SLP without
hiding. However, the chosen definition of the hiding operator in Logic Programming
is motivated and justified by the possibility of extending the mapping to the whole
setting.
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We start the technical description of the mapping by defining the translation of
graphs into goals. As announced, goal-graphs are obtained. The translation defines
essentially an isomorphism between graphs and goal-graphs, mapping edge labels
into predicates, nodes to names, restriction into hiding, parallel composition into
AND composition and nil into [J.

The only mismatch is that there is no correspondent in goal-graphs for the con-
text I' of a graph judgement I' = G. The only information that is lost because of this
mismatch is the set of isolated nodes, since all the other nodes occur in GG. In many
cases isolated nodes are not important (e.g., since they can not create edges, and
they are garbage-collected if bound), thus we think that this is not a big loss. When
describing the mapping we will thus use graphs without mentioning context I'. No-
tice however that the choice for clauses of fresh names done by SLP rules correspond
to choose names not present in the context I' of the corresponding graph.

For simplicity, we suppose that the set of nodes in HSHR coincides with the set
of names in SLP (otherwise we need a bijective translation function). We do the
same for edge labels and names of predicates.

Definition 4.10 (Translation from graphs to goal-graphs). The translation

operator [—]SHE is defined on graphs as:

[L(zy,...,2)]38F = L(zy,...,2,)

[G1|Ga] 3l F

[ve GI52P

[G1]SER [Gel SEF
vr [GI3LF

g

[nil] Sz

Lemma 4.2 (Correspondence of judgements and goal-graphs). The trans-
lation operator [—]32E defines an isomorphism between graphs up to isolated nodes
and goal-graphs.

Proof. The proof is straightforward observing that the operator [—]23Z% defines an
isomorphism between representatives of graphs and representatives of goal-graphs
and the structural congruence on the two structures is the same up to the translation.

O

The translation also maps HSHR productions to synchronized clauses with hid-
ing. We suppose to have function symbols for all HSHR actions, with corresponding
arities.

Definition 4.11 (Translation from productions to clauses). The translation
operator [—]3HEE is defined on HSHR productions as:
A7 - N
HL(.Tl, cee ,xn) — G]]ggjlj = L(afl(xlﬂ-a yl), SR a’n(xnﬂ-a yn)) — IIG]]gg}?

if AMz;) = (ai, §;) for each i € {1,...,n}.
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Notice that all the clauses obtained via the translation are synchronized clauses.
In particular, predicate L has never simple variables as arguments, and this trivially
satisfies the third condition of Definition 4.2. This ensures that all the images of the
edges (in the same connected component) evolve in a lock-step way, as it happens
in SHR.

The idea of the translation is that the condition given by an action (z,a, %) is
represented by using the term a(z7, i) as argument in the position that corresponds
to z. Notice that in this term a is a function symbol and 7 is a renaming. During
unification, x will be bound to a renamed version of that term and, when other
instances of = are found, the corresponding term must contain the same function
symbol (as required by Hoare synchronization) in order to be unifiable. Furthermore
the corresponding tuples of names are unified. Since x will disappear from the goal
(it is substituted, and substitutions are idempotent) another name is required to
represent the node that corresponds to x. The first argument of a is used to this
purpose. If two nodes are merged by 7 then their successors are the same as required.

Observe that there is no need to translate all the productions, but translating
only the generators (included, however, idle productions) is enough. In fact clauses
with the required fresh names are automatically generated by the inference rule for
atomic goals in Definition 4.8.

We concentrate now on the relationships between HSHR transitions and SLP
big-steps. The observable substitution of the big-step contains information on A
and 7. Thus given a transition we can associate to it a substitution . We have
different choices for 6 according to where we map variables. In fact in HSHR nodes
are mapped to their representatives according to 7, while, in SLP, # can not do the
same since it is idempotent. The possible choices of fresh names for the variables
change by an injective renaming the result of the big-step.

Definition 4.12 (Substitution associated to a transition). Let T =G AT G
be a HSHR transition. The substitution 0, associated to T via the injective renaming
p 1s:

0, = {a(azmp, jp)/z|z € In(G) A A(z) = (a,9)}

We present now a lemma, which, even if quite technical, is interesting since it
shows the synchronization conditions that are required in order to perform a big-
step. We concentrate on big-steps where each argument of the head predicate of
each used clause is a function symbol, since this is the kind of clauses built by the
translation of HSHR productions. The lemma is fundamental to prove (but not to
understand) the correspondence theorems 4.3 (correctness) and 4.4 (completeness).

Lemma 4.3. Let vX Aq,..., A, be a goal-graph with hiding.

We want to characterize the big-step derived by unifying the synchronized clause
H; < B; with atom A; for each i € {1,...,n}. As a notational convention we
use Ti1,...,Tin; to denote the arguments of A; and ai,j(xg,j,gj;,j) to denote the j-th
arqument of H;.
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Let p = mgu({z;; = 7, ,¥; = Upli,p € {1,...,n},j € {1,...,m},q €
{1’ ° ’np}’mzy.] = xpzq})

There is a big-step with hiding of the form:
vX Ay, Ay D vX! Gy, .., G

iff Viop € {1,...,n} Vi € {1,...,n}Vg € {1,... 0} = Zpy = Gij = Gpy-
Furthermore we have:

o (= {ai,j(x;,jp, gj';’jp)/xi,j ie{l,...,n},je{l,...,ni}, i ; ¢ X},
L] Gl;---yGn:(Bly---;Bn)p;

o X'={xe(Gy,...,G,)|origy,x 4, .a,(T)# 0}

The big-step is determined up to injective renamings by the choice of the clauses
and of the atoms they are applied to.

Proof. We will prove a more general result by induction on the number of “con-
sidered” atoms, that is we consider chains of computations of increasing length,
where at step m considered atoms are the ones that have been expanded in steps
1,...,m—1. Without loss of generality (thanks to associativity and commutativity
of AND conjunction), atoms are considered in numeric order, i.e. at step m atoms
Ay, ..., A1 have already been considered, and atom A, becomes considered.

We will prove that a computation of the form:

*

VX Ay, Ay T X! G G

where clauses are never applied to atoms introduced by previous steps, where atoms
Ay, ..., A, have been considered, and where the atoms generated by them do not
contain function symbols exists iff:

Vi,p S {1, - ,m}\V/] < {1, ceey n,}Vq < {1, cee np}.:ci,j = Tp,g = Ai,j = Apg
and that furthermore:

[ ] Gl, .. .,Gn = (Bl, .. .,Bm)pm, (Am_|_1, .. ,An)Om,

pm = mgu({zi; = 2,0,8; = Gplt,p € {L,...,m},j € {1,....,n:},q €
{1’ ot ’np}’x'hj = :'Epaq});

or = {a,-,j(ajg,jpm,g;,jpm)/:vi,jﬁ e{l,....m},je{l,...,n},mi; & X};
em = 9:n U pm;

X ={z € (G, ...,Gn)| Origo:n,ux Aty An (z) # 0}



90 CHAPTER 4. MAPPING HSHR INTO LOGIC PROGRAMMING

Note that if all the atoms are considered then we obtain the thesis.
Base case, m = 1) The computation has the form:

vX Al,---;An 0—1{)7- VX{ (BI,AQ,...,An)Hl

where 60, is a mgu of {A; = H;} and 67 is the restriction of 6; to the free names in
vX Ay, ..., A,. This computation exists iff:

01 = mgu({z1; = a15(z1;, 71,;)li € {L,...,m}})

exists. Note that if 2, ; = 14 # a1,; = a1, then the mgu does not exist.
If the condition is satisfied instead we have:

01 = mgu({z1; = a,;(2} ;¥ ;)7 € {1,...,m}}U
U{al,j(xi,j,gll,j) = al,q(33ll,q,g'1,q)|jaq e{l,...,m}ha1; =214}) =
=mgu({z1; = a1;(2) ;, 9 ;)7 € {1,...,m}} U
U{l"l1,j = xll,qa"ji,j = "ﬁ,qan e{l,....m},z1,; =T14})

Note that the last part is exactly eqn(p;), thus p; is its mgu.
Thus we have:

01 = mgu({z1; = a1,;(z) ;, 91 ;)17 € {1,...,m}} Ueqn(p))
= mgu({z1,; = a1, (xll,jpla ?ﬁ,jpl)\j €{1,...,n1}} Ueqn(p1))

This set of equations is in solved form, thus it has the same structure as #;. This
proves the first part since this mgu exists. Also, p;, #; and its restriction 6] to the
free names in vX Ay,..., A, have the wanted form. The structure of the body is as
desired, as follows from the observation that 0;|,p,)= pln(s,)- The last part follows
from Theorem 4.2.

Inductive case, m = m + 1) Assume that:

T

0
m+1_ ¥ 12
VXAl,...,An—),n vX +1G1:---7Gn

m

is a SLD-computation with hiding where clauses are never applied to atoms intro-
duced by previous steps, where atoms Ay, ..., A, 11 are considered and where the
atoms generated by them do not contain function symbols.

Let us take the subcomputation where only the first m atoms have been consid-
ered. By inductive hypothesis we have that this subcomputation exists iff:

Vi,pe{l,....m}Vjie{l,...,n}.Vge{l,....,np}.xij =2p g = aij = Gy
and that:

[ ] Gl, .. -;Gn = (Bl, .. -;Bm)pma (Am—|—1; .. ,An)Hm,
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® Om = mgu({x;,] = x;,qvg‘z{,j = g;),q“ap € {1:"'7m}7j € {]—7"'7ni}7q €
{1’ ot ’np}"r'%] = ‘,I:Paq});

o 07, ={ai; (T} jom, Ui jpm)/Tijli € {1,...,m}, 5 € {1,...,ni}, w55 ¢ X}

b omzez—”nupm;

d X;n = {.T € fn(Gla s aGn)| OrigO,’;q,uX Aq,.Ap ($) 7é 0}

We consider now the atom A,,,;. There is a step with hiding of the form:

VX! (Bi,..., By, Aty -y Ap) —25,
VX;n—i—l (B17 ey Bm—i—l, Am+2, ey An)9m0m+1

where 0,11 = mgu({Apm110m = Hpni1}) (note that we can assume that 6, is applied
t0 Byy11 too since dom(6,,) "n(B,,41) = 0 since B,, 11 has been renamed using fresh
variables) and o7, is the restriction of o,,,; to the free variables of the starting
goal of the step.

We have:

Om+1 = mMgU({Am410m = Hpia}) =

= mgu({Tm41,0m = mi1,j (xlm+1,ja g',m+1,j)|j €{l,....nmi1}})

For each j there are two possibilities: either the variable z,,, ; appears in already
considered atoms or it does not. We call it an old variable in the first case and a
new variable in the second one.

In the second case 6, is the identity on that variable. In the first case instead
the mgu exists iff a,11,; = a,,4 Where a, 4 is the function symbol in the binding for
Tm41,j 10 0. A similar condition must be satisfied if 2,41 = Ty for 5,k €
{1, . nm+1}.

Thus we will have:

Omt1 = Mgu({Api10m = Hpya}) =
= mgu({ap,¢(zp,.Pm> Ty gPm) = @ms1,j (Tt js U1 )P € {1, ..., m+ 1},
ge{l,...,n} i €{l,...,nm}, Tpg = Tmi1,} U
U{Zmi15 = am+1,j(x;n+1,ja g'lm+1,j)|j €{1,...,Nms1}, Ty, is new} =

= mgu({xé,qpm = x:n,+1,ja g’p,qpm = g"m+1,j|p € {]-a <o, M + 1}) q € {17 e anp}a
j E {]‘7 st 7nm+1}’xpaq = xm+17]} U

UH{Zm+1j = @1, (@1 Ymar,) 7 € {1 -+ R}, Tin15 i new})
We can reorder it as:
mgU({Zm+1, = i1, (Tmi1,js Yms1,)17 € {1+ - Mmg1 }y T, s new U

U{x;aqpm = ./L‘;n"'la]’ g;)’qpm = g’m+1,]|p 6 {1’ trtt m + 1}’q E {1’ ot ’np}’
JE€ {17 <. ;nm-l-l}’ Lpg = ‘Tm‘f‘l:j})
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Note that the second part is a renaming that does not involve variables in the domain
of the first part. Thus we can define the new renaming p,,,.1 as its mgu and put the
set of equations in solved form:

mgu({ZTm+1,; = am+1,j(xlm+1,jpm+l, ?fm+1,j0m+1)|
j € {]-a tee nm-}-l}a Tm+1,5 is new} U eqn(pm+l))

Thus the mgu exists and the first part of the thesis is proved.

Let us consider the substitution 6,1 = 6,,0,1+1- Note that the renaming part of
Om+1 Substitutes variables according to the equivalence between variables in H,, 1
and representatives of the corresponding variables in A,, 1 thus the composed sub-
stitution 6,,,; maps each variable to the representative of the equivalence class that
is defined by the union of the two sets of equations as required. Furthermore bind-
ings with complex terms (the first part of the substitution) have disjoint domains
and thus the union of them is made. Bindings coming from o,,,; have already the
wanted representatives in the image, while to bindings in 6, the renaming p,,1
is applied, mapping variables into the representatives of their equivalence classes.
Thus 6,11 has the wanted form.

We have:

(B17 ot Bm+17 Am+2a et Aﬂ)om-l—l = (B17 Tt Bm+1)pm+1: (Am+27 ot Aﬂ)em-l—l

as required since (dom(6,,,+1) \ dom(pm+1)) NIn(By, ..., Bpy1) = 0.

The observed substitution 67, is the restriction of 8,,;1 to the free variables in
the starting goal as required. Also, the set of hidden variables X, ., is the desired
one thanks to Theorem 4.2.

Note that this result does not depend on the order of application of clauses and
that after having chosen which clauses to apply and to which atoms it is determined
up to an injective renaming (which depends on the choice of names for new variables
and on the choice of representatives for the equivalence classes). O

We also need the following lemma dealing with the mgu of the union of sets of
equations, taken from [Pal90].

Lemma 4.4. Let 6, and 0, be idempotent substitutions. Then:
mgu(eqn(f;) Ueqn(fy)) = 6; mgu(eqn(6y)6;)
Proof. See [Pal90]. O

We can now formally state the behavioural correspondence between HSHR and
SLP with hiding, and prove a correctness and a completeness result.

Theorem 4.3 (Correctness). Let P be a set of HSHR productions. Let P be
the synchronized program obtained by translating the productions in P according to
Definition 4.11. If:

Py G5
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then: ,
PIF[GIsEE =X, T
for every p such that xp is a fresh variable for each x € fn(G). Furthermore 0,

is associated to G 25 G' and T = [G'3E p.  Finally, the big-step is obtained
by applying the translation of the productions used in the HSHR derivation to the
translation of the edges they were applied to.

Proof. The proof is by rule induction on the derivation of the HSHR transition.
Productions) Assume that:

L(z1,...,70) 5 GeP

where A(z;) = (a;, §;) for each ¢ € {1,...,n}.
Then P contains the clause:

L(afl(xlﬂ-a gl)a cety a’n(znﬂ-: gn)) A HG]]ggII}

Let us consider the goal:
[L(zy,...,2.)]588 = L(zy,. .., z,)

We can apply to it, using the rule for atomic goal, a renamed version of the
above clause for each injective renaming p that maps each variable to a fresh one.
The renamed clause:

L(al(mlﬂ-a gl)a R an(xmr, gn))p A [[G]]gglgp

unifies with the goal above with mgu 6, = {a;(z;7p, Gip)/zi|i € {1,...,n}}. Note

that 6, = 0, |n(L(a1,...0n))- By definition 6, is associated to L(zy,...,zn) A G as
required. Observe also that the result of the computation is [G]3EFp as required.

Note finally that we used as clause the translation of the production and that
we applied it to the translation of the rewritten edge. This proves the thesis.

Rule (par-H)) By inductive hypothesis we have:

o [Gi]3HE % T where 0, is associated to Gy ATy Gy and T = (G225 p;

0, A !
o [GI]$HE £, T' where 0, is associated to G} —— GY and T' = [G,]$1E/'.

In both cases by inductive hypothesis we used as clauses the translations of the
productions used in the proof of the HSHR transition applied to the translations of
the edges on which the productions were applied.

Thanks to Lemma 4.3 the above big-steps exist iff z; ; = z, , = a;; = a, 4. Since
the used variable sets are disjoint the same condition guarantees the existence of a
big-step of the form:

*

0,0
ITSHR °»' /
[[Gl|G1 SLP —'r T,T
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where we used as clauses the unions of the clauses used in the two smaller compu-
tations, applied to the same predicates.

We have that 0,,9;,, is associated to G1|G
We also have 0,0/, = (00'),, and thus:

AUA! jrun’

G| G,

T, T' = [Go] i Ep, [GHLFp = (G2l Ghler F o

as required.
Rule (merge-H)) By inductive hypothesis we have:

[Gi]SHE 2%, T

where 6, is associated to G, ATy Gy oand T = (G225 p and we used as clauses the
translations of the productions used in the proof of the HSHR transition applied to
the translations of the edges on which the productions were applied.

Thanks to Lemma 4.3 this computation exists iff z; ; = z,, = a;; = a, 4 and:

o o = mgu({z;; = T, U, = Upid € {1,...,n}, j € {1,...,n5}, ¢ €
{1, o} Ty = Tpels

L4 ep = {a'i,j(x;,jpla QZ,JPZ)/xz,J|7' € {1’ SRR ’I’L},] € {15 SRR ni}: Tij ¢ X}a
o T'=vX' (By,...,B,)p.

where [G1]3E = vX A;,..., A, and we used the naming conventions defined in
Lemma 4.3, apart from the fact that we use p; instead of the p therein to avoid
confusion with p from 6,. Thus here p maps each variable ;; to z; ;.

We want to find a big-step that uses the same clauses as the previous one applied
to the same atoms, but starting from goal [G1]22Fc = [G10]2HE instead of from
[G1]22E. We will use an overline to denote the components of this new big-step.
Thanks to Lemma 4.3 such a big-step exists iff z; j0 = xp,0 = a;; = a,4, but
if z;; = x,, then this holds by hypothesis, otherwise this is guaranteed by the
applicability condition 1 of rule (merge-H).

We have to prove that 55 is associated to Gio Rt Gaoop, where p, is used
instead of p from rule (merge-H).
From Lemma 4.3 we have:

gﬁ = {ai,j(x;jﬁ, g‘;’jm)/.’ﬂi,jgﬁ € {1, ceey ’I’L},] € {1, ceey ’I’Li}, T;, ;0 §é X}
where p; maps each variable to the representative of the equivalence class given by:

{wi; =200 = Thgtp€{l,...,n}, i € {1,...,n:},g € {1,...,np},
T30 = Lpq0}

Since A'(z;;0) = (A(z;;))opy we need to prove that z'p; = y'py iff xop, = yop,.
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From the hypothesis and from Lemma 4.4 we have that op, = mgu({ns(z) =
na(y)|zo = yo}U{r = y|lzm = yr}Ueqn(o)). The first and the third part are equal
(adding primes) to the equations for p;. As far as the second part is concerned,
nodes merged by 7 correspond to the same variables in the SLP setting, thus these

. .. . = . . A !
equations become trivial. This proves that 6, is associated to G0 = Goopg as
required.
By hypothesis and using Lemma 4.3 we have:

[Gal5Epp = vX' (By, ..., Bu)py
The result of the new computation is:
vX' (Bi,-.-,Bu)pi
Thanks to the properties of p we have:

vX' (By,....Bu)pi = vX' (By,...,Bu)pipi = HG2H§1{{§PPI HGQUpg]]SLPp
Rule (res-H)) By inductive hypothesis we have the following big-step:

SHR %o *
[Gilspp —+ T

where 6, is associated to G4 A, Gy and T = [Go]34Ep. Thanks to Theorem 4.2
we have:

L @ *
[vr Gi]3EE —)p ML vz T
where Z is the correct one for rule (res-H), but concerning primed variables. Thus

0, |\ {2} is associated to va Gy e, 7 Gy and [vZ Go]38Ep=vZ T.
Rule (new-H)) By inductive hypothesis we have the following big-step:

[GiI37E " T
where 6, is associated to G4 AT Gy oand T = [G2]2EE p but because z ¢ fn(G;) we

have that 6, is also associated to Gy M (5. The thesis follows. O

We present now the completeness result.

Theorem 4.4 (Completeness). Let P be a set of productions. Let P be the
synchronized program obtained by translating the productions in P according to Def-

inition 4.11. If we can derive, applying a clause in P to each predicate in [G]3EE,

a big-step of SLP with hiding of the form:
[GIS7E =, T
then there exist p, 0, A, m and G' such that 0 = 0, is associated to G SNyl

Furthermore T = [G']38Ep and P Ik G SNyl Finally, the productions used
in the HSHR derivation translate into the clauses used in the big-step and they are
applied to the edges that translate into the predicates rewritten by them.
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Proof. The translation [G]2ZE of graph G can be written in the form v X Ay,..., A,
where Aq,..., A, are translations of single edges and X is a set of variables. We
associate to each edge A; an instance P; of the HSHR production that corresponds
to the clause used to rewrite it.

Let Ly,...,L, be the LHSs of these productions. We choose the names for
nodes in the following way: for each first occurrence of a variable in A;,..., A, we
use the same name for the node in the corresponding position, while we use new
names for all other occurrences. Note that there exists a renaming o such that
(Li,...,Ly)o = Ay, ..., A, and that o is idempotent. Note also that for each ¢ all
names in [; are distinct. For each 7 we can choose P; in such a way that for each
i,7,1 # j we have fn(P;) Nfn(P;) = . As notation we use:

Agym;

P=L, — R;

Since all the productions have disjoint sets of names we can apply n — 1 times rule
(par-H) obtaining:

Li ---------- N 1{Z

Le{1,...,n} i€{l,n}

Now we want to apply rule (merge-H) with renaming 0. We can do it since o is idem-
potent. We have to verify that zo = yo = acty,, . a (@) =acty,, ().
This happens thanks to Lemma 4.3. Thus we obtain a rule of the form:

Afreea"rfree !
Ay, Ay Dl g

Finally we can apply rule (res-H) for each variable in X obtaining the transition:

A

vX Ay, .. A — G

Thanks to Theorem 4.3 using program P we can derive the following big-step of
SLP with hiding:
0!
[vX Ai,... A iR 2. T

for every p that satisfies the freshness conditions. Furthermore 6 is associated

to vX Ay,..., A, 2% G and T' = [G']SEEp. Finally we used as clauses the
translations of the productions used in the derivation of the HSHR transition. Note
that [vX Ay,..., A ]eHE = [G]37E. Since the result of a big-step is determined up

to injective renamings by the starting goal and the used clauses (see Lemma 4.3)
then we must have 6 = 0 p" and T' = T"p' for some injective renaming p’. Note that
pp' satisfies the freshness conditions (since variables generated in SLP are always

fresh) and we also have § = ¢ ,. Thus we have that ¢ is associated to G AT G and
that 7 = T"p = [G']| 25 pp'. This proves the thesis. O
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Note that the theorem above applies to big-steps where each atom in the goal is
rewritten. This is needed since in SHR each edge is rewritten in each transition (us-
ing maybe an idle production), while in SLP some predicates may remain untouched.
If the goal is the translation of a connected graph the condition is automatically en-
forced by the synchronization constraints. We can consider not rewritten predicates
as corresponding to edges that perform idle transitions, but in this case the obser-
vation is empty instead of being {e(z')/z}, and variable z is preserved instead of
being replaced by a fresh variable x'.

We show now an example to clarify the translation.

Example 4.4. We present here the translation into SLP with hiding of the HSHR
computation in Fxample 1.1.
First of all, productions:

(nya<))7(y7€a<>)7id

z,y - R(z,y) r,y Fvz R(z,2)|R(z,y)

.’L‘, y I_ R(:L', y) (x,r,(w)),(y,r,(w)),id> ,’I,', y, w |_ S(y, w)

are translated into the corresponding clauses:

R(e(z),e(y)) <« vz R(z,z2),R(z,v)
R(r(z,w),r(y, w)) « Sy, w)
Also the translation:
R(e(z), e(y)) < R(z,y)
of the idle production for R(x,vy) is used. We can thus have the SLP computation
with hiding:

. vy R(2',y), R(y,o') L2,

vy,z R(z",y), R(y, z), R(z, z") %T
T(SE"” ’w)/wlll

vy, z,v R(z",y), R(y, 2), R(z,v), R(v,2") =——= ,
vy, z,v S(y,w), S(z,w), S(v,w), Sz, w)

R(.T, ./L') {e(’)/=

that corresponds to the HSHR computation from Example 1.1. Let us consider for

instance the first big-step. It is associated to the HSHR transition R(x,x) M)
vy R(z,y)|R(y,x) with substitution 0, = {e(z’)/z} where p = {2'/z}. In fact
[vy R(x,y)|R(y,z)]3EEp = vy R(a',y), R(y, '), and this is the result of the big-
step.

Note that to extend the correspondence to whole computations, the renamings p
corresponding to the different big-steps must be composed.

We summarize the results of the comparison with a simple schema (Table 4.2).
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HSHR SLP HSHR SLP
Graph Goal Transition Big-step
Edge Atomic goal || Node Variable
Parallel comp. | AND comp. || Restriction Hiding
Nil U Synchronization | Unification
Production Clause Action Function s.

Table 4.2: Comparison between HSHR and SLP with hiding.

Essentially the correspondence is given by the homomorphism between graphs
and goals, with edges mapped to atomic goals, nodes to variables, parallel com-
position to AND composition, restriction to hiding and nil into [J. Dynamically,
HSHR transitions are modeled by big-steps, that are transactional applications of
clauses which model productions. Finally, HSHR synchronization based on actions
is modeled by unification of function symbols.

We conclude with some remarks on possible extensions of HSHR to mimic fea-
tures of Logic Programming with hiding which are still outside the correspondence.
First of all, translations of HSHR productions use only function symbols with arity
at least 1, but we can allow constants too. An SLP constant corresponds in the
HSHR framework to an action that consumes the node it is performed on. Since
all the edges attached to the node have to synchronize by performing the action,
all of them agree on deleting the node. For instance, let us consider an action a*
that corresponds to a Logic Programming constant. A simple production using this
action is, e.g.:

(z,0*()),id
z,y b Cz,y) ——y + C(y)
This allows to delete a free node, and this is impossible using standard SHR actions.

A more interesting extension is to allow nested functions in the head of the
clauses. This corresponds to have structured actions in the HSHR setting. If we keep
the constraint of having a “lock-step” behaviour then this is not a real extension,
since during synchronization the complete structured action must be matched with
an equal structured action performed by another edge. Thus if each structured action
is substituted by a normal action with the same arguments then neither the allowed
synchronizations nor their behaviour change. For instance, term g(h(z,y),z) can
be substituted by the term fyn— ) -)(z,¥, 2). A more complex scenario is obtained
if an edge produced in a transition is allowed to perform actions inside the same
transition. In this case structured actions impose requirements that may be satisfied
in part by one edge and in part by edges created by it, thus allowing more complex
interactions. However in that case there is no guarantee of being able to compute
a transition, since infinitely long transitions become possible. This happens when,
while satisfying a pending constraint, the same (structured) action imposes a new
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constraint to be satisfied. This situation can repeat infinitely many times.

These considerations, together with the introduction of the operator of hiding in
Logic Programming, show that the comparison between HSHR and Logic Program-
ming suggests many interesting improvements of the two analyzed frameworks.
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Part 11

Parametric synchronizations in a
mobile framework
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Roadmap to part II

In this part we introduce Synchronization Algebras with Mobility (SAMs for short),
which are an abstract formalization of synchronization models extending Winskel’s
synchronization algebras [Win84] to cope with mobility and handling of local re-
sources.

We start (Chapter 5) by defining SAMs, showing also how they can be used
to express common synchronization policies such as message passing or priority
communications. Then the relationships among different SAMs are analyzed using
simple categorical tools, and categorical constructions are exploited to build complex
SAMs from simpler ones.

The two following chapters present applications of SAMs to build modeling
frameworks where the synchronization policy is not fixed, but it can be chosen
according to the application in mind. This makes the modeling step easier, since
this makes the synchronization primitives most suitable to model the system directly
available, without need of implementing them. The two chosen frameworks are SHR
(Chapter 6) and process calculi (Chapter 7).

In the field of SHR we present two applications. The former is called parametric
SHR and it allows to combine productions using the synchronization policy specified
in a fixed SAM. This allows to give a uniform presentation to HSHR and MSHR, but
also to easily define new models simply by changing the used SAM. Properties can
be proved in the parametric setting, ensuring that they hold in any instance (or in all
the instances satisfying some constraints). The latter application is called SHR for
heterogeneous systems and it exploits the formalization of synchronization policies
as SAMs to allow many of them to coexist in the same model. In particular, SAMs
are associated to nodes, and they rule the interactions therein. This allows to model
heterogeneous systems, where interactions are based on different primitives (made
available by different coexisting middlewares). Consider for instance a network with
both message passing on wired links and broadcast on wireless ones. An important
aspect is the dynamic management of SAMs, which includes the ability of having
the SAM for a node to be decided at runtime, as result of a synchronization.

In the field of process calculi we introduce PRISMA Calculus, which is for Fusion
Calculus what parametric SHR is for MSHR. We want to stress here the differences
of the two kinds of applications. From a modeling point of view SHR provides a
powerful and clean but “rigid” framework, since the separation of concerns (graph for
the structure of the system, productions for specifying the behaviour) and the use of
multi-party synchronization make the model more suggestive and expressive but also
difficult to extend. Thus SHR is mainly used as an architectural model. Process
calculi, at the contrary, have a simpler structure that can be easily extended by
introducing new operators, and that makes them suitable to analyze the linguistic
aspect of interaction. In other words, process calculi are suitable frameworks for
experimenting new primitives. The choice of Fusion Calculus as starting point, even
if not forced (we will discuss the changes required to use 7-calculus instead), is the
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most convenient for our aims. First of all, it allows an easy comparison with the
SHR framework, thanks to the results in Chapter 2, concentrating on the difference
between graph transformation and process calculi, not mixed to different design
choices made inside the model. Furthermore the simple form of synchronization
used in Fusion Calculus can be easily extended to cope with different synchronization
models.



Chapter 5

Synchronization Algebras with
Mobility

The comparison between HSHR and MSHR carried out in Chapter 3 suggests that
the choice of the synchronization policy to be used in a modeling framework is
a crucial choice, since different policies are more suitable to express in a simple
way different coordination patterns. Also, implementing the primitives required to
enforce a synchronization policy using primitives designed for enforcing a different
policy can be quite complex, and this obfuscates the model of the system, since this
will be mixed with the implementation of the required synchronization primitives.
An example of this situation can be found in Chapter 3, for Hoare and Milner
synchronization in SHR. A similar situation arises in [EM99], for broadcast and
Milner synchronization in w-calculus style calculi. Also, the two synchronization
models used in the literature for SHR (Hoare and Milner) claimed for a uniform
presentation.

This chapter presents the work triggered by these considerations, which aims at
building frameworks where the synchronization policy can be freely chosen. More
in details, we introduce Synchronization Algebras with Mobility (SAMs for short),
which are an abstract formalization of the concept of synchronization model, ex-
tending Winskel’s synchronization algebras (SAs) to cope with mobility (expressed
as name mobility) and handling of local resources. We show how common synchro-
nization patterns can be modeled as SAMs. We also study the relationships among
different SAMs by equipping the set of SAMs with a categorical structure. This
allows to relate them, and to build complex SAMs by combining simpler ones using
standard categorical constructions. Applications of SAMs in the field of SHR and
of process calculi will be presented in the next chapters.
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5.1 Definition of SAMs

In this section, we extend the concept of SA [Win84] to deal with certain aspects of
synchronization that are necessary to model GC systems. In particular, we add to
SAs mobility, handling of local resources and nondeterminism.

Technically, the introduction of mobility in SAs, which is the most challenging
part of the extension, is realized having in mind name mobility, and in particular
the approach used in SHR and Fusion Calculus. In particular, the fundamental
operation allowed is the merge of two names to get a unique name. The choice,
natural since SAMs have been firstly introduced to give a uniform presentation to
HSHR and MSHR, has also some technical reasons. The main point is that this
kind of primitive is symmetric, i.e., all the matched arguments are treated in the
same way. This makes easier to extend the usual binary synchronization to general
synchronizations where many parties interact. For instance, it is not clear how
Hoare synchronization can be defined in a framework where the mobility primitive
is asymmetric. We claim however that the SAM approach can be extended also
to asymmetric forms of communication, such as message passing in the m-calculus
style, at the price of adding some more complexity to the definition of SAMs. We
will come back to this topic when describing PRISMA Calculus (see Section 7.2).

In general, we want to be able to express the synchronization among any number
of components, each of them performing an action. Also, an action a can carry a
tuple of parameters, whose length is determined by the arity ar(a) of the action.
Actions from a multiset [a1,...,a,| can interact, and either they express compat-
ible constraints, thus the system can perform a transition where these actions are
executed, or they express incompatible constraints. Consider for instance the mul-
tiset of actions executed on a node by the edges connected to it in HSHR. If all
the actions in the multiset are equal, then the transition is allowed, otherwise it is
not. When the synchronization is performed, it affects the structure of the system,
thus realizing mobility. Since mobility is modeled by merging names, which are
the parameters of the actions, the SAM specifies an equivalence relation on them,
which depends on the interacting actions. Actual names corresponding to equivalent
formal parameters have to be merged.

In order to specify in a finite way the interactions among an unbound number
of components a compositional approach is needed. In particular, we analyze the
interactions between two components, combine the result with the action of a third
component, and so on. In order to do that we require that the result of the syn-
chronization of two actions is again an action with its tuple of parameters, which
can thus be further composed. Also, this interaction defines an equivalence rela-
tion on the parameters of the two actions, which will then be extended with the
contributions of other actions.

The SAM thus specifies how the arguments attached to the resulting action are
computed (the component Mob in Definition 5.2) and which names are merged (the
component = in Definition 5.2).
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We can now start with some preliminary definitions, but first we introduce a
notational shortcut.

Notation. We denote with n the set {1,...,n} (where 0 = 0), while id, is the
identity function with domain n.

An action signature specifies the alphabet of actions, together with their arities.

Definition 5.1 (Action signature). An action signature A is a triple (Act, ar, )
where Act is the set of actions, € € Act, and ar : Act — N is the arity function
satisfying ar(e) = 0.

Action € above stands for “not taking part to the synchronization”, as for stan-
dard SAs (see Definition 1.7).

A main ingredient in the formalization of SAMs is the action synchronization,
which specifies an allowed pattern of interaction between two components, including
the two synchronizing actions ¢ and b and the results of the synchronization: (i) an
outcoming action ¢, (i) a communication function Mob that tells how the parameters
of ¢ are taken from those of a and b, (iii) an equivalence relation = on the parameters
of a and b expressing fusions. Since actual parameters of actions are not known
when the SAM is defined, Mob and = are defined according to the positions of
the parameters in the tuples: for instance Mob(1) = inj,(3) means that the first
parameter of ¢ comes from the third parameter of the second action.

Definition 5.2 (Action synchronization).

Given an action signature A = (Act,ar,€), an action synchronization on A is a
triple of the form (a, b, (¢, Mob, =)) where a,b,c € Act, Mob : ar(c) — ar(a) & ar(b)
and = is an equivalence relation on ar(a) W ar(b).

In order to ensure that the result of the synchronization of many actions does
not depend on the order of composition (remember that we want the result to be
determined just by the multiset of actions), we require the composition of action syn-
chronizations to be associative and commutative. To do that we have to specify the
combined effect of two action synchronizations, i.e. the effect of a synchronization
among three components.

Definition 5.3 (Action synchronization composition).

Let o = (a1,b,(c1,Moby,=1)) and f = (ag,bs, (c2, Moby, =5)) be action syn-
chronizations where ¢ = ao. The composition of a and [ is the tuple
(@1, b1, by, (c2, Mobg, =3)) where the function Mobs : ar(cy) — ar(a;) War(by) War(bs)
is defined by Mobs = [Moby, id.rs,)] © Moby, and the equivalence relation =3 on
ar(ay) War(by) War(be) is defined as the projection on the above specified domain of
the minimal equivalence relation R on ar(a;)War(b;) War(c;) War(by) such that x Ry
if t=1yVx=9yV Mob;(z) =y.

A similar composition is defined when ¢ = by instead of ¢y = as.
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[ ]
Mob

Figure 5.1: Equivalent action synchronizations.

An action synchronization relation is a set of action synchronizations satisfying
suitable conditions.

Definition 5.4 (Action synchronization relation). Given an action signature
A = (Act, ar,€), an action synchronization relation ActSyn on A is a set of action
synchronizations such that:

1. (a,b,(c,Mob,=)) € ActSyn = (c=e¢ < a=b=¢);

2. (a,b, (c, Mob,=)) € ActSyn = (b, a, (c, Mob',=")) € ActSyn, with Mob'(z) =
comp(Mob(z)) for each = € ar(c), and ="y iff comp(z) = comp(y);
(

3. (a,b, (c,Mob,=)), (c,d,(e,Mob’,=")) € ActSyn = 3f € Act,
(b, d, (f, Mob" ="), (a, f, (e, Mob"' ='")) € ActSyn such that composing
(a,b (c, Mob, =)) and (c,d, (e, Mob', = )) gives the same result as composing

(b,d, (£, Mob", =")) and (a, J, (e, Mob", =")).

Condition 1 is taken from standard SAs, and it states that action € can arise only
as combination of actions €. This guarantees that no real action can disappear. Con-
dition 2 extends commutativity of SAs, dealing also with parameters. In particular,
for each action synchronization, another action synchronization modeling the sym-
metric interaction must exist. Last condition extends associativity, specifying that,
when three actions a, b and d synchronize, the parameters of the resulting action e
and the computed equivalence relation do not depend on the order of composition.

Having multiple action synchronizations for the same pair of interacting actions
allows nondeterminism. In particular, the result of the synchronization is nondeter-
ministically chosen among the allowed alternatives. An example of use of nondeter-
minism is described in Definition 5.11.

Action synchronizations (a, b, (¢, Moby,=)) and (a,b, (c, Moby,=)) that differ
only because Mob;(n) # Mobs(n) but with Mob;(n)=Moby(n) (see the example
in Figure 5.1) are semantically equivalent. In fact, they will be isomorphic in the
category of SAMs that we will define in Section 5.3.

As last step toward SAMs, we introduce a commonly used communication func-
tion and a related equivalence relation. The two definitions jointly define message
passing, in the sense that they merge parameters in the same position (which are, in
a synchronization between an input and an output, the actual value from the out-
put and the receiving variable from the input) and they make the result available
as parameter of the composed action. These can be used, e.g., to define the SAM
for Milner synchronization (see Definition 5.8).
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Figure 5.2: Graphical representation of an action synchronization.

Definition 5.5 (Communication function for message passing). The com-
munication function for message passing MP;; with 1,7 € N is the function from
max(i,j) to (any superset of) i & j such that MP,;(m) = inj,(m) if m < i,
MP, j(m) = inj,(m) otherwise. -

Definition 5.6 (Equivalence relation for message passing). The equivalence
relation for message passing EQ; with i € N s the equivalence relation on any
superset S of iWi given by ids U {(inj;(m), inj,(m))|m < i}.

Example 5.1. As an example, we draw in Figure 5.2 an action synchronization
between two actions a and b of arity 2 and 4, giving an action c of arity 3, with
Mob = M P, 3 and = = EQo. The first two parameters of ¢ are obtained by merging
the ones from a and b, while the third one is directly taken from b. Note that the
fourth parameter of b is simply discarded.

We can finally present the definition of SAM. We give here a very general defi-
nition, in order to introduce all the features needed for different applications (e.g.,
SHR, process calculi). However some of them can simply be disregarded in the
simplest cases.

Definition 5.7 (Synchronization Algebras with Mobility).

A Synchronization Algebra with Mobility over the action signature A is a quintuple
(Id, A, Init, Fin, ActSyn) that includes an identifier Id taken from a suitable set of
identifiers, two sets Init, Fin C Act of initial actions and final actions respectively
and an action synchronization relation ActSyn on A. We require:

1. € € Init;

2. Vi € Init,a € Act\ {€},V(i,a,(c,Mob,=)) € ActSyn. ¢ = a, Mob =
MPar(i),ar(a); =C EQar(a) ’

3. Ya € Act.3i € Init.(i,a, (a, M Py ar(a), =)) € ActSyn with = C EQar(a)-

The identifier Id is used to distinguish SAMs with the same structure but that
can be composed in different ways (this will be used in SHR for heterogeneous
systems, where different SAMs are used at the same time, and they are composed
dynamically, see Section 6.2).
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The set Init of initial actions contains some trivial actions that can be executed
by channels themselves, and they are a technical trick to deal with isolated nodes in
the SHR framework. Condition 1 requires € to be one of these actions. Condition 2
specifies that the synchronization of an initial action 7 with any non € action a, if it
is allowed, essentially preserves a and its parameters (some merges with parameters
of 7 are possible, but these parameters carry no information, thus the merges are
semantically irrelevant). Condition 3 requires that for each action a an action 7 able
to synchronize with it exists. Note that condition 2 implies that for each action
a at most one such initial action (different from €) exists. The two conditions are
required to have a behaviour for synchronization which does not depend on how
it is computed, and in particular they are required to prove that bisimilarity is a
congruence for parametric SHR (see Theorem 8.3 and Lemma 8.9).

Finally, the set F'in of final actions contains the actions that are considered
complete, and which thus do not require any further interaction in order to be
meaningful. From a technical point of view, these are the actions allowed on bound
channels, and they allow to deal with local resources. For instance, in a m-calculus
style synchronization, 7 is a final action, while an input is not final since an output
is needed to complete the interaction.

The examples in the next section will make the definition clearer.

5.2 A toolbox of SAMs

In this section we introduce different SAMs in order to show how they can be used
to model interaction. We start by formalizing the synchronization models used in
the previous chapters, and then we introduce some new ones. Further SAMs can be
built using the composition techniques presented in next section.

Remark 5.1. From now on, to simplify the presentation, we will not write explicitly
the action synchronizations obtained by commutativity.

We start by formalizing Milner synchronization, as it is used in MSHR and in
Fusion Calculus. Also, Milner synchronization without parameters is CCS [Mil82]
synchronization, and Milner synchronization where parameters of the input action
are bound corresponds to m-calculus synchronization (as shown by the translation
of m-calculus into Fusion Calculus in [Vic98]).

Definition 5.8 (Milner SAM). Given a set of labels inp, the SAM Milneriy, is
given by:

o Act ={1,€e} U Uaemp{a,a};
e ar(a) = ar(a) for each a € inp, ar(r) = 0;

e Init = {e};
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o Fin={r¢};

o (A€ (A MPyn0, EQo)) € ActSyn for each A € Act,
(a,@, (1, MPyg, EQara))) € ActSyn for each a € inp.

The first action synchronization specifies that an action synchronizing with € is
just propagated, together with its parameters (as required since € € Init). The
second action synchronization formalizes the reaction of an action (input) and the
corresponding coaction (output). Corresponding parameters are merged but not
propagated, in fact the resulting action 7 just says that a synchronization has been
performed and it has arity 0.

Next definition formalizes Hoare SAM, that is the synchronization policy used
in HSHR. Also, Hoare synchronization without parameters is used in CSP [Hoa80].
Here however different SAMs (determined by the label of each parallel composition
operator) are used at the same time, forcing synchronization on some actions and
interleaving among the others. Interleaved actions can be introduced in SAMs by
allowing them to interact only with action e. Many SAMs can be used together
using techniques such as the ones presented in Section 6.2 for the SHR framework.

Definition 5.9 (Hoare SAM). Given a set of labels inp, the SAM Hoare, is
given by:

e Act = Init = Fin = {e} Uinp;
o (M (A MPyynyar(n), EQarn))) € ActSyn for each A € Act.

The only (schema of) action synchronization in Hoare SAM models the agree-
ment among the participants on the action to perform. During synchronization
corresponding parameters are merged.

We introduce now a SAM for broadcast communication. This is the primitive
used in br-calculus [EM99], where it is combined with the name handling policy of
m-calculus. We will come back to that topic in Section 7.2, when describing PRISMA
Calculus.

Definition 5.10 (Broadcast SAM). Given a set of labels inp, the SAM Bdcip,

18 given by:

o Act= {6} U Uaeinp{a’ a};

e ar(a) = ar(a) for each a € inp;

Init = {e} Uinp;

Fin = {e} U Uaeinp{a}"

(a,@, (@, M Pa(a)ar(a), EQar(a))) € ActSyn for each a € inp,
(a,a, (a, M Py(a)ar(a), EQar(a))) € ActSyn for each a € inp,
(€,€, (e, MPy o, EQy)) € ActSyn.
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The main difference w.r.t. Milner SAM is that here an output can synchronize
with more than one input, thus when synchronization is performed the result is
the output itself, which can thus interact with further inputs. Notice also that two
inputs can interact by merging their parameters, thus when an output is finally met,
its parameters are merged with the ones of all the inputs. If no output is met then
the resulting action is an input. Inputs do not belong to F'in, thus they are not
allowed as final results of a synchronization. Notice that broadcast SAM forces all
the available components to interact with an output, in fact they can not perform
an action €, since no action synchronization allows € to interact with an output.
Thus this SAM models secure broadcast, where a check is made to ensure that the
broadcasted message is received by all the listeners.

Notice that, if one wants to have a multicast Mul;y,, where some listener may not
synchronize with the output, it is enough to add the triple (A, €, (A, M Pyy(x),0, EQq))
for each \ € Act to ActSyn.

Next SAM models a communication with priority, where different components
produce messages with different priorities. In each transition just one component
can act as receiver, and it receives only the message with the highest priority. We
think that this SAM can be useful to model sensor networks, where sensors produce
and send data, and the base station receives the most important data available
at each time. From a technical point of view this SAM exemplifies the use of
nondeterminism. Even if we can define this SAM w.r.t. a set of input actions with
different arities (as done in the previous cases), for simplicity we concentrate on one
input action in of arity 1.

Definition 5.11 (Priority SAM). The SAM Pri for communication with priority
1s defined as follows:

o Act = {in, e} U{(out,n)|n € N} U {(out+,n)|n € N} U {(out—,n)|n € N},
e ar(\) =1 for all X € Act \ ({e} U {(out+,n)|n € N}), ar(X) = 0 otherwise;
o Init = {e};

o Fin = {e} U{(out+,n)|n € N};

o (A€ (A MPypny0, EQo) € ActSyn for each A € Act,
(in, (out,n), ((out+,n), MPyo, EQ1)) € ActSyn for each n € N,
(in, (out,n), ((out—,n), MP, o, EQo)) € ActSyn for each n € N,
(out,n), (out,m), ((out,n), MP, o, EQo)) € ActSyn for each n,m € N, n >

m?

((out, n), (out—, m), ((out+,n), M Py, EQ1)) € ActSyn for each n,m € N,
n>m,

((out, n), (out—, m), ((out—, max(n,m)), MPy1, EQo)) € ActSyn for each n,
m €N,

((out+,n), (out,m), ((out+,n), MPy o, EQo)) € ActSyn for each n,m € N,
n>m.
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The above definition is a bit tricky. The basic idea is that the result of the
synchronization of an action in and an action (out, n), representing an output with
priority n, is determined by a guess: either we guess that n is the highest priority
among all the outputs and thus we perform the merge on parameters and the result
is (out+,n) or we guess that an output with higher priority will be found later.
In this case the input variable is propagated (while the parameter of the output is
discarded) and the result is (out—, n). The first guess, if wrong, is discarded when an
output with higher priority is found, since (out+,n) can not interact with outputs
with priority higher than n. The second guess instead, if wrong, is discarded when
the channel is bound, since (out—,n) ¢ Fin. On free channels this kind of guess
can never be wrong, since an output with higher priority may be provided by the
environment.

A simpler approach could just merge the parameters of input and output and
choose the parameter of the output with highest priority when two synchronize,
without any guess. This alternative approach however is not sound, since there
is no way of undoing the merge of the input parameter with the parameter of an
output with low priority.

Here nondeterminism has been used for the guess but also, in a more intuitive
way, to decide which output to propagate when two with the same priority interact.

Notice that some of the actions above (such as (out—, n) or (out+,n)) are used as
“intermediate results” during the computation of the effect of the synchronization,
and in many scenarios one may suppose that components are not able to perform
them autonomously, but that they can only emerge as results of a synchronization.

We move now to another kind of synchronization, which we call threshold syn-
chronization. In threshold synchronization, like in multicast, a group of components
receives data from a sender, but communication is allowed only if the number of
receivers is above a threshold m. This synchronization can be used to enforce some
security policy, e.g., when users in a group have jointly the right of accessing some
information, but no one of them has enough rights on his own. As above, we consider
just one basic input action (in, 1) of arity 1.

Definition 5.12 (Threshold synchronization). The SAM Thre,, for threshold
synchronization with threshold m € N is defined as follows:

o Act = {out,e} U{(in,n)|n € N} U {(inx,n)|n € N};

o ar(A\) =2 for all A € {(inx,n)|n € Nyn < m}, ar(A) = 1 otherwise;

Init = {e};

Fin = {e} U{(inx,n)|n € N},

(A, €, (A, M Pyy(ny0, EQo)) € ActSyn for each A € Act,
(out, (in,n), ((ink,n), MP; 1, EQ1)) € ActSyn for each n € N, n > m,
(out, (in,n), ((inx,n), GAT, EQy)) € ActSyn for each n € N, n < m,
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((in, m1), (in,n2), ((in,n1 + n9)), MP; 1, EQ1)) € ActSyn for each nq,ny € N,
((inx, nq), (in,n2), ((in*, n1+ng), MP, 1, ALL)) € ActSyn for each ny,ny € N,
ni + neg Z m,
((inx,n1), (in,na), ((inx, n1 + ny), GAT, EQy)) € ActSyn for each ny,ny € N,
ny+ne <m;

where the communication function GAT (for gathering) is defined by GAT(1) =
inj,(1) and GAT(2) = inj,(1) and the equivalence relation ALL declares that all the
parameters are equivalent.

The intuition behind SAM Thre,, is that components can perform only the
actions out and (in,1). During synchronization the inputs are merged (and n in
(in,n) or (inx,n) counts how many of them have been merged, while the * denotes
that the output has already been found) but, until m of them have joined, the
parameter of the output is kept separate. Thus at least m processes have to do
an input to make the piece of information in the output available. If they are not
enough, synchronization is performed but no data exchange occurs.

Further SAMs can be obtained by composing the ones above using the categorical
constructions described in next section.

5.3 Equipping SAMs with a categorical structure

In this section we want to analyze how different SAMs can be related and combined.
This is done using basic constructions from category theory [AHS90]. In particular,
we give a categorical structure to the set of SAMs, and we show that standard
categorical constructions such as product and coproduct can be used to combine
simple SAMs into complex ones.

In particular, we extend Winskel’s definitions of categories of SAs (see Defini-
tion 1.8) by keeping into account all the features added by SAMs.

We start with the basic definition of asynchronous morphisms between action
signatures. Synchronous morphisms are defined as a particular kind of asynchronous
morphisms.

Definition 5.13 (Morphisms between action signatures).
Let Ay = (Acty,ara,e4) and Ap = (Actp,arp,ep) be two action signatures. An
asynchronous morphism H from A4 to Ap is a function h : Acty — Actp such
that h(ea) = ep, together with a family of functions {hy|la € Acta} such that h, :
ar(h(a)) — ar(a). Synchronous morphisms are asynchronous morphisms such that
h(a) = ep < a = e4.

Identity morphisms have identity functions as their components. Morphism com-
position ; is defined by (h, {h.]a € Acta}); (K, {ks|b € Actg}) = (hok,{kn@) ohala €
ACtA}).
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Essentially function h specifies the mapping from actions in Act4 to actions in
Actp implementing them. The functions in {h,|a € Act4} describe how the param-
eters of an action h(a) in the target of a morphism are taken from the parameters of
the corresponding action a in the source. Note that these functions are contravariant
w.r.t. the direction of H.

Morphisms between SAMs are morphisms between their action signatures pre-
serving the additional structure.

Definition 5.14 (Morphisms between SAMs).

Let Sy = (A, A4, Inity, Fing, ActSyny) and Sp = (B, Ag, Initg, Fing, ActSyng)
be two SAMs. A morphism H from the Sy to S is a morphism H : Ay — Ap
between the corresponding action signatures such that:

1. a € Fing = h(a) € Fing;
2. a € Inity = h(a) € Initg;

3. (ala a2, (C: MObA7 :A)) € ACtSynA = (h(al)a h(a2)a (h(C), MObB; :B)) €
ActSyng and

e Vn € arg(h(c)). Moby(h.(n)) = inj;(m) = 35 € {1,2},m' € ary(q;).
Mobpg(n) = inj;(m') Ainj;(hg, (m')) =ainj;(m);

o Vi,j € {1,2},Vn € arg(h(a;)),Vm € arg(h(a;)).inj;(n) =pinj;(m) &
ln.]z (h’ai (TL)) =4 injj (haj (m))

A SAM morphism is synchronous iff the underlying action signature morphism
s synchronous.

Morphisms can remove parameters or add new action synchronizations, but they
must provide corresponding actions for the existing ones. Also initial and final ac-
tions are preserved, and the behaviour of existing action synchronizations is pre-
served too. It is interesting to notice that morphisms can change the representative
chosen for a parameter inside the equivalence class defined by =.

Proposition 5.1. SAMs with asynchronous morphisms form the category ASYNC,
while SAMs with synchronous morphisms form the subcategory SYNC of ASYNC.

Proof. The identity laws and associativity follow trivially from the definition. It is
also trivial to prove that identity morphisms are synchronous, and composition of
synchronous morphisms produces synchronous morphisms. O

Next lemma characterizes the effect of isomorphisms.

Lemma 5.1. Let S; and Sy be isomorphic SAMs. Then S1 and Sy are equal apart
from their identifiers, the names of their actions, the order of parameters of each
action, and the choice for each action synchronization of the element chosen by Mob
inside a =-equivalence class.
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Proof. All the functions composing an isomorphism are bijections, thus they must
preserve all the cardinalities (number of actions, of action synchronizations, of pa-
rameters, ...). Also, all the elements of the structure must be equal up to renaming
and up to the choice for each action synchronization of the element chosen by Mob
inside a =-equivalence class, since they are preserved by the morphism, and they
are reflected since they are preserved by the inverse morphism. This proves the
thesis. O

We want to analyze now the product and coproduct constructions in the above
defined categories. We will show that these constructions correspond to intuitive
operations on SAMs, and this justifies the definition above. Also, this provides
useful tools for building new SAMs in a simple way.

We start with the product construction in ASYNC.

Lemma 5.2.

Let (Idy, Ay, Inity, Finy, ActSyn,) and (Idy, Aa, Inity, Fing, ActSyns) with Ay =
(Acty,ary,e1) and Ay = (Acty, ary, €3) be two SAMs. The product in ASYNC,
which we call asynchronous product, has the form (Id, Ag, Initg, Fing, ActSyng)
with Ag = (Actg, arg, €g) where:

o Actg = Acty X Acty;
e arg((ai,as)) = ary(a;) + ars(as);
— we can assume that for each action (ai,az), the first ari(a;) parameters

correspond to the ones of a1, and the other ones are from aq, since iso-
morphisms allow to permute parameters;

o cy = (€1,6);

Inity = Inity X Inity;

Fing = Finy X Fing;

ActSyng = {((a1, az), (b1, ), ((c1, c2), Mobg, =g))|
(a1, b1, (c1, Moby, =1)) € ActSyny A (ag, by, (c2, Moby, =3)) € ActSyn,};

— for each i € {1,2}, Mobg and =g are defined on parameters from a; as
Mob; and =; respectively.

The two projection morphisms map each action (a1,as) to a1 and ay respectively,
and they take the parameters of ay and ay from the corresponding parameters of

(a1, a2).
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Proof. We have to show that Sg is the product of S; and Sy in ASYNC with the
projections P;,i € {1,2} described above. This amounts to show that, for any SAM
S with morphisms H; : S — S; we have a unique morphism H : S — Sg such that
H;,=H;P,.

If we consider just the part of the morphisms that deals with actions we have a
product in the category SET of sets and functions, which is the cartesian product
of sets. For each commuting diagram in ASYNC, we thus have an underlying
diagram on action sets. However, not all commuting diagrams in SE€7 commute
also in ASYNC. Also, some non isomorphic objects in ASYNC may correspond to
isomorphic objects in SET. If we prove that for each diagram in ASYNC with the
product span defined above as lower edge we can lift the arrow given by the product
construction in SET to an arrow H in ASYNC then we have the thesis.

It is easy to see that the conditions on €g, Initgy, Fing and ActSyng (leaving
aside the parameters for now) are satisfied, and that the definitions of these four
components are forced by the preservation conditions.

We have to consider parameters now. Fixing an action ag € Actg and considering
also its images in S, Sy and Sg along morphisms, the mappings among parameters
form a coproduct diagram in the category of finite sets and functions. In that
category, coproducts are disjoint unions. Each such diagram can be used to build
the part dealing with parameters of one action in a SAM morphism. The choice of a
particular coproduct inside its isomorphism class determines the components Mobg,
and =g as described above, up to the choice of the representative done by Mobg,
inside an =g-equivalence class. 0

An analogous lemma, can be proved for product in SYNC.

Lemma 5.3.

Let (Idy, Ay, Init, Fing, ActSyn,) and (Ids, A, Inity, Fing, ActSyns) with Ay =
(Acty,ary, €1) and Ag = (Acty, ary, €9) be two SAMs. The product in SYNC, which
we call synchronous product, has the form (Id,Ag,Initgy, Fing, ActSyng) with
Ay = (Actg,arg, €g) where:

o Acty = (Act; \ {e1}) x (Acta \ {€2}) U {(€1,€2)};
e arg((a1,az)) = ary(ar) + arz(az);

— we can assume that for each action (ay,as), the first ari(a;) parameters
correspond to the ones of ai, and the other ones are from as, since iso-
morphisms allow to permute parameters;

o cy = (€1,€9);

Initg = (Inity x Inity) N Actg;

Fing = (Finy X Fing) N Actg;



118 CHAPTER 5. SYNCHRONIZATION ALGEBRAS WITH MOBILITY

o ActSyng = {((a1,a2), (b1,b2), ((c1,c2), Mobg, =g))|(a1, b1, (c1, Mob1, =1)) €
ActSyny A (ag, bz, (ca, Moby, =3)) € ActSyna A (a1, az), (b1, by) € Actg};

— for each i € {1,2}, Mobg and =g are defined on parameters from a; as
Mob; and =; respectively.

The two projection morphisms map each action (a1,as2) to a1 and ay respectively,
and they take the parameters of ay and ao from the corresponding parameters of

(a1, a3).

Proof. Essentially the synchronous product is similar to the asynchronous one, but
it has no actions of the form (aq, €2) and (e, as) except (€1, €).

The proof is similar to the one of Lemma 5.3, but now the only action that can
be mapped to €; is €z because morphisms are synchronous. Thus the underlying
diagram on action sets has (Act; \ {e1}) x (Acts \ {€2}) U {(€1,€2)} as product. In
fact, since the only element in Actg that can be mapped to ¢; for i € {1,2} is eg,
and it must also be mapped to e3_;, then these elements are enough to make the
diagram to commute (and if other elements are added, uniqueness is lost). O

The coproduct construction gives the same result in both ASYNC and SYNC.

Lemma 5.4.

Let (Idy, Ay, Inity, Fing, ActSyny) and (Ids, A, Inity, Fing, ActSyns) with Ay =
(Acty,ary,€1) and As = (Acty,ars, €3) be two SAMs. The coproduct in ASYNC
coincides with that in SYNC and it has the form (Id, Ay, Init,, Finy, ActSyn.)
with A, = (Act,,ary, e, ) where:

o Act, = (Acty \{e1}) W (Acty \ {e2}) W {es};

ar (inj;(a)) = ar;(a);

inj,(a) € Fin, < a € Fin;, €, € Fing iff 3i € {1,2}.¢; € Finy;

inj;(a) € Init, & a € Init;, e € Init,;

(inji(a)a ln.]z(b)a (anZ(C), MOba :)) € ACtSyn-F < (CL, ba (C, MOba :)) € ACtSyni;
(inj;(a), €4, (inj,(c), Mob, =)) € ActSyn, < (a,¢€;, (¢, Mob,=)) € ActSyn,,
(€4, €4, (€4, MPyg, EQq)) € ActSyn .

The two injection morphisms map each non € action to the corresponding action in
Act,, and both the actions €; and €y to €. The parameters of an action inj;(a) are
taken from the parameters of a.

Proof. Let us consider first the underlying diagram on action sets, as done in the
proof of Lemma 5.2. This can be seen as a diagram in the category of pointed sets
(with € as point) and point-preserving functions. In this category the coproduct is
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the disjoint union of the two sets with merged points. Thus, if a coproduct exists in
ASYNC or in SYNC, then it must have this underlying set. Furthermore A must be
defined as [hy, hs|, apart from €, that is mapped to e5. We have that ActSyn, must
contain all the images of the action synchronization tuples from the two components
in order to make the diagram commute, and no more, since otherwise we would have
no morphism into some SAM S not containing them.

As far as parameters are concerned, fixing one action inj;(a) € Act,, its param-
eters coincide with the parameters of a. The diagram commutes with hiyj a) = hig,
i.e. the parameters of h(inj;(a)) are mapped to the parameters of inj;(a) in the same
way as the parameters of h;(a) are mapped to the parameters of a by h;,. Note that
this definition is the unique (up to isomorphisms) that makes the diagram commute.
The conditions on Mob and =, are satisfied by definition.

Also, actions that are final are injected into final actions. Action e, is final iff
at least one of the ¢; is final (in the synchronous case, both of them are final if one
is, otherwise at least one of morphisms h; and hy does not exist).

Finally, actions that are initial are injected into initial actions, and €, is initial
by definition. O

We discuss now how these constructions can be applied, providing some simple
examples. Coproduct allows to merge two SAMs in a unique one preserving the
behaviour of each action, as shown by the example below.

Example 5.2. Let us consider the coproduct of Milneri,p, and Hoareq.qy. It is
a SAM where actions a and b, together with their coactions and the T action, (or,
more precisely, their images along the morphisms) interact using Milner synchro-
nization, while actions ¢ and d interact using Hoare synchronization. Notice that
there is just one action €. The coproduct construction thus allows to combine differ-
ent protocols inside the same SAM, and the choice of which protocol to use is done
by the components, when they choose which action to perform.

The coproduct of Milner i, jic254y and Bdciin,ssy can be used to model normal
TCP/IP protocol [Ste94], where address 255 is used for broadcast while other ad-
dresses are used for point-to-point communication. Naturally this is only an intu-
itton, since far more refined techniques are necessary to deal with all the features of

TCP/IP protocol.

Products instead have pairs of actions with one element for each of the component
SAMs as actions, with the two elements of the pair acting in parallel.

Example 5.3. The synchronous product of the two SAMs Hoare;n,, and Hoareiyp,
15 Hoareinp, xinp,- If we consider the asynchronous product instead, also actions
(€1,a9) and (a1, €) can be used.

The case of Milner communication is a bit more compler. The asynchronous
product of two Milner SAMs is a message passing communication where at most
two communications can happen at each step. For instance, action (a,b) can first
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synchronize with (a, €) producing (7,b) and completing the first communication (i.e.,
parameters related to the first component are merged), and then synchronize with
(e,b) producing (7,7) and completing the second one. Notice that this is a final
action.

Instead, the synchronous product of Milnery,, and Milner;,,, ts similar to
Milner inp, xinps)U(inp: x {az|ascinps}), but it has some more actions of the form (Ay,T)
or (1, A2) where \; € inp; U {@;|a; € inp;} for i € {1,2}. These actions can only
synchronize with (€1, €2). In particular, they have the same behaviour of (7,7), and
thus they can all be quotiented using a morphism which discards the parameters too
(and which is the identity on other actions).

In next chapter we move to the applications of SAMs in the SHR framework.



Chapter 6

Applications of SAMs to SHR

In this chapter we present two applications of SAMs in the field of SHR. The former
is called parametric SHR, and it is an SHR framework that is parametric on a SAM
that determines how synchronization among actions executed by different edges is
performed. The aim of parametric SHR is to allow to specify systems by choosing
each time the most suited synchronization model, whose primitives correspond to the
ones used in the modeled system, but without having to develop the whole modeling
framework from scratch. The SAM is usually determined by the middleware the
system is built on.

Parametric SHR allows to give a uniform presentation to HSHR and MSHR,
but also to easily define SHR models based on other interaction mechanisms. Also,
properties can be studied and tools can be developed for the parametric setting, thus
the results can be applied to any synchronization model without additional effort.

The second framework we present is SHR for heterogeneous systems (SHR-HS),
which has been devised to model systems where heterogeneity concerns both the
application and the underlying middleware, thus allowing different synchronization
policies to be used in different parts of the system. Consider, e.g., a wide area
network with both wired connections, which use point-to-point communications,
and wireless ones, which use broadcast. Furthermore, the synchronization used is
not statically fixed, but it can change over time, thus modeling, e.g., negotiations
on the quality of service properties of the communication. While it appears hard
to exploit this feature at the network level, where communication mechanisms are
fixed by hardware constraints or by the middleware, it is fundamental to model
coordination at the application level, where interaction patterns are determined in
a much more dynamic way.

6.1 Parametric SHR

In this section we define the semantics of parametric SHR and we show some appli-
cations. The main ingredients of this model are a SAM, as defined in Definition 5.7,
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which specifies the synchronization model used, and a set of inference rules, para-
metric on the above SAM, used to derive transitions from productions. Clearly,
productions for parametric SHR must use actions in the set of actions Actg of the
SAM S used as parameter.

We present here the inference rules for parametric SHR.

Definition 6.1 (Inference rules for parametric SHR). The admissible be-
haviours of parametric SHR are defined by the following inference rules, which are
parametric on a SAM S = (Id, (Act, ar, €), Init, Fin, ActSyn).

oar-p) -6, 2% oG, IDEG Y25 eFa)
bar-p ! aUn!
T,IV - Gi|Gy 222N @, 0 - G| GY

where (T U ®) N (T"U @) = 0.

Tz,ykFG 25 ok G,
IzkFGio AT @ U Gyop

(merge-p)

where o = {z/y} and:

1. A(z) = (a1, %), Aly) = (ag, V2)

2. (a1, as, (¢, Mob,=)) € ActSyn

3. S1 = {vi,[j1] = Ui [j2]| injy, (1) = injy, (2) }

4. So={t=ult,u e, z,y Ntr = un}

5. p=mgu((S1 U S2)o) where p maps names to representatives in I', x whenever
possible

6. wli] = ([k])op if Mob(i) = inj, (k)

v (W) ifz=x
CRS R

8. ' =plra
9. U=®op\ P
Tz G 25 dF G,
(res-p) Alrlr
I'Fve Gy ————= d' +vZ Gy
where:

10. QyeTlar=yr)=>an #zx
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11. actp(z) € Fin

12. Z2=0\ ¥

TGy 2% 6 Fa,
0,2k Gy 2@ & o n(@) - Gy

where x ¢ T U ®, i € Init and § is a vector of names such that n(g) N (T U P U
{z}) =0 and ar(i) = |7].

(new-p)

The main difference between these inference rules and the ones in Definition 1.23
and in Definition 1.24 is that these ones are parametric on a SAM S. Since this
generalization introduces some more technical difficulties we have chosen a more
modular presentation.

In particular, rule (merge-p) uses a renaming o = {z/y} instead of a generic
idempotent renaming. This is just a presentational difference, since the effect of
applying a general renaming can be obtained by successive applications of the sim-
pler version of the rule. Synchronization between two actions a; and ay is allowed
iff there is an action synchronization in ActSyn with a; and ay as first and second
field respectively (condition 2). Also, the component Mob is used to compute the
parameters of the resulting action (condition 6), while = is used to compute the first
set of equalities (condition 3) which contributes to p (while the second one depends
on 7 as usual).

Also, the action performed on the bound node in rule (res-p) must belong to Fiin
(condition 11), while only actions in Init (with a tuple of fresh names as parameters)
can be performed on a new node added using rule (new-p).

Notation. We write P Irps) T - Gy 25 & - Gy iff T F Gy =5 & + Gy can
be obtained from the productions in P using parametric inference rules instantiated
with SAM S.

We show now that parametric SHR can be instantiated in order to recover both
the synchronization policies for SHR presented in the literature, which produce
HSHR and MSHR frameworks.

Theorem 6.1. Let I' = G be a graph, let P be a set of productions and let inp be
the set of non € actions used in P. The two following statements are equivalent:

e Py THG 2L &+ G,

o P lpitoaren,) THG 25 @ F G

Proof. We will show that the instantiated parametric inference rules have the same
effect of the corresponding Hoare inference rules. Rules (par-H) and (par-p) are
equal. Rule (merge-H) allows to use any idempotent renaming, but this is equivalent
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to allow just renamings of the form {z/y}. Since Hoare SAM has all action synchro-
nizations of the form (A, A, (A, M Pyr(x),ar(0) EQar(n))) for A € Act then condition 2
for (merge-p) is instantiated to condition 1 for (merge-H). Also, the definitions of p
and A are instantiated to the ones for Hoare synchronization. Note that, when rule
(merge-p) is instantiated with Hoare SAM, U becomes empty since no parameter is
discarded.

The only differences between rules (res-p) and (res-H) and between (new-p) and
(new-H) arise because in Hoare SAM any action belongs to both Fin and Init, and
this allows to simplify the rules. O

The theorem above states that HSHR is an instance of parametric SHR with
the Hoare synchronization model. An analogous theorem can be proved for MSHR,
using Milner synchronization instead of Hoare.

Theorem 6.2. Let I' = G be a graph, let P be a set of productions and let inp be
the set containing the input actions used in P and the coactions for output actions
used in P. The two following statements are equivalent:

e PlFyTHG AL ok @

o P lbputitmery) THG =5 @ F G

Proof. We will show that the instantiated parametric inference rules have the same
effect of the corresponding Milner inference rules. Rules (par-p) and (par-M) are
equal. Rule (merge-M) allows to use any idempotent renaming, but this is equivalent
to allow just renamings of the form {z/y}. Since Milner SAM allows only synchro-
nization between pairs of complementary actions or synchronization with € actions,
then condition 2 for (merge-p) is instantiated to condition 1 for (merge-M). Also,
the definitions of p and A are instantiated to the ones for Milner synchronization.
Furthermore rules (res-M) and (new-M) are instances of the corresponding para-
metric rules, determined by the fact that Fin = {¢,7} and Init = {e}. Since these
actions have both arity 0, then conditions on parameters are simplified. O

The two theorems above show that parametric SHR indeed succeeds in providing
a uniform presentation for HSHR and MSHR.

Next examples show that parametric SHR can also be used to go beyond models
existing in the literature.

Example 6.1 (AGILE airport case study). We show here a simple example con-
cerning the airport case study [ABB*02] of the AGILE project [AGI]. Since we are
not aiming at tackling the whole case study, but just at showing how parametric SHR
can be applied, we will do some simplifications. For a more complete approach to this
modeling problem (based on a synchronized version of double pushout) see [BCG04].

The airport case study concentrates on modeling planes landing and tacking off at
airports, with passengers boarding the planes. We model entities (which are classes
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? univ univ

chk
w\ inPi? OinAl

[AI234] IL-C | | FG | — [FG | [IL | [umM |

"

Figure 6.1: Transition of the airport case study.

in UML class diagrams [RJB99]) as edges with attributes modeled as tentacles. In
particular there are edges for airports, planes and passengers. The first tentacle of
each of these edges represents the attribute AtLoc, proposed in an extension of UML
diagrams with mobility [BKKW02] studied inside the AGILE project. Values of at-
tribute AtLoc represent the location containing a mobile object. Also, objects that
are locations such as airports and planes have the dual attribute Containing. Fur-
thermore, planes have an attribute CheckedIn, whose value is the set of passengers
that have already checked in for next flight. Passengers that have already checked in
have the dual attribute. A simple graph modeling a system of this kind is:

0 b v univ, inPi, chk,inAl Pisa(univ,inPi)|AI234(inPi,inAl, chk)|
IL—-C(inPi, chk)|{UM—C(inPi, chk)|FG(inP1)

featuring one airport (Pisa) located in the universe (univ), a plane (AI234) in the
airport and three passengers, two which have already checked in (IL—C, UM—C),
and one which has not (FG). See the left part of Figure 6.1 for a graphical repre-
sentation.

We want to specify a transition that models the boarding of all the passengers
who have checked in and the take off of the plane. This transition requires multiple
checks and reconfigurations: essentially all the passengers who have checked in must
move (changing their location), and the airport must allow the plane to take off.
The plane must change its location too.

This is modeled by the following productions (which are written for generic labels
AIR, PLA, PAS—C and PAS for airports, planes, checked in passengers and not
checked in passengers respectively):

at,in = AIR(at,in) {in,ack {at)id,
at,in,chk = PLA(at,in, chk)
— at,in, chk, newat = PLA(newat,in, chk)

at,chk = PAS—C/at, chk) (Chk’bowd’<newat))’id>
— at, chk, newat = PAS (newat)

at,in = AIR(at,in)

(at,req,(newat)),(chk,breq,(in)),id\
7
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at €.<>) at: (req <newat>) newat
F F chk: PLA
in:(ack,<at>) in (breg, <|n>) in:(e,<>) in
at:€ ,<>) newat
eat
. PAS-C PAS
chk; ®{PAS=C  — ® chk

(brd,<newat>)

Figure 6.2: Productions for the airport case study.

The productions are graphically represented in Figure 6.2

We have now to specify the SAM S that we want to use. Actions ack and
req have to synchronize using Milner synchronization, since they model a message
exchange between the airport and the plane allowing the take off, while actions breq
and board have to synchronize using broadcast synchronization with breq as output
action, since all the checked in passengers have to board. Thus we can build the
wanted SAM using the coproduct construction on a Milner SAM and a broadcast
SAM.

We can thus derive the following transition (see also Figure 6.1):

0 b v univ,inPi, chk,inAl Pisa(univ,inPi)|AI234(inPi,inAl, chk)|
IL—C(inPi, chk)|UM~—C (inPi, chk)|[FG(inPi) —

0 F v univ, inPi,inAl, chk Pisa(univ,inPi)|AI234(univ,inAl, chk)|
IL(inAD)|U M (inAI)|FG(inPi)

It is interesting to notice that, when a suitable SAM 1is chosen for synchronization,
the implementation of the communication protocol becomes trivial. In [BCG04] in-
stead just a simple binary synchronization is used, thus a complex procedure is re-
quired to implement broadcast. Our choice allows models at a more abstract level,
as suited for modeling complex systems.

We present now a more funny, but however technically interesting, example.

Example 6.2 (The Game of Life).! The Game of Life [BCG82] is a well-known
cellular automaton, that is a grid of evolving cells. A cell can be empty or populated
(alive). A living cell dies if it has one or no alive neighbours (loneliness) or if it has
four or more alive neighbours (overpopulation) and it survives otherwise. An empty
cell becomes alive if it has exactly three alive neighbours.

In order to model the Game of Life we use edges to represent cells, with labels A
for alive and E for empty. Edges are connected to their eight neighbours via shared
nodes.

'We thanks Robin Milner, who suggested the example during a discussion at Dagstuhl seminar
04241.



6.2. SHR FOR HETEROGENEQOUS SYSTEMS 127

At each step edges must communicate their state on each connection and, at
the same time, receive the state of their neighbours. This can be done using four
actions (e, e),(a,a),(e,a) and (a,e). The meaning of, e.g., the last action is “I am
alive, you are empty”. We also introduce an action ok representing a successful
synchronization. Since the structure of the system is static we have no mobility, i.e.
all actions have arity 0. We use the following SAM:

e Act ={(e,e), (a,a), (e, a), (a,e), 0k, €};
e ar(A\) =0 for each A € Act;

Imit = {e};

Fin = {ok};

(A€, (A\, M Py, EQq)) € ActSyn for each A € Act,
((e,e), (e, €), (0k, MPy o, EQo)) € ActSyn,
((e,a), (a,e), (ok, M Py, EQy)) € ActSyn,
((a,a), (a,a), (ok, M Py, EQy)) € ActSyn.

In order to force complete synchronizations all nodes must be bound. We use for
productions a simplified notation: we just write the labels of edges and the sequence
of actions. Some sample productions are:

a,e),(a,a),(a,e),(a,e),(a,e),(a,e),(a,e),(a,e),(a,g E

),(a,a),(a,e),(a,a),(a,e),(a,a),(a,E),(a,E),(a,e)>A

loneliness: A (

. (a,e
survive: A —

overpopulation: A (a,a),(a,a),(a,e),(a,a),(a,e),(a,a),(a,a),(a,a),(a,e)> E

(e,0),(e5e),(e,€),(,a),(es€)s(e5€) (e5€)5(€5a)5(es€)

populate: F > A

On each node the synchronization ensures that the edges correctly exchange informa-
tion on their previous states. Thus the transition is determined by the actual state of
the graph as desired. Clearly, productions are required for each allowed combination
of actions. Some more productions are required also for edges on the borders, which
have different rank.

6.2 SHR for heterogeneous systems

In this section we introduce a further generalization of SHR aimed at modeling
heterogeneous systems (SHR-HS). In particular we consider systems where different
subsystems exploit different middlewares, thus their synchronization protocols are
built using different primitives. From a technical point of view heterogeneity is
introduced into nodes: each node, which models a communication port of the system,
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is labeled with a SAM that specifies how synchronization is performed on that
node. At a first sight it may seem that the same results can be obtained using
parametric SHR instantiated with the coproduct of the SAMs modeling the different
used middlewares. However this is not the case, since in this way each primitive is
made available on each node, while this does not happen in the modeled system.

Thus, SHR-HS concentrates on the management of the primitives available at
each time on each node. In particular, the SAM labeling a node can change dy-
namically as a result of a synchronization among different parties. Technically, this
corresponds to update the labeling when the graph evolves and nodes are merged
or created. Some practical modeling experiments have shown that in different cir-
cumstances, different strategies have to be followed: in particular, at the network
level the labeling is quite static, since it depends on hardware features, while at
the application level it can change dynamically as a result of negotiations among
different participants to the synchronization. In fact, different required services or
services with different quality of service properties can be conveniently described by
different SAMs. Technically, a set Alg of SAMs is declared, and it is equipped with
a user-defined operator ¢ of SAM composition, as shown by the definition below.

Definition 6.2 (SAM composition). We assume that all the SAMs used in a
SHR-HS model belong to a fized set Alg. Also, we assume a binary operator ¢ :
Alg x Alg — Alg of SAM composition which is associative, commutative and which
has a neutral element S.. Finally, identifiers of SAMs are required to be unique
inside Alg.

The definition above requires (Alg, ¢, S¢) to be a commutative monoid. Associa-
tivity and commutativity are needed so that the result of the composition of SAMs
does not depend on the order of composition (which is not determined, as we will
see in a while). The requirement of having a neutral element is not restrictive since
one can always add an unused element and set it as neutral element of the compo-
sition. The existence of a neutral element allows to ensure that the label of a node
is preserved during a merge.

Since different SAMs are used at the same time, it is useful to introduce some
auxiliary functions to extract a particular field from a SAM.

Notation. We denote with fAct(—), fInit(—), fFin(—) and fActSyn(—) the func-
tions that given a SAM S = (Id, (Act, ar, €), Init, Fin, ActSyn) compute respectively
its set of actions Act, its set of initial actions Init, its set of final actions Fin, and
its action synchronization relation ActSyn.

We have to extend the main definitions of SHR to keep into account the labeling
of nodes. We extend the definition of graphs (Definition 1.19) first.

Definition 6.3 (Labeled graphs). Let N be a fized infinite set of names, LE a
ranked alphabet of labels and Alg a set of SAMs. A labeled graph is of the form
I' - G where:
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1. T is a finite function mapping names to SAMs, written as set of pairs n : S
wheren € N and S € Alg;

2. G 1is a term generated by the grammar
G:=L(X |GG |vy:S G| nil
where T is a vector of names, L is an edge label with rank(L) = |Z|, y is a
name and S is a SAM.

We define the restriction operator v as a binder for y, which also records the
label S, and we demand fn(G) C dom(T).

Notation. When defining the interfaces, we use the notation I',;x : S to denote the
set obtained by adding x : S to I, assuming x ¢ dom(") and ',y to denote the
union of I'y and 'y, assuming dom(I'y) N dom(Iy) = 0. We use x1,...,2, : S to
shorten 1 :S,...,x,:S.

The relation of structural congruence on graph terms is the standard one (see
Definition 1.20), with axioms preserving the labeling SAMs. The corresponding
notion of graph isomorphism also preserves SAMs that label nodes.

We can extend now the definition of transition (Definition 1.21).

Definition 6.4 (SHR-HS transitions).
Let Act be a set of actions and let (Alg, o, Se) be a monoid of SAMs. A SHR-HS
transition is a relation of the form:

-G 2% e+ @

where ' = G and ® - G' are graphs labeled on Alg, A : dom(T") — (Act x N*) is a
total function and 7 : dom(T') — dom(T") is an idempotent renaming. All the con-
straints and notations concerning w, A and ® for SHR transitions (Definition 1.21)
are assumed for w, A and dom(®) here. We require that for any x € dom(T),
acta(z) € fAct(I'(z)), that is the action performed on a node is included in the
action set of the corresponding SAM.

The definition above simply extends Definition 1.21 to labeled graphs. Thus, in
particular, dom(I") and dom(®) are used instead of I" and ® from Definition 1.21
respectively. Also, actions are required to belong to the SAM labeling the node on
which they are performed.

We want to be able to specify productions that can be applied to nodes with
different labels, while keeping some control on them. Hence, we introduce types.

Definition 6.5 (Types). A type t is a non empty set of SAMs.

We extend now the definition of productions (Definition 1.22), but since we have
to deal also with types we introduce the additional concept of production schema
too.
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Definition 6.6 (SHR-HS productions). An SHR-HS production is an SHR-HS
transition of the form:

:r;1:Sl,...,acn:SnI—L(xl,...,xn)ﬂ)@l—(}

where x1,...,x, are all distinct and Si,...,S, € Alg. There are no constraints
on the SAMs associated by ® to nodes in T'x. Instead, for each x € {x1,...,z,}T,
the associated SAM ®(x) is S1¢...0S,, where {S1,...,Sn} are the labels in x; :
S1,...,%, 1 S, of the names mapped to x by .

For each edge label L of rank n and each Si,...,S, € Alg there is a spe-
cial idle production 1 : Si,...,xn : Sy F L(z1,...,2,) Acid, 1 2 Si,..., Ty
Sp b L(x1,...,x,) where A(z;) = (€,()) for each i. Idle productions are included
i all sets of productions, which are also closed under a-conversion of names in

{z1,...,2,} Udom(®).

Productions impose some requirements on how the labels in the target graph
are chosen. As specified in the definition, two different cases have to be considered.
If the node is new (i.e., created by the production), then its label can assume any
value. If the node is not new, then it occurs in {z1,...,z,}, and it is the chosen
representative of an equivalence class determined by 7. In that case, its labeling
SAM is obtained by composing using the operator ¢ of SAM composition the labels
(taken from z : Sy,..., 2, : Sy) of the merged nodes. Notice that the composition
is well-defined since SAMs form a commutative monoid.

Production schemas allow to specify in a more concise way sets of productions
with the same structure but with different labeling SAMs.

Definition 6.7 (SHR-HS production schemas). A production schema is a gen-
eralized production that has types instead of SAMs as labels of nodes.

Productions are derived from production schemas by specializing each type t; into
a particular SAM S; € t;, provided that the result is a correct production.

Last condition requires in particular that the actions in A and the SAMs in
the resulting graph satisfy the conditions from Definition 6.4 and Definition 6.6
respectively.

Also for SHR-HS we present a set of inference rules to derive transitions from
productions.

Definition 6.8 (Inference rules for SHR-HS). The admissible behaviours of
SHR-HS are defined by the following inference rules, which are parametric on a
monoid (Alg, o, Se) of SAMs.

rFG 25orG, I'Fe 25 e kq,
I, GG 2227 ¢ @ - GG
where (dom(T") U dom(®)) N (dom(I") U dom(®')) = 0.

(par-HS)
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Fx'Sy'S}—Glﬂﬂbl—GQ
Iz: Sl—Gla ' = vU Glop

(merge-HS)

where o = {z/y} and:
1. A(z) = (a1, 1), Aly) = (a2, 0)
(a1, az, (¢, Mob, =)) € fActSyn(S)

= {0, [51] = Vi, [72]] inj;, (j1) = injy, (52) }
Sy ={t =ult,u € dom(I') U{z,y} A tm = ur}

p = mgu((S1 U Sy)o) where p maps names to representatives in dom(I') U {z}
whenever possible

6. wli] = (#[k])op if Mob(i) = inj, (k)

o | @) ifz=a
7N = {2 o)) fo et 2 € )

8. " = plaom(ru{z}
9. dom(U) = (dom(®))op \ dom(P’)

10. the label of each node x € dom(U) Udom(®') is computed as follows: x is the
representative according to op of an equivalence class {x1,...,z,} of nodes
which have in ® labels S1,...,S,. Then the label of x is S1¢...¢S,

Fz:SFG 25 oG,

(res-HS) Al -
've:S Gy dom@)> dom(r), ' +vZ Gy

where:
11. (Jy € dom(l).am =y7) = ow # x
12. actp(z) € fFin(S)
13. ¥'(z) = ®(z) for each x € dom(P')
1. 7 =0\ &
TG 25+ G,

Tz:SFG AT & sy G,

where © ¢ dom(T") Udom(®), S € Alg, i € fInit(S), ¥ is a vector of nodes such
that n(7) N (dom(T") Udom(®) U{z}) =0 and ar(i) = |y], and Y is a finite function
mapping each name y € i to Se.

(new-HS)




132 CHAPTER 6. APPLICATIONS OF SAMS TO SHR

These rules further extend the ones in Definition 6.1, by allowing many SAMs to
be used together. Notice that now contexts are functions thus both their domains
(i.e., the sets of nodes) and their values (i.e., the labeling SAMs) must be kept into
account.

In rule (merge-HS), the two merged nodes must have the same label S, and the
interaction is performed according to one of the action synchronizations in its action
synchronization relation. SAM S is also the label of the node resulting from the
merge. The SAMs associated to nodes are preserved from the premise for nodes
that are not merged, and are computed using the operator of SAM composition
otherwise.

In rule (res-HS), node x can be restricted only if the action performed on it
belongs to the set of final actions of its labeling SAM. The labels of nodes in ® are
recorded either in @’ or in Z.

Finally, in rule (new-HS) the created node can be labeled by any SAM S € Alg,
and only actions from fInit(S) can be performed on it. Parameters are labeled by
SAM S, thus when they are merged with some node z they do not alter the SAM
labeling z.

Notation. We write P IFys(aony T F G1 =% &+ Gy iff T - Gy =5 & + G, can be
obtained from the productions in P using SHR-HS inference rules instantiated with
the monoid of SAMs Mon.

Parametric SHR can be seen as a special case of SHR-HS where a unique SAM
is used, as proved by the following theorem.

Theorem 6.3. Let ' G and ® = G’ be graphs, let S be a SAM and let P be a
set of productions. Let Mong be the monoid with S as only element. Let I's F Gg
and ®g = G be labeled graphs obtained from I' = G and ® = G’ respectively by
labeling each node with SAM S. Let Pg be a set of labeled productions obtained from
productions in P by labeling each node with SAM S. The two following statements
are equivalent:

¢ Plrysy THG 25 ®F G

[ ] PS ”_HS(Mong) PS (o GS ﬂ) (I>S H G{g

Proof. The proof is by induction on the derivation, showing that by instantiating all
the SHR-HS rules with SAM S for each node we get the corresponding parametric
rules, with the added management of labels, which labels each node with SAM
S. O

We present here some examples on how to model heterogeneous systems using
SHR-HS.
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Figure 6.3: Clients waiting for authorization.

Example 6.3. We describe here a sample scenario from the Internet realm. We
start from a simple case that can be modeled also using parametric SHR and then
we move to a more complex one that requires SHR-HS. Some clients C4, . ..,C,, can
1mvoke a service offered by a remote server S provided that they are authorized. A
possible solution might be to interpose an authority Au between S and the clients.
Both S and the clients trust Au, and clients get access to S only after they have
been authenticated by Au.
Figure 6.3 and the judgement:

z b vu Au(z,u)|S(u)|Ci(x)]...|Ci(x)]...|Cu(z)

represent clients connected to Au on a free node x. The server S is also connected
to the authority Au, but this time on a restricted node.

We present now the productions expressing the behaviours of Au, S and a generic
client C;. For the sake of simplicity, we consider the Milner SAM on actions {req}U
Uieq,...np{ouths} and we call it Mil.

First consider a generic client C;:

x: Mil F Cy(x) (wauthify))id, z,y : Mil = Cl(y) (6.1)
y: MilF Cl(y) 2 G- Ol(y) (6.2)

Production 6.1 models the authentication phase where C; is attached to a Mil node
and it asks Au for the access to the service S. If the authentication takes place, C;
connects to the server through y. Notice that the synchronization between Au and
C; takes place only if C; is able to provide some information, which is abstracted
with auth;, that allows Au to “recognize” C; as a legal user. Production 6.2 simply
states that a request is sent to the server. For simplicity, we assume that the server
does not give back any answer.

Productions for Au simply have to accept authorized clients and give them the
server address:

(z,auth;,(u)),id
_—

x,u: Mil - Au(z, u) x,u: Mil b Au(x, u) (6.3)

where i ranges over the indexes of valid clients.
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Finally, the server simply accepts requests from clients:

w: Mil - S(u) Lreehid,

u: Mil - S'(u)
where S' is used to model the server when it is busy. It becomes available again via
the production:

w: Mil b §'(u) o0

w: Mil = S(u)
which does not require any synchronization since it corresponds to an internal tran-
sition of the server.

Until now, just Milner synchronization has been used. We want to extend the
example by making each request to be served by many servers at once. For instance,
assume that the request is a search query on the web that clients want to submit
to different search engines. This extension can be easily managed by using multi-
cast synchronization between the clients and the servers. This can be obtained by
modifying production (6.1) as follows:

22 Mil - Cy(z) S8 vty Ml F Cly) (6.4)

where Mul is the multicast SAM on the action req, and by defining Mil o Mul =
Mul. In this way rule (merge-HS) ensures that the synchronization of produc-
tions 6.4 and 6.3 yields the expected result, namely, the attachment node of servers
uses a multicast SAM, since C; requests it to do so. Notice also that now only re-
quest actions can be executed on node u. To allow components to synchronize on u
after the merge, the productions for the servers, the clients and the authority must be
extended to allow on u also multicast labels, instead of just Mil. This can be simply
specified using a production schema where u s labeled by a type containing all the
desired interaction protocols. For instance, the universal type Alg can be used, but
also a more constrained one if some protocols are considered harmful and they must
be avoided. For instance, Production 6.2 for service request becomes:

y: Alg - Cl(y) LM Ag - Cly)

Notice that in all the instances the two types must be instantiated with the same
SAM to preserve the label of node y.

Finally, if some clients want to send the request to just one server, while others
want to send it in multicast, they can use different actions for requests (that can be
answered however by the same server action, thus this update is transparent to the
servers, provided that their production schemas allow the used SAMs), and they
can update the SAM on node u in such a way that only the behaviour of their
request action is changed. Thus each client can choose the required kind of service
at runtime, and the same servers are able to fulfil all the requests.
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We present now an example that fully exploits the power of determining at
runtime the SAM used on a node as a result of a negotiation among different com-
ponents.

Example 6.4. We consider a scenario where multiple processes/hosts are connected
through channels with different features. Mainly, we consider two characteristics:
the mazimum packet size, which can be either 4kb or 16kb, and the presence/lack of
some error-detecting mechanism, e.g., the CRC algorithm. Before starting the real
communication, two processes create a logic communication channel between them.
This channel supports 16kb packets and/or error-detecting capabilities only if all the
underlying channels do so.

We model this scenario using eight SAMs obtained by mixing three distinct fea-
tures, namely:

e packet sizes (4kb/16kb),
e error-detecting mechanism (yes/no),
e control or communication channel.

The first two items correspond to the aforementioned characteristics of channels,
while the last one specifies whether the channel is used for exchanging control mes-
sages or for data. For simplicity we suppose that control messages are short and thus
they can be encoded using some error-correcting code. Hence, control messages are
always correctly delivered. Since all the combinations of the three features are possi-
ble, we conventionally name the SAMs by means of expressions like CT Ry or COMl‘é
that respectively denote a control channel without error-detecting mechanism and
with 4kb mazimum packet size and a communication channel with error-detecting
mechanism and 16kb mazimum packet size.

The control SAMs provide essentially Milner synchronization (where we drop the
distinction between action and coaction) for control messages. The SAMs for com-
munication without error-detecting mechanism provide faulty Milner synchroniza-
tion, i.e., the result of a synchronization may be either T or err. In the former case
name fusion is performed while no name fusion is performed in the latter. Note that,
with these SAMs, processes can not detect whether the result of a synchronization is
T or err (unless they perform additional interactions). Communication actions can
be of two kinds, iny for packets of 4kb and inig for packets of 16kb. Corresponding
output actions are provided. The same T and err actions are used in both the cases.
Both the kinds of synchronization are allowed by SAMs 16kb, while just the 4kb-size
packets are allowed by SAMs 4kb. Finally, error-detecting SAMs allow two different
kinds of input, m;/ which synchronizes giving T and ing which synchronizes giving a
detected error, where s € {4kb,16kb}. Thus the action performed (and the different
production used) allow the process to know whether an error has occurred or not.
The nondeterministic behaviour of the channel, which may cause the error to happen
or not, s mimicked by the nondeterministic choice of the production.
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To clarify the above description we formally define here the SAM COMl‘é, where
for simplicity we suppose that input and output actions carry exactly one parameter:

o Id=COMY;

Act = {in}l/, ing, outy, mz/ﬁ, inye, outig, T, €rr, €};

e ar(\) =0 for A € {r,err,e}, ar(\) = 1 otherwise;
o Init = {e};
o Fin={rerr e},

(A €, (A, M Py(ny 0, EQo)) € ActSyn for each A € Act,
(m}l/, outy, (T, MPyp, EQ1)) € ActSyn,

(m4, outy, (err, M Py, EQy)) € ActSyn,

(mlG, outye, (7, M Py, EQ1)) € ActSyn,

(inyg, outye, (err, M Py, EQo)) € ActSyn.

We can now define the operator ¢ of SAM composition. We define a partial order
on the set of SAMs, and < will be the greatest lower bound according to that partial
order. The order is defined component-wise on the three features of SAMs, over
which the following orders are considered: 16kb > 4kb, the presence of an error-
detecting mechanism is greater than its absence and CTR > COM. Note that the
set of SAMs with the resulting composition operator forms a commutative monoid
as required, with C’TR}/6 as neutral element.

We consider as types all the singletons, the universal type Alg and the type CT
that contains the four control SAMs.

For simplicity we consider that the system contains two kinds of subsystems: end
systems x : S Idle(x) and routers x : S1,y : So,z : S3 F R(x,y,2). End systems
can start a communication with the production schema:

(z,connect,(y)),id

x: CT & Idle(x) z:CT,y: COM}/G F Active(z, y) (6.5)
After connecting to another system, an Idle process becomes Active, i.e. able to
send/receive data over the channel built toward other systems.

We now show the productions for routers. We write just a meta-rule, with type
meta-variables t1 and ty to be instantiated with each singleton containing a control
SAM. Furthermore a similar meta-rule is necessary for each permutation of attach-
ment nodes.

) (z,connect,(w)),(y,connect,{w)),id

x:t,y:ty,z: CTH R(x,y, 2 > (6.6)
—x:t,y:ty,z: CT,w:t; 0ty - R(x,y,2)
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Figure 6.4: Sample communication network.

We can now show some sample transitions. Let us consider as starting graph:

O+ v : C’TRI{)., 29,23 : CTRyg, x4 : CTRy, x5, 76 : CTRZ/
Idle(z1)|R(z1, 2, x4) | R(z2, 3, x5) | Idle(xs) | R(x4, x5, x6) | [dle(ze)

which is graphically represented in Figure 6.4.

For instance, we can build a communication channel between the two end systems
Idle(z1) and Idle(xs) via routers R(x1,x9,24) and R(x2,x3,25) (along the dashed
line in Figure 6.4) using productions (6.5) and (6.6). The SAM for the resulting
connection is COMig, obtained as a result of C’OMl‘éoCTRwoCTRwoCOMl‘é,
where the first and the fourth SAMs are from the end systems, and the two in the
maddle from routers. We obtain the graph:

O+ vz, : CTRY,, T, 73 : CTRig, x4 : CTRy, 75,36 : CTRY ,y : COMig
Active(z1,y)|R(x1, T2, v4)|R(z2, 3, T5) |Active(xs, y) | R(x4, x5, 26) | L dle(z6)

which is graphically represented in Figure 6.5. Similarly we can build a connection
between Idle(x,) and Idle(zs) via R(xy,x2,24) and R(z4,x5,26), but this time the
resulting channel uses the SAM COM,. When either of these connections has been
established, communication can take place using it. Notice that the label of the
channel is computed from the constraints imposed by the interacting components.

We continue to analyze SAMs in next chapter, but we move to a new application
field, namely process calculi.
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Figure 6.5: Communication network with a new logic channel.



Chapter 7

Applications of SAMs to process
calculi

In this chapter we present an application of SAMs in the field of process calculi. The
main motivation for this chapter is that SHR provides a framework that is powerful
but has strict constraints on the modeling strategies, since different aspects are dealt
with using different formal tools (i.e., the graph to describe the topology of the
system, productions for its behaviour). Process calculi instead provide some basic
operators (parallel composition, restriction, nondeterministic choice) that allow to
easily model basic facts about system structure and behaviour, and that can be
used to build models more and more complex, keeping into account each time the
particular features of interest (e.g., probability, pattern matching, time, ...) with
suitable extensions. In fact, the literature on process calculi is rich of such extensions,
and many of them can be applied with little effort to different calculi. The same
approach is not possible in the SHR framework, also because multiple concurrent
synchronizations, as can be found in SHR, make these extensions harder.

In particular, we choose Fusion Calculus as basic process calculus to be extended
with SAMs. The first reason is that its simplicity, featuring however the characteris-
tics we are interested in, and in particular mobility and handling of local resources,
makes the extension easier than for other more complex calculi. We will however give
some suggestions on how to apply the approach to other calculi, and in particular
to the m-calculus.

Another important reason for the choice of Fusion Calculus is that the link be-
tween Fusion Calculus and MSHR presented in Chapter 2 allows an easier compar-
ison between the results in this chapter and the ones on parametric SHR presented
in the previous one. It is true that an extension of Fusion Calculus similar to the
one presented here can be obtained by using the mapping in Chapter 2 and animat-
ing then the result using parametric SHR instead of MSHR, but, apart from the
fact that the syntax of Fusion Calculus must be extended anyway to allow different
actions, we think that it is interesting to present a stand-alone semantics in process
calculi style in order to allow the application of techniques from process calculi liter-
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ature as said above. Also, in this way some issues that would be otherwise hidden in
the mapping are more clearly visible, and this allows to get a deeper understanding
of aspects such as the scope of a synchronization or the extrusion of a name.

7.1 The PRISMA Calculus

In this section we describe PRISMA Calculus, which is technically an extension of
Fusion Calculus with SAMs specifying the used synchronization policy. For simplic-
ity, we consider just one SAM at the time as done in parametric SHR, however the
approach can be generalized exploiting the ideas presented for SHR-HS. The name
PRISMA, the Italian for “prism”, is intended to expose the many different faces it
could be looked at.

We present now the syntax of PRISMA Calculus.

Definition 7.1 (Syntax of PRISMA Calculus). PRISMA processes are para-
metric on a SAM S. Their syntaz is the following one:

P::= 0 (Inaction) zay.P  (Prefiz)
P|P  (Parallel composition) | P+ P (Nondeterministic sum)
(x)P  (Restriction) 'P (Replication)

where x is a name, a € fAct(S) is an action and § is a vector of names such that
ar(a) = [7].

In PRISMA, () is the only binder for z. At the syntax level, the only difference
between PRISMA and Fusion is that in PRISMA prefixes are of the form zay. Such
a prefix, which has the same structure of an SHR synchronization, requires the
execution of action ¢ on channel z with ¢ as tuple of parameters.

We have chosen to introduce in the calculus only the basic primitives necessary
to study interaction, however new operators can be added without particular effort
as usual in the process calculi field. Also, the choice of using replication instead
of recursion has been done only to simplify the proof of the congruence theorem
presented later (Theorem 9.4), but recursion can be included without problems as
well.

The intrinsic compositionality of action synchronization in SAMs makes the LTS
operational semantics more natural for PRISMA than semantics in the reduction
style. In particular, reduction rules specifying the interaction of an unbound number
of components are hard to specify, while using the LTS approach just two compo-
nents at the time can be considered.

The main problem in defining the semantics of PRISMA is how to decide which
processes must participate to a given interaction. This problem can be divided into
two subproblems:

1. which processes model single components of the system;
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2. which components must participate to a given interaction.

Note that in the SHR framework both the problems have a trivial solution, thanks
to the explicit description of the topology of the system: a component is an edge of
the graph, and it must participate to an interaction iff it is attached to the node on
which the interaction is performed.

For the first problem the obvious solution in the process calculi setting is to use
as components the sequential processes, that is processes with a prefix or a nonde-
terministic choice as topmost operator. This choice corresponds to consider parallel
processes as sets of interacting components, and it follows the analogy between SHR
and Fusion Calculus described in Chapter 2. With this interpretation, SAMs provide
first of all a description of the behaviour of the parallel composition operator.

The second problem can be solved following different approaches. As will become
clear later, this problem is crucial when the used SAM requires all the processes able
to interact to actually provide a non trivial contribution to the synchronization,
such as done by Hoare or broadcast SAM. Note that in this case the approach of
Fusion Calculus does not give a useful suggestion, since Fusion is based on Milner
synchronization, thus the problem is less relevant.

We think that the most interesting alternatives are the following ones:

e all the components;

e all the components that are aware of the existence of the channel z where the
synchronization is performed (i.e., the sequential processes whose set of names
includes the channel z);

e all the components that are able to communicate on channel x when the syn-
chronization is performed (i.e., the sequential processes that have a prefix with
x as subject at the top level).

We think that the first choice, even if technically simpler, is not realistic. In
fact, when for instance Hoare synchronization is used, this requires all the sequential
processes in the system to interact, but in general many of them are not interested
in this synchronization, thus a model based on this choice will have great scalability
problems.

The second choice follows the analogy with SHR, since nodes attached to an
edge correspond to names of the corresponding sequential process.

We choose the third approach for two reasons:

e we want to explore a different alternative w.r.t. the one obtained via the
mapping into SHR;

e it is easier to simulate the second approach inside the third than to do the vice
versa.

We define now the operational semantics of PRISMA.
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- T # 2z P3P x4y —
050 ray.P - zay.P (y)P = (y)P (x)P = (z)P
P =P P, =5 P, P> P P, = P, P3P

P\|P, =5 Pi|P, P+P 5P +P P =Z1p

Table 7.1: Operational semantics of PRISMA: transitions with label —zx.

Notation. We denote with A a general label.

Definition 7.2 (Operational semantics for PRISMA Calculus). The opera-
tional semantics for PRISMA Calculus is the least LTS generated from the inference

rules in Table 7.1 and Table 7.2. We also need the symmetric versions of rules 7.4,
7.5, 7.10 and 7.11.

Note that rule 7.3 instead is self-symmetric.

As already said, we have designed PRISMA to force synchronization among pro-
cesses that are willing to perform an action on the same channel z, i.e., which have
an active prefix with = as subject. In order to have a compositional semantics (see
Theorem 9.4 in Section 9.2), the set of channels on which a process can not syn-
chronize must be observable. Thus, following the approach of [EM99], we introduce
a label —z for each © € N: a transition with label —z can be executed by any
process P which has no active prefix with subject = (see Table 7.1), and it leads
to P itself. To be precise, [EM99] deals only with broadcast synchronization, and
there input prefixes and output prefixes are treated differently: only input prefixes
are considered active, since in broadcast all the interacting processes but one have
to perform an input. We can not follow a similar approach since we have to deal
with general synchronization policies, and, in general, actions may be neither inputs
nor outputs (consider, e.g., the case of Hoare synchronization).

In addition to labels =z, two further kinds of labels are used in Table 7.2: the
first one has the form (Y)zay, 7 and it models prefix execution, but it adds to prefix
zay two additional pieces of information: a set of extruded names Y and a renaming
7. First of all, when a bound name y is communicated outside its scope, we want to
trace that its scope is growing, and thus we include y in Y, since, when y is removed
from the tuple of communicated names (e.g., because of some synchronization), we
want to reintroduce the restriction for y. The same technique is used, e.g., in 7-
calculus, where rule (close) adds the required restriction operator. Note that Y is a
subset of n(¢) and it does not contain z. Furthermore, fusions performed on global
names must be traced by 7, since they must be applied to parallel processes. This
is performed by rule 7.4.

The second kind of label has the form (y/,7) and it is used to further propagate
renaming 7 (which is the same as before) when the channel where the synchroniza-
tion has been performed is restricted. Renaming 7 is applied to parallel processes
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i (7.1) _TEN (7.2)
o o zag,id we(),id
zay. P —— P P——P
P, (Y1)za191,m1 Pll P, (Y2)zazgo,m2 P2, B (7 3)
(W)zcd,n /DI .
PPy ——— (5)(P{|Py)p
(Y)zag,m  _, -z
P1—>P1_’ P2—>P2 (7.4) Plﬂ)P{ 75
p ‘P (Y)zag,n PI|P x Vo ( ) )
1| P 112 P||P, = P|/|Py7
P M) P' acFin z¢Im(r) Z=vect(Z) (7.6)
(2)P LN () pr
Y)zay,w R —
P Pz en(@)\ (#}\Y 2 ¢ In(x) 2 ¢ ((P)U{a} Un@)\ (2} 7
Yy y{z' 3T z .
p Maeiix o, » VAN
——5 P z¢n(j)U{r} z¢Im(n) (7.8) P—— P z¢Im(n) (7.9)
(Y)J:ag,ﬂL\{z} ) \/’ﬂ- L\{m} ! .
()P 2Ty pr (z)P ——= ()P
A . A
PSP oA d X#- ! '
14 # :ce(z,l # T (7.10) M (7.11)
P+ PN P P pr

® in the premise of rule 7.3 is the conjunction of:

—

.YiNnY, = (Zj, (Y1 U Yg) N (fn(Pl) U fn(Pg)) = (D;
2. (a1,aq9,(c,Mob,=)) € ActSyn;

3. p = mgu({#i, 1] = Fi,l2]l inj;, (41) =injy, (j2)} U {t = ultmy = um Vimy =
umg}) where p maps names to representatives not in ¥; UY, whenever possible;

4. ™= pl\(viuva);

5. @li] = (§[K])o iff Mob(i) = inj, (k);
6. W = n(@) N (Y; U Ya);

7. 5= vect((Y1 UYs) \ W).

Table 7.2: Operational semantics of PRISMA: transitions with executable actions.

by rule 7.5. Note that no further prefix can interact with (1/,7), and this ensures
interleaving among synchronizations: at each step at most one synchronization can
be performed. A concurrent semantics in the style of Section 2.3 is also possible,
but it is more complex, thus we stick to the interleaving one.

Rules 7.1, 7.5 and 7.11 are straightforward. Rule 7.2 says that each process
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can perform action € on any channel. This corresponds to the inclusion of idle
productions in all sets of SHR productions. This explains why the exact definition of
which processes have to synchronize is not important when the required contribution
to the synchronization is just e.

The most complex rule is the rule for synchronization (rule 7.3), which allows two
actions a; and ay performed on the same channel z to synchronize according to some
action synchronization (ai,as, (¢, Mob,=)) (condition 2). The main effect of the
synchronization is to produce a new renaming p (condition 3), which combines the
previous renamings traced by m; and m, with the new renaming determined by the
equivalence classes defined by =. The renaming p is applied to the two interacting
processes P{ and Pj and to the tuple of parameters 1 (computed according to Mob,
as specified by condition 5) of the resulting action ¢, and, as far as free names are
concerned, it is traced in the label by new renaming 7 (condition 4). W is the new
set of extruded names (condition 6). Finally, names that were extruded (Y; U Y3)
and are no longer in the label ((Y; UY3) \ W) must be bound by inserting them
into § (in any order), as specified by condition 7. Rule 7.4 allows to add in parallel
another process, provided that it can not perform any action on the channel that is
the subject of the synchronization in the label.

The rules for restriction deserve some explanations too. Rule 7.6 binds the
channel on which the synchronization in the label is performed. This is allowed iff
the performed action a belongs to Fin. All the extruded names must be bound in
the resulting process. If the equivalence class of the hidden name x according to 7 is
not a singleton, we have to remove z from 7, since x is not visible outside its scope.
To do that we require that z is not a representative (it is always possible to find
a transition where this is the case, since there is a transition for each choice of the
representatives among the free names in their equivalence class), and we delete its
binding. Rule 7.7 corresponds to the rule (open) of 7-calculus: if the restricted name
appears in the tuple of parameters of the action, then it is marked as extruded. Note
that the extruded name z can be a-converted to a new name z’, but z itself can be
used too, since we may have z' = z. The choices that allow to build a full derivation
are the ones where the chosen name 2z’ does not occur elsewhere in the process.
Rule 7.8 says that restricting channel z does not influence actions performed on a
different channel x. Similarly, rule 7.9 guarantees that restriction has no influence
on labels of the form (y/,7), apart from removing the bound name from .

It is interesting to note in rule 7.10 that actions of the form ze(),id or =z do not
force any of the two alternatives of a nondeterministic choice operator to be chosen.
This has been decided since these actions do not represent actual activities from
processes.

Note that the above semantics does not require any axiom of structural congru-
ence, and this simplifies the proofs of the properties of the calculus.

In the above semantics, action € can be freely performed on any node. This is
necessary since components may not participate, e.g., to a Milner synchronization.
However, a restriction operator can transform this action into (/,id) if € € Fin.
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This may be confused with a true internal synchronization, thus this is not a desired
behaviour. However, while in a concurrent setting € can be the final action on many
channels, in an interleaving setting this is possible only if the whole process stays
idle, and this is not an interesting case. Thus we remove ¢ from Fin when using
SAMs in the PRISMA setting.

We present here some examples to clarify the above semantics and to show some
applications of PRISMA Calculus. We start with a simple one.

Example 7.1. The allowed transitions for the PRISMA process:
P = (z)(z in(y).P, | z(out,3)(z).Py | z(out,2){w).Ps)

which exploits the priority SAM Pri of Definition 5.11 are:

p LU )P | Py | z(out,2){w).Py){z/y}
p Ytwl, (x)(P; | z(out,3){z).Py | P3){w/y}
p YU, (x)(P | P2 | P3){z/y}

In the first two transitions there is simply an interaction between an input and an
output, in Fusion style. The most interesting transition s the third one, where three
different sequential processes interact. Only the output (out,3)(z), which has the
highest priority, is received, thus z and y are merged. The other output is discarded.

Similar transitions where y 1s chosen as representative instead of z or w, and
transitions to P itself with labels of the form ue(),id or —u for any u are allowed
too.

Note that a full message exchange has to be performed since x is bound, thus no
other transitions are allowed.

We present now a simple application to publish-subscribe synchronization.
Example 7.2 (Publish-subscribe synchronization). Let us consider a server:
S =!(y)(lz publish (y).0 | 'y news z Z.0)

which can:
1. publish the name of a channel for news using an action x publish (y) or,

2. send news on a channel using an action y news)z Z (the number of parameters
may depend on the news).

A client C' has the form:

C =z subscribe (w).!lw get j £.0
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If publish is an output of a multicast SAM, with subscribe as corresponding input,
then any number of processes can subscribe at the same time. Also, more complex
actions can be used to embed in the synchronization some choices on whether to
subscribe or not. For instance, we can have actions publish — CS for publishing
computer science news and publish — math for mathematic news. Suitable actions
can be defined to subscribe to both the kinds of news or to choose the wanted one.
The operation of sending a news can be defined as a broadcast in order to ensure
that any process ready to receive the news will actually recewve it. Notice however
that busy processes (which have no active input on the channel where the news is
broadcasted) do not spoil the delivery mechanism.

We exploit here the categorical structure of SAMs to define a translation between
PRISMA processes defined on different SAMs.

Definition 7.3. Given a SAM morphism H : S; — Sy = (h,{h4|a € fAct(S})),
the corresponding translation from PRISMA processes on SAM Sy into PRISMA
processes on SAM Sy is defined as the homomorphic extension of the translation of
prefizes mapping xay to x h(a) W where Vi € ar(h(a)).w[i] = §lhq(7)].

The above translation intuitively preserves part of the behaviour of processes.
However, transitions are not preserved, since, e.g., fewer merges can be performed in
the translated process. As an example, consider simply the morphism that deletes
all the parameters of actions. This kind of morphism is necessary to compose SAMs:
projection morphisms in the product construction may be of this kind. Preservation
properties can be stated for smaller classes of morphisms. We consider here the case
of isomorphisms.

We need to extend the translation also to labels.

Definition 7.4 (Translation of labels along a morphism). Given a SAM mor-
phism H : S; — Sy = (h,{hd|a € fAct(S)), the corresponding translation from
PRISMA labels on SAM Sy into PRISMA labels on SAM Sy maps (Y)zay,n to
(W)zh(a)W, m where Vi € ar(h(a)).w[i] = §lha(i)] and W[i] € W iff ylh.(7)] € Y.
The translation is the identity on labels of the form —x and (\/, 7).
We can now state the proposition.
Proposition 7.1. Given a SAM isomorphism H : S; — So, P = P' can be derived
using SAM Sy iff H(P) Hle), H(P') can be derived using SAM Ss.
Proof. The proof is by induction on the derivation of the transition. O

The effects of the translation on the observable behaviour of processes are de-
scribed in Section 9.2.
We present now a further example on how to introduce accounting on a channel.

Example 7.3 (Introducing accounting on a channel). Let us consider the SAM
account defined as follows:
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o Act = {c,€};
e ar(c) =0;

o Init = {e};
e Fin={c};

o (N e, (\,MPyy, EQo)) € ActSyn for any A € Act.

The asynchronous product of account with any SAM S allows a controller process
P, to count the number of synchronizations performed on a channel. Let P be any
process and x be the channel under accounting. Let H be the inclusion morphism
from S to the product synchronization that maps a to (a,€). Suppose that S contains
an action $ of arity 0.

Then (z)H (P)|'z(€,¢)().y($, €)().0 with the product synchronization behaves as
()P (up to translation of actions) with SAM S, but it sends a message ($,¢€) on
channel y for each synchronization performed on x. In fact, to get a final action,
any action on x must synchronize with x (e, c)(), thus releasing a message y($,€)().

Not accounted actions can be added by using a coproduct construction.

7.2 Relations between PRISMA and other pro-
cess calculi

In this section we analyze the relationships between PRISMA Calculus and other
process calculi from two different points of view. First of all we consider the possi-
bility of mapping other calculi into PRISMA. In particular, we analyze the relation
between Fusion Calculus and PRISMA, which is, as expected, very strict. Then we
consider the possibility of applying the PRISMA approach based on SAMs using as
starting point another calculus instead of Fusion Calculus. We analyze in particular
the case of m-calculus.

As first result we show that PRISMA over Milnerry, where IN = {in,|n € N}
with ar(in,) = n, is essentially Fusion Calculus. The operational semantics that we
get for Fusion processes via the mapping is half-way between the standard one (see
Definition 1.13) and the concurrent semantics described in Section 2.3 (it is however
an interleaving semantics).

We consider the subset of Fusion Calculus whose processes are defined by:

P::=0|uZ.P|uz.P|PI[P|P+P| (z)P|!P

i.e. containing the inactive process, communication prefixes, parallel composition,
summation, hiding and replication (instead of recursion). We do not allow fusion
prefixes, but {Z = 7}.P can be encoded as (z)(zZ.P|zy.0) for z ¢ fn(P). The
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mapping can be extended to include other operators by adding the corresponding
ones to PRISMA Calculus.
We present now the definition of the translation.

Definition 7.5 (Translation from Fusion into PRISMA).
The uniform encoding [—]5,; from Fusion processes into PRISMA processes is the
homomorphic extension to the whole calculus of:

o [uf.Plpr; = v ingZ.[Plpgs,
o [uZ.P]Ey = u outiz Z.[PlE g,

where in, and out, = in, are complementary actions in the SAM Milner;y.
The mapping can be extended to communication labels as follows.

Definition 7.6 (Translation of communication labels).
The translation [—] 55, is defined on Fusion communication labels by:

o [(Duz]brr = ((F))u ingd,id
o [(Pux]hp = (n(y))u out |z, id

Note that the above translation loses the order of extruded names, but this
is unimportant, since in Fusion all different orderings can be obtained thanks to
structural congruence.

The following theorem formalizes the correctness and the completeness of the
translation.

Theorem 7.1 (Correctness and completeness).
Let P be a Fusion process. P = P' iff:

. o . lelp
1. « is a communication action, [P]5p; —=25 [P] bR and Py = P' or;

2. « is a fusion action, [P]bg; EN [Pim]5Rr and Pym = P'm where X is either
(/. ) or (z7(),7) for some x € In([P]Eg;) and where 7 is a mgu of a.

Proof. The proof is by structural induction on Fusion processes. We have a case
for each operator. We have to prove that the Fusion process P has a transition iff
its translation [P]E,; has a transition of the wanted form. As far as the only if
part is concerned, note that translations of Fusion processes have just four kinds
of transitions: the two described by the theorem, and ze(),id or -z transitions to
themselves. Thus completeness is proved by checking for each case that transitions
of the first two kinds are in correspondence with Fusion ones. Note that, when
referring to rule n, we mean rule n in Table 7.2.

Case 0) We have no rules for 0 in Fusion Calculus, and we can have only either
ze(),id or —z transitions in PRISMA. This proves the thesis.
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Case prefix) We have to show that if the thesis holds for P, then it also holds for
zay.P. The two rules for prefix are equal up to the translation. The thesis
follows trivially.

Case |) We have to show that if the thesis holds for P and for @, then it also
holds for P|Q. We have two applicable rules here. Let us consider rule (PAR)

F
first. If o is a communication label, by hypothesis [P]5x; Lolen, [P )5 R

and P, = P'. Then we can use rule 7.2 to derive [Q]%x; YN [Q]% 5, and
then rule 7.3 using action synchronization (A, €, (A, M Pa(x)0, EQo)) to derive

o F
[P|Q]% ks L 2N [P1|Q] %R, since we have p = id. The thesis follows because

P|Q = P'|Q. If « is a fusion action, its translation can be either of the
form z7(), 7 or of the form (y/,7). In the first case we have by hypothesis

that [P]E,, 2 [Pir]%y,, and we can use the same rules as before to deduce
A . S,

[PIQIFrr = [(Pi|@)7] 5 rs = [(P1@Q)7]E gy, since 5 is empty, and p = 7 (up

to a change of representatives). Last step is justified by idempotence of 7.

The thesis follows again. If the label has the form (y/,7), then the desired

transition can be derived using rule 7.5.

Let us now consider rule (COM). By hypothesis we have two transitions

F [uZ] 5 gy F F (@75 s F . _ /
[Plpar [Pilprr and [Qlpg; [@i]pr; with A = P and
@1 = Q. Since the lengths of the two vectors ¥ and ¥ coincide, the two
translations use complementary actions and thus they can interact using the
action synchronization (in,, out,, (1, M Py, EQ,)) where n is the length of Z.

Thus we can derive a transition of the form [P|Q]%x; AYiN (P1|@Qq)7 as re-
quired. Notice in fact that we have no extruded names, thus s is empty and
that m = m = id, thus the new p is just given by the merge on parameters
and it is a mgu of {Z# = §}. Furthermore 7 = p since we have no bound names
again. Notice that the Fusion rule (COM) deals only with actions with no
extruded names, while rule 7.3 in the semantics of PRISMA is more general.
However, the more general case can be simulated by Fusion, in fact extruded
names can be avoided by moving restrictions to the outside using structural
congruence. The allowed transitions are the same in both the cases. This will
be proved formally later, when observational semantics is considered, and it is
proved that the translations of the axioms of structural congruence bisimulate
(see Lemma 8.8 and Lemma 8.9).

Case (z)) Let us consider restriction now. Here we have three rules. Rule (SCOPE)
is simulated by rule 7.9 if the PRISMA action is of the form (y/,7), by rule 7.8
if it is of the form z7(), 7 where z is not the bound name and by rule 7.6 if
it is of the form z7(), 7 and z is the bound name. In that case, the rule can
be applied because 7 € Fin, and we have Z = ) because ar(r) = 0. Notice
also that in all the cases the binding for x in 7 is deleted, and there is no
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need to apply it to the process as done in Fusion, since it has already been
applied. The condition that x ¢ Im() is not restrictive since we have similar
transitions for each choice of the representatives.

Rule (PASS) is an instance of rule 7.8 where 7 = id for communication actions
and where the restricted name does not belong to n(7) for fusion actions.

Rule (OPEN) is an instance of rule 7.7 where 7 = id. Note that in Fusion just
x is used as extruded name since it can be changed using a-conversion and
rule (STRUCT), while in PRISMA any allowed name is generated.

In order to have the other implication we have to check that PRISMA rules do
not allow further transitions. PRISMA has four rules for restriction. Rule 7.8
is simulated by rule (PASS) when 2z ¢ n(7) and by (SCOPE) otherwise (the
restriction can be removed since z is no more used inside the process, fur-
thermore the renaming is not necessary in PRISMA since a transition with a
different name can be used as a premise). Rule 7.6 is simulated by rule (PASS)
in Fusion Calculus, and it switches between the two different representations
of fusion actions in PRISMA when a name where a 7 action is performed is
restricted. Rule 7.7 is simulated by rule (OPEN) (notice that here 7 is always
the identity if the transition has been generated by the translation of a Fusion
process). Finally, the same observations highlighted for rule 7.8 hold also for
rule 7.9, when the PRISMA label has the form (y/, 7).

Case ! and +) For each of the two operators, the rules in the two frameworks
are equal up to the translation, thus the proof is trivial. Note just that in
PRISMA we require that xe(),id transitions and —z transitions can not force
any nondeterministic choice to be taken.

Structural congruence) The first part of rule (STRUCT) is modeled since trans-
lations of equivalent Fusion agents have the same allowed transitions. This
will be proved formally later, when observational semantics is considered, and
it is proved that the translations of the axioms of structural congruence bisim-
ulate (see Lemma 8.8 and Lemma 8.9). The second part is simulated since
the theorem just requires to get as a result the translation of an equivalent
process.

This concludes the proof. O

Note that in PRISMA each process can always perform idle steps to itself, with
labels of the form ze(),id or -z, which have no Fusion correspondence.

We can now compare the semantics of Fusion obtained via the mapping with
both the standard one from Section 1.4 and the concurrent one from Section 2.3.
We consider the different issues analyzed in Section 2.3:

concurrent vs interleaving: the semantics presented here is interleaving, as the
standard one.
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located 7: 7 here is located on a channel, as in the concurrent semantics. This
is necessary since in the general framework of PRISMA 7 is a normal action,
and it must be located as other actions are. A semantics of the same kind
can be obtained by modifying the standard Fusion Calculus semantics, adding
in particular located fusions z¢ to the set of labels. Furthermore, we have to
change rule COM into the one below, and to add two new rules SCOPE’ and
SCOPE” to deal with the new labels:

COM PP Q=>qQ' |a=|d
u{Z=g}

PlQ—P'|Q’

up ,
SCOPE’ P—)Pu;\(ﬁz 24T 27U
(z)P——P'{z/2}

29
” P—P’
SCOPE W—wwz;ﬁw
(2)P——P'{z/z}

We think that, in general, the located semantics can be useful, since, for
accounting or performance reasons, synchronizations performed on different
channels may not be equivalent. Suppose for instance that channel x is pro-
vided by some company while channel y is local and owned by the user: a
process performing a synchronization on y is cheaper than a process perform-
ing the same synchronization using channel x. Local channels are instead all
equivalent, since any interaction, included traffic check (see Example 7.3), is
required to happen inside the scope of the channel.

renamings vs fusions: here we follow the approach of the concurrent semantics
of using renamings in the labels, but the two approaches are equivalent.

application of fusion renamings: here again we follow the approach of the con-
current semantics of directly applying the fusion renaming when it is com-
puted, but however both the approaches can be followed.

free names: here, according to the decision taken at the beginning of chapter, we
do not observe in the label the set of free names as in the concurrent semantics,
but we observe the set of active names instead.

idle transitions: here we have two kinds of idle transitions, the ones with label
ze(),id which correspond to the idle transitions in the concurrent semantics
(here however a name is chosen as subject in the label, and it may not be a
free name of the process), and the ones with label —z.

extrusions: here extrusions are visible in the label, as typical of process calculi
semantics and as done in the standard semantics of Fusion Calculus.

other differences: there are other differences, for instance in the syntax of actions,
but these differences have no real impact on the LTS since they are just due



152 CHAPTER 7. APPLICATIONS OF SAMS TO PROCESS CALCULI

to the different syntaxes used to carry the same information (the syntax of
PRISMA must be more general to allow also other SAMs to be used).

We present now an example where different parts of the theory developed so
far are combined to address interoperability issues, and in particular to execute a
Fusion process in a priority scenario.

Example 7.4 (Executing Fusion processes in a priority scenario). Let us
consider an infrastructure built for priority communication as specified in Defini-
tion 5.11. We want to run a Fusion process Pr in that framework. Suppose, for the
moment, that the Fusion process Pr has just prefizes with one parameter. We will
show how Pp can be made to interact with the other processes (although, clearly, it
will not be able to fully exploit the priority mechanism). First of all the translation
from Fusion to PRISMA (see Definition 7.5) can be used to have a corresponding
PRISMA process Py on the SAM Milner g, y. In the category ASYNC there is a
morphism Hy, from the SAM Milnery,,y to the SAM for priority communication
Pri for each priority n. H, maps iny to in, out; to (out,n) and T to (out+,n).
The corresponding translation of PRISMA processes (see Definition 7.3) allows to
produce in an automated way a priority process Pp = H,(Py). The process essen-
tially has all the outputs at the fixed priority n, and it inputs the message with the
highest priority as specified by priority synchronization. Notice that, if we want to
have Fusion processes based on actions with different arities, we can just extend the
priority SAM accordingly and then apply the same procedure.

Until now we have analyzed the relationships between Fusion Calculus and
PRISMA Calculus, and we have shown that they are very strict, as expected.

We give now some insights on the relationships with two other calculi: 7-calculus
and br-calculus [EM99]. These two calculi are quite similar, the main difference
being that m-calculus is based on Milner synchronization while br-calculus is based
on broadcast. Both the calculi use a slightly different approach to mobility w.r.t.
Fusion Calculus, namely their input operator is a binder, thus communication is
unidirectional (information flows from output to input). From a technical point of
view, an important consequence of that fact is that two names restricted using the
v operator are guaranteed to remain distinct during the whole computation. This
property is quite useful since it allows, e.g., to model nonces in security protocols,
guaranteeing that independently created nonces are different.

The mapping of m-calculus into Fusion Calculus presented in [Vic98] maps the
input operator of m-calculus into the input of Fusion Calculus, together with an
hiding on each of the parameters in the input (which must also be all different).
This approach ensures that the transitions of the translations of m-calculus processes
correspond to the ones of the original w-calculus processes. However, as pointed out
in [BBMO04], the mapping is not fully abstract since Fusion Calculus allows more
powerful contexts than 7-calculus, such as uzz|e which allows to merge two arbitrary
names, and which spoils in particular the above said property. The problem can
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be solved using either two different binders for input and restriction, as proposed
in [BBMO04], or a unique binder which takes a set of names as additional parameter,
as proposed in [BBMO05]. In both the cases distinctions are used to guarantee that
some names are kept distinct.

Those techniques, together with the above proposed mapping of Fusion into
PRISMA, can be used to bridge the gap between w-calculus and PRISMA Calculus
instantiated with Milner synchronization, and a similar approach can be used also
to map br-calculus into PRISMA instantiated with broadcast synchronization.

A dual approach to the whole problem consists in introducing mobility in the
m-calculus style into PRISMA Calculus. In order to do that we must however parti-
tion the set of actions into a subset of input actions, a subset of output actions and
a subset of control actions. We must then define input prefixes as binders (and force
their parameters to be all different). Then, the component = of each action syn-
chronization may just match parameters of input actions and at most one parameter
from an output action. If the output parameter exists, then its value is assigned to
the input parameters, otherwise the input parameters are simply unified. In both
the cases the renaming is applied only inside the scope of the input binders, thus it
has no influence on parallel processes. Notice that in this way two distinct names
not binded by inputs are never unified as required.

It is easy to see that this approach can be applied to many of the SAMs presented
in previous chapters, in particular to Milner, broadcast and priority SAMs, and to
many of their variants, but not to symmetric SAMs such as Hoare or threshold
SAMs. Thus we think that our approach is more general, since it allows to deal
with a larger family of synchronization models.
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Part 111

Observational semantics and
compositionality
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Roadmap to part III

Until now we have concentrated our attention on the operational behaviour of sys-
tems, that is on the transitions that they are able to perform. In this last part
we analyze instead the observational semantics, that is we decide which features of
the behaviour of systems are interesting for us, and we define equivalences among
systems which quotient systems which are indistinguishable w.r.t. the above said
features.

In general, given a model of a full system or of a component, it is important
to well understand its interactions with its environment for various reasons: this
allows to analyze the behaviour of a system when it is plugged in its execution
environment, but this also allows to compute the behaviour of a large and complex
system starting from the behaviours of its components.

Thus many formalisms for GC applications are equipped with a well-defined
concept of interface that allows to compose different systems, and where interactions
take place. In the frameworks that we consider, the interface is modeled by the set
of free names. Thus observational semantics analyzes the actions that are performed
on the free names.

Different observational semantics exist in the literature, such as bisimilarity,
testing semantics, and others, which differ on which features are chosen as interesting
and on which mechanisms are used to observe them. We concentrate on bisimilarity,
whose basic definition has been presented in Definition 1.2, and on its variants.

From our point of view, a main problem is whether bisimilarity is a congruence
w.r.t. the operators of system composition or not, i.e. whether the compositions of
bisimilar systems are bisimilar or not. If they are, then the observational properties
of a complex system can be derived by composing the results obtained on their
components.

In Chapter 8 we concentrate on SHR, and in particular on parametric SHR. We
prove that bisimilarity is a congruence w.r.t. a set of operators on graphs for a large
class of SAMs. This result is obtained by applying a generalization of the standard
bialgebraic techniques outlined in Section 1.2. The application is non trivial, since
it requires to define a suitable algebra of graphs and to define SHR transitions by
structural induction on the term representing the source of the transition.

The only other approach to observational congruences for graph transformation
that we are aware of is [KMO1], but the result therein refers to a SHR, framework with
only Hoare synchronization (instead of the parametric synchronization mechanism
of parametric SHR) and where only new nodes can be communicated. This form of
mobility is less powerful than ours, and it is not powerful enough to allow a link with
Fusion Calculus. Finally, the result in [KMO01] allows only restriction and parallel
composition as operators for building systems, while we consider also renamings.

In Chapter 9 we apply a similar approach to process calculi instead. In particular,
we prove that the concurrent semantics of Fusion Calculus presented in Section 2.3
produces a bisimilarity relation which is a congruence w.r.t. all the operators in the
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calculus. The result is interesting since it does not hold for standard interleaving
semantics. In that case, in fact, hyperbisimilarity is usually used. A comparison of
the two semantics is presented.

Also, we prove that hyperbisimilarity is a congruence for PRISMA Calculus
over any SAM S, thus extending a known analogous result for Fusion Calculus.
Hyperbisimilarity is also used to analyze some properties of PRISMA Calculus and
to relate instances of PRISMA Calculus based on different SAMs.



Chapter 8

Observational properties of
parametric SHR

In this chapter we analyze the observational properties of parametric SHR, and in
particular we prove that bisimilarity is a congruence w.r.t. the operators of a suitable
algebra of graphs for a large class of SAMs. We consider a multi-sorted algebra first,
and a single-sorted one later. Note that the presented results are automatically valid
also for MSHR, and HSHR.

We prove those results following the approach developed in [PT97] and in [BM02],
and outlined in Section 1.2, which ensures that the LTS under analysis has a bial-
gebraic structure. Actually, we develop and exploit a generalization of the theory
in [BM02].

Thus we have to provide a semantics for parametric SHR that satisfies the con-
ditions of Theorem 1.1. The condition of Theorem 1.2 requiring that all the axioms
bisimulate is not satisfied, but we show that we can add the axioms in two steps,
and in this way they all bisimulate.

Actually the LTS of parametric SHR presented in Section 6.1 has a bialgebraic
structure, but in order to make this explicit we have to define an algebraic structure
on judgements, and rewrite the rules to define the semantics by structural induction
on this algebra.

8.1 A bialgebraic framework for SHR

In this section we define an algebra for judgements, and we provide a new version of
the inference rules in Definition 6.1 based on that algebra. In particular, we define
an algebraic signature ¥ and a set of axioms E such that the defined algebra of
judgements is isomorphic to the term algebra T(s g).

This algebra is similar to the one presented in [BC87]. The main difference is
that we use directly the set of free nodes of each graph as its interface, thus names
of free nodes are important and they appear in the sort of the operators. This choice
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has been made since, in our interpretation, free nodes are ports of the system which
are accessible from the outside, thus they naturally are the interface of the system.
Technically, our algebra is multi-sorted, and the sort of each term is a set of names,
which is the set of free names of the corresponding graph.

The notation that we use for operators in X recalls monoidal categories [Mac71],
since both the algebra and the congruence property have been discovered while
working on a mapping of SHR into the Tile Model [GMO00], a categorical framework
for studying behavioural properties of systems. The result is however presented here
without referring to the Tile Model to make it easily understandable for a larger
audience.

Before defining the algebra we introduce some notations.

Notation. Given a term t we denote with sort(t) its sort and we write t : sort(t).

Note that the sort of an operator is a function from tuples of term sorts to term
sorts. We can now define the signature ¥¢.

Definition 8.1 (Signature Y for graph terms).

The signature Xg 1s composed by several families of operators, with each family
including operators for each of the allowed sorts. We list here the operators, using
sort variables to give a compact description of all the operators in the same family:

e nil : 0, a constant representing the empty graph;

© Ly wn i {z1,...,2,} where L is an edge label of rank n and {x1,...,z,} is
a set of distinct names, a constant representing the edge L(z1,...,x,);

|| : Ty x Ty = 'y UTy where Ty N Ty = 0, an operator composing graphs with
disjoint sets of free names;

Vay: I =T\ {y} where z,y € T and x # y, an operator corresponding to the
renaming {x/y};

7. T = T\ {x} where x € T, an operator restricting name x;

e : T = TU{z} where x ¢ T, an operator adding a free isolated node x to the
graph.

Note that V,, is a binder for y and ?, is a binder for z.

We present now an interpretation of the operators in X¢ on judgements. This
allows to give an algebraic structure to the set of judgements (with sort determined
by the interface I' in I' - G).

Definition 8.2 (Interpretation function [—]s).
The interpretation function [—]c of the operators in ¢ into judgements is defined
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by:

[nille = 0 + nal
[Lgy...zn]c =21, Tn b L(z1, ..., 20)
Iy Gi[|lleTs F Go =1, Ty - G1|Gy
Vaylcl,z,yt- G =T,z F G{z/y}
[?:]cl,2-FG=TFve G
[LJeT G =T,2F G

We assume the trivial extension of the interpretation function [—]q to terms.

Note that the extension of [—]¢ to terms provides an evaluation of terms with
judgements as values.
We show here a simple example of interpretation of a term.

Example 8.1.

The interpretation function [—]e maps the graph term 7y Vy Vo (Reyl | Rys 2,) t0
the judgement x + vy R(x,y)|R(y,x), which is the two elements ring from Ezam-
ple 1.1.

The following lemma shows that the sort of a term is the interface of the repre-
sented graph.

Lemma 8.1. Let t be a term in Ty, : [tle =T+ G iff sort(t) =T
Proof. By structural induction on ¢. O

Next lemma proves that the above definition indeed defines an algebraic structure
on judgements.

Lemma 8.2. Judgements together with the interpretation [—]q of the operators in
the signature X form a Xg-algebra.

Proof. One just needs to check that the defined functions have the correct domain
and codomain, where domains and codomains are determined by the sort of the
corresponding operators. O

The above definition provides an algebraic structure on judgements, but it does
not consider structural axioms. We want to refine it to define a similar structure
on judgements up to axioms. We introduce a special notation to clarify when we
consider judgements up to axioms.

Notation. We denote with [[' b G]= the equivalence class of T F G modulo the
axioms of structural congruence.
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We can now define the interpretation function [—]Z mapping operators in g
into functions on judgements up to structural congruence. It simply considers a
representative of the class of judgements, it applies the interpretation function [—]¢g
to it and it takes the equivalence class of the result.

Definition 8.3 (Interpretation function [—]7).

The interpretation function [—]g is defined on a unary operator op by Jop]g[L +
G)z = [[op]cl & G)=. The definition is analogous for constants and binary opera-
tors.

We have to check that this definition is well-posed.

Lemma 8.3. Definition 8.3 is well-posed, thus judgements modulo axioms of struc-
tural congruence together with the interpretation [—||g of the operators in X form
a Y.g-algebra.

Proof. One just needs to check that the result of each function does not depend on
the choice of the representative in the equivalence class in the left part. O

We want to define a set of axioms F on Yg-terms that captures the equivalences
that hold among judgements up to structural axioms.

Definition 8.4 (Axiomatization of judgements). The set of azioms E for the
algebra of graph terms contains the families of axioms defined by schemas in Ta-
ble 8.1 (axioms are required for each allowed sort).

Even if the axiomatization requires many axioms, they are all pretty intuitive.
Axioms 1 and 2 allow a-conversion of names bound by either the operator 7 or the
operator V. Note that V,, binds only the parameter y. Axioms 3, 4 and 5 allow
to commute operator || with other operators. Similarly axioms 6 and 7 allow to
commute V with the remaining operators and axiom 8 allows to commute 7 and
I. All these axioms can be applied only if the commuted operators are labeled by
different names. Axioms 9 and 10 concern the application of a V operator to a name
x generated by a !, operator. If x is chosen as representative by V, then a renaming
has to be applied to the term (axiom 10), otherwise the two operators can simply
be deleted (axiom 9). Similarly, if a name z just created by !, is bound using ?,,
then the two operators can be deleted (axiom 11). This provides garbage-collection
of bound names. Axioms 12 and 13 formalize commutativity and associativity of
operator ||, while axiom 14 states that nil is its neutral element. Axioms 15, 16
and 17 ensure that the properties of the renamings represented by V operators are
verified. Finally axioms 18 and 19 allow to commute two occurrences of operators
? and ! respectively, provided that they have different names as parameters.

We define here a normal form for terms in 75,,.

Definition 8.5 (Normal form for terms in TEG). A term t € Tx,, is in normal
form iff it has the structure cicocyt; where:
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—_

- Tat=p7y(t{y/z}) if y & sort(¢)

2. Veut=x V. (t{z/y}) if z ¢ sort(t)
Vagti)|[t2 =5 Vay(t1][t2) if y & sort(t2)
7z t1)|[ta =g 74 (t1][t2) if & ¢ sort(ts)

5. (Izt1)|[te =g e (t1]|t2)

6. Voy?ot=p7, Vautif z# 2,y

(
(

7. Ve it=p!, Vo, tit z# 2,y
8. 7, t=pl, 2 tifz £y
9. Vo lyt=pt
10. Vg lat=pt{z/y}
1. 2, ! t=pt
12. t1||ta =g to||t1
13. (ta]lt2)[ts =g ta| (22| [t3)
14. t|nil =gt
15. V4 Vet =5 VouwVayt if {z,y} N {z,w} =10
16. Vg Vy =V, , Ve tife#y#z
17. Vg Ve t =5V Ve tif o £y #2
18. 7,7, t=p7, %ot
19. Llyt=gl, 1t

Table 8.1: Axiomatization of graph terms.
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1. t; is the constant nil if term t contains no edge constants and a || composition
of edge constants left associated, in a canonical order, and with distinct names
for nodes otherwise;

2. for each o € {!,7,V} ¢, is a context composed only by operators o;

3. in each operator V., the second argument is always distinct from any other
argument of a V operator, and the order of operators is determined by the
order of the occurrences of x and y in the inner part;

4. the operators 7, and !, appearing in the respective contexts are in a canonical
order;

5. names y in Vg, and names x in 7, are canonical names.

Note that, as in Definition 3.12, we suppose to have a canonical order on names
and edge constants.

Notice also that the graph term in Example 8.1 is in normal form, for a suitable
standard ordering on names.

Next lemma proves that the above defined normal form finds a standard repre-
sentative of equivalence classes of terms modulo F.

Lemma 8.4. For each term t € Ty, there exists a unique term t' € Tx,, in normal
form such that t =g t'.

Proof. We prove the existence first and the uniqueness later. Note that we can
always use the axioms to sort the operators in the order (from inside to outside)
constants, ||, V, 7, ! to match the term structure imposed by conditions 1 and 2.
Suppose for instance that there is a || operator outside some other operator: we can
make it to commute with V using axiom 3 (if the side condition is not satisfied then
we can use axiom 2 to a-convert y and thus satisfy it). Similarly we can use axiom
4 to commute || and ? (if the side condition is not satisfied then we can use axiom 1
to solve the problem) and axiom 5 to commute || and !. Similarly we can commute
the other operators. Thus we can suppose that the term has the desired structure.

Condition 1 can be satisfied using axiom 12 to sort the edge constants in the de-
sired order, axiom 13 to make them left associated and axiom 14 to delete exceeding
nil constants. Note that names are necessarily distinct otherwise the || operator is
not applicable. Condition 3 can be satisfied using axioms 15, 16 and 17. Condition 4
can be satisfied using axioms 18 and 19. The last condition can be satisfied using
axioms 1 and 2. We can always find a sequence of renamings that makes the side
conditions satisfied, since we want to end up with distinct names.

Suppose now to have two terms ¢; and ¢, in normal form such that ¢; =g t,. Note
that the only operators that can be deleted using the axioms are ! operators (in this
case also a V operator or a ? operator is deleted) and nil. However the normal form
forces both the numbers of ! operators and nil to be minimal. In fact, a ! operator
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can be deleted only if it is inside a V operator or a 7 operator, and this can not
happen in a normal form. Also, there is at most one nil constant, and none of them
if there are other constants. Thus the two terms can differ just for the ordering
among the operators of the same kind or for their arguments. However the order
among the operators is fixed, thus no choice is possible. Furthermore, names that
do not appear in the sort are canonical and thus fixed (the other names can not be
changed since subject reduction holds). Finally, the order is forced also among the
arguments of different V operators, thus no choice is possible again. Thus the two
terms must be equal. O

We show now that the axiomatization captures the properties of judgements up
to structural axioms.

Lemma 8.5. For each pair of terms t,t' € Ty, t=gt" iff [t]c = [']c-

Proof. We prove that there is a bijection between normal forms for graph terms and
standard decompositions of judgements, as defined in Definition 3.12. Since each
normal form corresponds to an equivalence class thanks to Lemma 8.4, and the same
happens for standard decompositions of judgements thanks to Lemma 3.2, then the
thesis will follow. Let us consider a standard decomposition of a judgement I' - G,
which has the form I' - vX Gog. We want to build in a unique way a term ¢ in
normal form such that [t]j¢ =T+ G.
We follow the steps below:

1. the inner part of ¢ has the same structure of G, with constants for nil and for
the edges, composed using the || operator;

2. to the inner part, an operator V,, is applied for each binding {z/y} in o¢, in
the canonical order;

3. then an operator 7, is applied for each name in X, in the same order;

4. finally an operator !, is applied for each name in I'\fn(vX Gog), in a canonical
order.

Note that the steps above can always be applied (in particular, when an operator
has to be applied, the term has a compatible sort), that the built term ¢ is in
normal form by construction (supposing to use corresponding canonical orders for
names in judgements and in terms) and that the construction is deterministic. The
correctness of the construction can be proved step by step, since the interpretations
of the terms obtained after each step are respectively fn(@) -G, fn(éaG) - Gog,
fn(vX Gog) - vX Gog and finally the wanted judgement.

Note that the defined correspondence is indeed a bijection, as required. O

An easy corollary of the result above is that the algebra of judgements modulo
structural congruence is isomorphic to the term algebra T(s g).
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Corollary 8.1. The algebra of judgements modulo structural congruence of Lemma
8.3 is isomorphic to the algebra Tis k).

Proof. Tt is easy to check that the bijective correspondence defined by Lemma 8.5
is an isomorphism. O

Thanks to the above result we can use the two algebras interchangeably.

Now that we have defined the needed algebraic structure we give a presentation
of the rules for parametric SHR based on it. In particular, we use an inference
rule for each operator (we write schemas of rules summarizing the rules for similar
operators with different sorts).

Since the rules will be used to derive transitions for terms up to axioms, we can
use some notational extensions justified by the axioms.

Notation. Given a set X we denote with ?x (resp. !x ) any composition of ?,, (resp.
's;) operators such that X = J,{x;}. Similarly, given an idempotent renaming p we
denote with V, any composition of V., operators whose renamings {z/y}, composed
in the order of application of the operators, equal p.

The rules are defined below.

Definition 8.6 (Inference rules for parametric SHR). The admissible be-

haviours of parametric SHR are defined by the following inference rules, which are
parametric on a SAM S = (Id, (Act, ar, €), Init, Fin, ActSyn).

(nil-pa) —————
., 0,d .

nil — nil

XiyeooyTp B Lz, ..., 2y) MG

A
Lzl,...,mn —t

(edge-pa)

where [t)c = @+ G.

arpa) B Ay, ATy
par-pa 7 ,
t | |t’1 AUAN wUr t2||t12

where (sort(t) U sort(te)) N (sort(¢}) Usort(ty)) = 0.

A,
t, =5 ty

A
Vz,ytl e ?U V,,sz,ytg

(merge-pa)
where:

1. A(z) = (a1, 51), Ay) = (az, 2)
2. (a1, as, (c, Mob,=)) € ActSyn
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8. St = {Ui,[1] = U, [72]| inj;, (j1) =inj;, (j2) }
4. So ={t =ult,u € sort(t;) Nr = ur}

5. p = mgu((S; U Sy){z/y}) where p maps names to representatives in sort(t;)
whenever possible

6. ,OI = pLsort(Vm,ytz)
7. wli] = (U;[k]){xz/y}p if Mob(i) = inj;(k)

o (@) ifz=x
5. NG = (oot ot Heobe) for cah = € srte) )

9. 7 = pLSOrt(Vz,ytl)

10. U = ((n(A){z/y}p \ n(A)) N sort(V Vi yts)

‘ | t A,
res-pa
(A gy {w/z} (7 I\ g3 ) {y/ %}
Ppty —F Med » (P2 ta){y/x}

where:
11. (Fz esort(ty)amr =21 ANz #2) = am #x
12. actp(z) € Fin
13 Z = ((n(A) U {2}) \ n(Alygsy)) Nsort(tz)

14. y == ory ¢ sort(t;) Un(Al\(z)

A,
t =5 ty

AU(z,5,9),7
Ity 2Tyt

(new-pa)

where x ¢ sort(ty) Usort(ty), i € Init and § is a vector of names such that
n(g) N (sort(t1) Usort(ta) U{z}) = 0 and ar(i) = |7].

The intuition behind these rules is exactly the one behind rules in Definition 6.1,
but there are however some important technical differences.

First of all, the rules (nil-pa) and (edge-pa) have been added: the first rule adds
a trivial transition for term nil and no other transitions, thus it is not important
from an operational point of view but it is necessary to make axiom 14 in F to
bisimulate. Rule (edge-pa) just explicitly introduces in the LTS the transitions that
correspond to productions.
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In the rules it is no more possible to refer to contexts I or ®, since they are no
more visible, thus they are replaced by the sort of the corresponding graph terms.
Also, restrictions on the final graph must be computed explicitly, since they can
no more be computed using the information on contexts (see condition 10 of rule
(merge-pa) and condition 13 of rule (res-pa)).

In order to apply renamings to terms sequences of V operators are used, but, to
make the sort requirements satisfied, renamings are restricted to the names in the
sort (see, e.g., condition 6 of rule (merge-pa)). The same trick is required to bind
names via the 7 operator.

Finally, in rule (res-pa), if the bound name z is extruded then we allow to choose
a different name y for it. If judgements are considered up to structural axioms, this
can be obtained by a-converting = into y, but this possibility must be included in
the rule to make axiom 1 in £ to bisimulate.

Notation. We write P Irp,s) 1 ﬂ) ty iff t1 ﬂ) ty can be obtained from the
productions in P using parametric inference rules from Definition 8.6 instantiated

with SAM S.
We show here an example on how to derive a transition using the rules above.

Example 8.2. This example is based on Milner amoeboids, as defined in Defini-
tion 3.19. A suitable Milner SAM 1is used for synchronization. We will further
extend the example in the following.
Let us consider the term ?n, Vi, ny(Rentyl|Rensw), which represents an amoe-
boid with interface {x,y, z,w}. Let us consider an action a such that ar(a) = 1.
From rule (edge-pa) we can derive:

(2,0,(y1)),(n1,85(y2))id
RL’“I,ZJ ’ RL’fllayHLth

(n2 ,Cl,,(Zl)),(U},E,(Zz)),id
Rz,nz,w > RZ,TL2,’U) |Lz1 »22

We can then apply rule (par-pa) to have:

(w’a‘7<y1>)7(n1 161(3/2))’(”27a1<21>)7(wvaa(z2>)5id
|Rz,n2,w ?

4
| Lyl »Y2 | | RZ,TLQ,'U}

Now we can use rule (merge-pa) to synchronize actions at ny and ny:

th,nl Y

Rzanlay

|L21,22

an,n2 (Rz’nl,y| ‘RZ’nQ’w) (w,a,(yl)),(nl,T,()),(w,ﬁ,(zz)),id>
?y2 VyZ;ZI anan2 (Rwanlﬂy |Ly17y2 | |Rz,n2,w

Finally we can apply rule (res-pa) to get:

L2y 25)

(w’a7<y1>)i(waaa<z2>),id
?”1 v”lam (Rmml,yl |Rz,n2,w) >

?nl ?yg vy2,Z1 V7L1,n2 (Rw,nl,y |Ly1,y2 | |Rz,n2,w

which is an allowed transition.

L2y 20)
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The theorem below ensures that the above defined semantics is the usual seman-
tics of parametric SHR from Definition 6.1. However it holds only if the used SAM
satisfies the following conditions, which are called conditions for SAM composition-
ality since they are needed to prove the congruence theorem (Theorem 8.3).

Definition 8.7 (Conditions for SAM compositionality). A SAM S satisfies
the conditions for SAM compositionality iff:

1. fInit(S) N fFin(S) # 0;

2. if there is an action synchronization (€, i, (i, Mob, =)) € fActSyn(S) with i €
fInit(S) then i =e.

Note that these conditions are satisfied by most SAMs (Milner, Hoare, broadcast,
priority, threshold, ...), thus the theorem is general anyway. Also, if the properties
are not satisfied, then the congruence theorem does not hold, and the correspondence
is not needed.

We have not required these properties to hold for any SAM since a few useful
SAMs, and in particular the account SAM of Example 7.3 and the multicast SAM,
do not satisfy them.

We can now prove the correspondence theorem.

Theorem 8.1. Let P be a set of productions, S a SAM satisfying the conditions for
SAM compositionality and t a graph term (different from nil). The two following
statements are equivalent:

A
o P “_pa(S) tl —,ﬂ-) tg,’

o Py (115 =5 [l
Proof. The proof is by rule induction, and it is almost trivial since the two sets
of inference rules are very similar. The only important difference is that the first
derivation does not use structural congruence, but all the axioms of structural con-
gruence bisimulate, as will be proved in Lemma 8.8 and Lemma 8.9 (this proof
requires the conditions for SAM compositionality), thus any representative of the
equivalence class allows the same transitions. O

8.2 Observational semantics for SHR

In this section we exploit the formal framework developed in the previous section to
prove that bisimilarity is a congruence for parametric SHR w.r.t. all the operators
in the algebra T{s g) of graph terms for a large class of SAMs, namely for SAMs
satisfying the conditions for SAM compositionality. Since the algebra is multi-sorted,
the most straightforward congruence result concerns only terms of the same sort.
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We prove this result using a generalization of the theory developed in Section 1.2,
that is proving that the inference rules are in De Simone format and that all the
axioms in F bisimulate.

Lemma 8.6. All the rules defined by the schemas in Definition 8.6 are in De Simone
format.

Proof. The proof is by inspection. Notice that for each schema we must consider all
the instances which are obtained by choosing a particular sort for the starting graph
and a particular label among the ones satisfying the side conditions. Notice also
that this fixes the sort of the result. The obtained instances have no side conditions.

The only rule that requires an additional trick is rule (res-pa), since its target
term contains a renaming {y/z}. If y = z or z is not free in the term then the
renaming can simply be deleted. Otherwise it can be obtained by applying the
context V, ;1. O

We have to prove that all the axioms bisimulate. Actually, this is not the case,
as shown by the following examples.

Example 8.3. Aziom (?,11)||te =g 72(t1||t2) if x & sort(ta) (Aziom 4 in Table 8.1)
does not bisimulate. In fact, if the transition chosen for ty in the derivation in-
troduces x as freshly generated name, then in the RHS the side condition of rule
(par-pa) is not satisfied (since x occurs in the both the transitions). Vice versa, in
the LHS rule (res-pa) is applied first, thus x disappears from the first premise (unless
it is extruded) and it can be used in the second one. Thus we can derive for the LHS
a transition that has no correspondent for the RHS.

Example 8.4. Aziom 7, !, t=gt (Aziom 11 in Table 8.1) does not bisimulate if the
first condition for SAM compositionality does not hold. Consider, e.g., the instance

?.lenil=gnil. The RHS can perform the transition nil M) nil. Trying to derive
7'7_’ 7.d .
the same transition for the LHS one can just derive !, nil % ln(@) e nil for some

i € fInit(S), but then rule (res-pa) is not applicable, thus no transition is derivable
for the LHS.

Other axioms show similar difficulties. Thus to prove the desired theorem we
have to refine the approach. First, we restrict our attention to SAMs satisfying the
conditions for SAM compositionality. Luckily, most of the used SAMs are included
in this class, thus the approach is still general. Second, we add the axioms to the
algebra in two steps, so that we can use the axioms added in the first step in the
proof of the second one. We present here a generalization of Theorem 1.2 that
enables us to do that.

Theorem 8.2. Let A be a X-algebra for some signature X3, lts be a LTS with states
in A and =g be a congruence relation among elements in A generated by a set E
of axioms. If lts is a bialgebra with underlying algebra A, i.e. it corresponds to a
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coalgebra h : A — F(A) with F : Alg(X) — Alg(X2) a functor, and for all equations
ti =gt} in E, with free variables {x;|i € I}, we have proofs of:

implies and t) =gt
t sty 5t (8.1)

and vice versa, then the LTS with equivalence classes of elements in A modulo E as
states and transitions defined by:

! . !
[tl]:E - [tZ]ZE Zf 1 — 1o
has a bialgebraic structure.

Proof. We have to prove that the bialgebraic structure of A induces a corresponding
bialgebraic structure on A modulo E.

Let h: A — F(A) be the coalgebra in Alg(X) corresponding to lts. We have to
define a new coalgebra hg : Ap — F(Ag) where Ag is the quotient of A modulo F
corresponding to the quotiented LTS and prove that it is well-defined.

We define hg as follows:

he({{til=sli € 1.t € [A[}) = {[h(t:)]=si € I,t; € |A], h(t;) € |A[}U
O [He)i € It € |A| h(t) = (1, 1),1 € L,t € |A[]}

The defined coalgebra corresponds to the quotiented LTS as required. It is well-
defined iff each choice of a representative inside the equivalence class produces the
same result. Let ¢; and t5 be two such representatives. We have that t; =g, iff
there exists a chain of equalities t; =g t}, t} =g 1), ..., |, =g t2 where each equality
is derived from an instance of an axiom in E using congruence or symmetry. It is
enough to prove the thesis for a single equality, since then it follows by transitivity.
Symmetry is trivial too. Let us consider first an instance of an axiom. Condition 8.1

ensures exactly the result. The congruence property follows since h is a bialgebra.
U

We have now to prove that the axioms in F satisfy the desired conditions. As
anticipated, we start with a subset of them.

Before proving the lemma, we present an auxiliary result useful to deal with
injective renamings.

Lemma 8.7. Let 1) be an injective renaming, P a set of productions and S a SAM.

TP Ibpags) b = ty then P Ipa(s) 1) —22% 1o,

Proof. By rule induction. O

We can now prove the main lemma below.
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Lemma 8.8. For axioms 1, 2, 5, 12, 13, 14, 15, 16, 17, 19 in Table 8.1, with free
variables {z;}icr, we have proofs of:

li . li .
T, =y 1€1 T, =y t€1

implies and ty=gt)

t Lty L
and vice versa, using the rules in Definition 8.6 instantiated with o SAM S.

Proof. The proof has a case for each axiom. Since each case is quite technical, we
show in detail just a pair of them as examples, while adding some short suggestions
on the proofs of the other ones.

Axiom 1) 7, t =5 7, (t{y/z}) if y ¢ sort(t).

Suppose that we have a premise of the form ¢ AT 4 Then using rule (res-pa)
we can derive:

7. ¢ (AL\{z}){Z/J?}a(ﬂ\{m}){z/m}>

(?zt){z/x}

where we have to satisfy the side conditions of rule (res-pa).
Thanks to Lemma 8.7, choosing as renaming {y/z} which is injective since y ¢

sort(t) we have t{y/z} MMy/edrt/e}, t{y/x}.

We can apply rule (res-pa) to bind y iff we can apply rule (res-pa) to bind z in
the transition above since the side conditions 11 and 12 are satisfied in the same
cases.

Thus we have:
(AMy/z} I\ gy {z/v}s(n{y/z} L\{y}){z/y}\

?7y(H{y/x}) = (P2 t{y/a}){z/y}

The allowed choices for z are the same in both the cases, since either z # z,y,
thus it is a new name in both the transitions, or z = y, which can be chosen as
new name in the first transition, and as previously used name in the second one, or
z = x, swapping the two motivations.

Also, (My/z} g {z/y} = (M) {y/zHz/y} = (Al\(2}){2/x}, and the same
happens for 7.

Finally, the names in Z and in Z' are the same ones, apart from z in Z (if it
occurs there) which is replaced by y in Z’. If it is bound, then the renaming can be
discarded and the two terms are equal up to axiom 1, otherwise the two terms are
equal.

Axiom 2) V, ,t =5V, (t{z/y}) if z ¢ sort(?).

Suppose that we have a premise of the form ¢ AT 4. Then using rule (merge-
pa) we can derive a transition V,,t ﬂ) 20 Vy Vgt provided that the side

conditions are satisfied. Using Lemma 8.7 with renaming {z/y} we can derive

t{z/y} AMelybmtelul, t'{z/y}. Then we can apply rule (merge-pa) to this transition

obtaining as a result V, ,(t{z/y}) A %0 Vy V. (t'{z/y}). Notice that A" and 7’
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are the same as before, since the renaming {x/z} is applied before computing them.
Thus also p' and U are as before, and the two resulting terms are equivalent.

Axiom 5) The proofs for the two transitions simply swap the order of applica-
tion of the operators. Since the side conditions require just the names of the two
transitions and the new names to be disjoint, they are satisfied independently of the
order of application. Also, the condition that the performed action is in fInit(S) is
satisfied in a derivation iff it is satisfied in the other.

Axioms 12 and 13) The proof is based on commutativity and associativity of
disjoint union.

Axiom 14) The proof is based on the existence of the idle transition for nil.

Axioms 15, 16 and 17) The proof is based on the independence between different
synchronizations and on associativity and commutativity of SAMs.

Axiom 19) The proof is based on the independence between different newly
created names. O

In order to make the remaining axioms to bisimulate we require the used SAM to
satisfy the conditions for SAM compositionality, and we exploit the previous axioms.

Lemma 8.9. For axioms 3, 4, 6, 7, 8, 9, 10, 11, 18 with free variables {x;}icr, we
have proofs of:

li . )
T, =y 1€1 i =y 1€1

implies and ty=gt)

t 1 L

and vice versa, using the rules in Definition 8.6, instantiated with a SAM satisfying
the conditions for SAM compositionality, and structural congruence with the arioms
listed in Lemma 8.8.

Proof. The proof has a case for each axiom. Since each case is quite technical, we
show in detail just a pair of them as examples, while adding some short suggestions
on the proofs of the other ones. Also, proofs are similar to the ones in Lemma 8.8.

Axiom 3) The proof for this axiom is based on the fact that names in ¢, are not
involved in the synchronization caused by V, ,, and is similar to the following one,
which is simpler. Just note that if the transition for ¢, creates a new name, then y
is a correct choice for this name in the LHS, but not in the RHS. However, using
axiom 2, we can change the second parameter of V to a different name. After that,
y can be used also in the RHS. A similar trick is required for all the axioms featuring
operators V and 7, which delete names, together with other operators requiring that
two names are different.

Axiom 4) (7$ tl) | |t2 =g ?z(tl | |t2) if g_ﬁ SOI't(tQ).

Suppose to have two premises of the form ¢, A, ) and o A2, th.

Using rule (res-pa) we can derive:

(M W) /) o) 0/}
Toty — S (22 14){y/x}
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provided that the side conditions are satisfied.

Then we can add the second premise in parallel using rule (par-pa), provided
that it uses a disjoint set of free names. For the RHS of the axiom, the two steps
must be applied in the opposite order. In both the cases y, if it is extruded, must
not be used in the second premise (otherwise, in the first case, the side condition of
(par-pa) is not satisfied, while in the second one the side condition 14 of rule (res-pa)
is not satisfied). The other side conditions of (res) are equally satisfied in both the
derivations, since they do not involve free names in the second premise. The second
premise can not contain x too, because of the side condition of the axiom, but the
transition can use z as new name in the LHS but not in RHS. The same trick of
previous axiom is required, using axiom 1 instead of axiom 2.

Axioms 6 and 7) The proof is based on the independence of the names on which
the synchronization is performed w.r.t. the other name.

Axiom 8) The proof is based on the independence between the hidden name and
the new name.

Axioms 9 and 10) The proof is based on the condition 3 of the definition of SAM
to guarantee that the LHS has at least the same transitions as the RHS, and on the
condition 2 to guarantee that it has no further transitions. The second condition
for SAM compositionality guarantees that when action ¢ is done on the old merged
node, synchronizing it with an action in fInit(S) can not add further possibilities.

Axiom 11) The proof is based on the fact that fInit(S) N fFin(S) # 0 (first
condition for SAM compositionality), thus the new node created by rule (new-pa)
can be bound by rule (res-pa).

Axiom 18) The proof is based on the independence between different restricted
names. U

We can now prove that bisimilarity = is a congruence for the multi-sorted LTS
with states in T{x ) specified using rules in Definition 8.6 instantiated with any
SAM S satisfying the conditions for SAM compositionality.

Theorem 8.3. Let us consider the LTS defined by rules in Definition 8.6 instan-
tiated with a SAM S satisfying the conditions for SAM compositionality. Let ti,t,

be terms of the same sort in Tis, ) such that t; =1y and let c[—] be a context such
that c[t1] is defined. Then c[t1] = c[t].

Proof. Thanks to Proposition 1.1 the LTS obtained without structural axioms can be
represented as a coalgebra h for a functor Pp, : SET — SET. Using Proposition 1.2
Py, can be lifted to a functor Py : Alg(Xg) — Alg(Xs). Thanks to Proposition 1.3
the coalgebra h can be lifted too, when structural axioms are not present, because
the rules are in De Simone format thanks to Lemma 8.6. Now we can apply two
times Theorem 8.2, using Lemma 8.8 and Lemma 8.9 to add the axioms. This proves
that the LTS has a bialgebraic structure, thus bisimilarity is a congruence thanks
to Theorem 1.1. O
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One may want to derive congruence results for a single-sorted algebra, where
graphs with different sets of free names can be compared. In particular, we want
not to distinguish graphs that differ only on the set of their free names, but not
on their behaviour. The algebra used so far can also be seen as a partial single-
sorted algebra on the unique carrier (5, g). For instance, || can be seen as a partial
operator (and no more as a family of operators) || : T(xg,5) X Tizg,m) = Ting,n)
which is defined only if the two arguments have disjoint sets of names.

Even if we do not consider the sort of a term explicitly, its set of free names
can be easily derived from the observation, since it is the domain of function A. To
avoid this we allow corresponding labels to have different domain, provided that on
the nodes appearing in just one of them only initial actions with fresh names (and
all the existing ones) can be performed. Notice that this is the behaviour of isolated
nodes.

Notice that the set of free names of a term can be deduced also in another way:
when a new name is generated, the allowed choices for it are all the names which
are not free. Thus the set of free names is the set of names that can not be used
as extruded names. To avoid to observe the set of free names, a new definition of
bisimilarity can be used.

Definition 8.8 (Bisimilarity for single-sorted SHR).
The bisimilarity for single-sorted SHR. based on SAM S is the largest relation ~g(s)
on Tise gy such that t; =g(s)ta 1mplies:

e for each t; ELEN t, and each A} such that dom(A}) D sort(t;) U sort(ts),
Aj(z) = Ai(z) if z € dom(A;)Ndom(AY) and acty, (x) € fInit(S) and n(A}(z))
is a vector of new names of length ar(acty: (x)) if € dom(A]) \ dom(A,)

satisfying also (n(A}) \ fn(t1)) Nfn(te) = O there is some ty SN t, such that
th Rgs)ty and Ay(x) = Aj(z) if © € dom(Ay) Ndom(A)), acty,(x) € fInit(S)
and n(Ay(x)) is a vector of new names if r € dom(Ay) \ dom(A));

® yice versa.

Note that the additional conditions are trivially true for terms of the same sort
that are bisimilar according to standard bisimilarity. Thus for terms of the same
sort we can reuse the theory developed so far, and in particular Theorem 8.3.

The condition (n(A}) \ fn(¢1)) Nfn(te) = 0 extends the usual condition for name
passing calculi with restriction (see, e.g., Definition 1.16), which says that fn(¢y)
must not contain any extruded name, to a case where new names are not created
only by extrusions. We have no need to apply renaming 7, which corresponds to o
in Definition 1.16, since it is directly applied in the LTS.

This definition allows to quotient graphs distinguished by standard bisimilarity.
For instance, if € is the only initial action then subgraphs allowing only idle transi-
tions are not observed. In particular, isolated nodes are not observed (even if there
are non ¢ initial actions).
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We can now prove a new congruence result exploiting the new definition.

Theorem 8.4. Let S be a SAM satisfying the conditions for SAM compositionality,
let t1,ty be terms in T(x, i) such that t; =g(s)t2 and let c[—] be a context such that
c[t1] and c[ty] are both defined. Then c[ti] =s(s) c[t2].

Proof. For each context c¢ there exist two sets of names N; and N, such that c[t]
is defined iff sort(t) N Ny = @ and Ny C sort(t). Thus if ¢[t1] and c[to] are both
defined, then c|[t] is also defined for each ¢ such that sort(t) = sort(t;) U sort(tz). In
particular, it is defined for ¢] = lsore(ty)\sort(tr) t1 @0 By = lsor(e \sort(tz) t2-

We easily have that c[t}] ~gs) c[t1] and c[th] ~g(s) c[tz]. Also, ] and t, have the
same sort, thus thanks to Theorem 8.3 c[t]] ~ c[t5]. This implies c[t}] ~g(s) c[t5], thus
the thesis follows by transitivity. O

We claim that these congruence results are due to the concurrent flavour of SHR,
semantics, that allows many actions to be performed at the same time on different
nodes, and this allows to distinguish between parallelism and nondeterminism. In
fact, if we force interleaving in the semantics, as done for Milner synchronization in
Section 2.2, then the property is lost. We will discuss this issue more in detail in
Section 9.1, for Fusion Calculus, where examples can be stated in a more concise
way. The translation of the examples therein into SHR produces examples also for
this framework.

We present here an example where single-sorted bisimilarity is used to study the
concurrency properties of Milner amoeboids.

Example 8.5. We consider M amoeboids as defined in Definition 3.19.

As said in Section 3.4, different M amoeboids with the same interface have dif-
ferent concurrency properties, since they can allow different sets of concurrent syn-
chronizations. As a comparison, all Hoare amoeboids with the same interface instead
allow the same behaviours. This explains why Theorem 3.8 can not be extended to
prove a result similar to the one of Theorem 3.7.

We give here a full characterization of the concurrency properties of M amoe-
boids. A M amoeboid is fully characterized by its connection relation C, which is a
set of sets of unordered pairs of names in its interface, containing the set c iff there
erist disjoint paths inside the amoeboid connecting the two nodes in each pair in c.

For instance, the connection relation of the amoeboid in Example 8.2 (which is
also the left amoeboid in Figure 8.1) contains all the singletons, plus the set of pairs
{(z,9), (z,w)}.

Before proving this characterization, we present a result that describes the set
of allowed transitions of a M amoeboid, refining Lemma 3.6. We need also some
notation.

Notation. We denote with ||;t; the composition using operator || of terms t; for
each 1.
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We can now prove the lemma.

Lemma 8.10. Let M; be a M amoeboid with connection relation C. All the tran-
sitions for My are of the form:
Ajid
My == My||(]|iL)
where each L; is a chain of L edges where only the two nodes at the extremities are
free, i.e.:

[[LZ]]é = xv'Tl H VY, ooy Un L(x7y1)‘L(y17y2)‘ .. |L(yn7~xl)

for some nodes x and x'.
In particular, there is one such transition for each choice of:

e an element ¢ € C, determining which elements of the interface are synchro-
nized;

e an action acty(z) for each node x appearing in ¢ with the compatibility con-
dition that (z,z") € ¢ = actp(z) = actp(z!), determining the action used on
each connection;

e a vector np(x) of length ar(acty(z)) of fresh names for each node x appearing
in ¢, determining the choice of the new names.

In this case A is defined on the nodes appearing in c as specified by the above con-
ditions, while A(z) = (¢,()) otherwise. Furthermore we have a chain L; connecting
nodes y and z iff y and z are in the same position in nx(z) and ny(z') for (z,2') € c.

Proof. The choice of ¢ determines which elements of the interface are used for syn-
chronization, and the connections between them. For each pair, a path inside the
amoeboid is used by the transition. By hypothesis disjoint paths can be chosen.
Also, no transition using non disjoint paths can be derived. Notice that the choice
of the actual path influences just the length of the chains L;, since internal actions
are hidden. Each path acts independently. Thus the allowed transitions are de-
termined by the choices for the actions performed on the interface of each path.
The names transmitted on the interface matter too, while the ones used on internal
nodes are not important since they will be bound. O

For instance, the transition derived in Fxample 8.2 corresponds to choose ¢ =
{(z,w)} with action a on x with parameter y, and action @ on w with parameter zy.
Chain 7y, Vy, 21 (Ly, 4o || L2, 2) @ created to connect yy and zs.

We can now prove the above claimed abstract characterization.

Theorem 8.5. Let M, and My be two M amoeboids, let Mil be a Milner SAM
(with at least an input action), then M, ~suity Ma iff My and My have the same
connection relation.
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Figure 8.1: Two bisimilar M amoeboids.

Proof. Let us consider two M amoeboids M; and M, with the same connection

relation C'. We will prove that M; ~ gy M by coinduction. Suppose that M, ﬂ)
M. Thanks to Lemma 8.10 we have 7 = id and A and M] are of the form determined
by the choices described in Lemma 8.10. In particular, M| = M;||(||;L;). Since M,
and M, have the same connection relation then we also have:

M, 25 Mo||(I[:L;)

thanks to Lemma 8.10 because we can make the same choices. Since, for each i,
L; =gy Lj and since bisimilarity is a congruence, then M ~g(ariy Mo.

The reverse implication can be proved by contradiction. Suppose to have two
amoeboids M; and M, such that M ~gsiy Ma. If My and M, have different con-
nection relations C; and (5, then we choose a ¢ that belongs to exactly one of the
connection relations C; and C5, and each transition using ¢ can not be mimicked by
the other amoeboid. O

Notice that the congruence property has been useful to simplify the above proof.

Two bisimilar M amoeboids are shown in Figure 8.1. By using multi-sorted
bisimilarity instead of single-sorted one, also the set of free nodes becomes important:
adding an isolated node produces a non bisimilar graph.



Chapter 9

Observational properties of
process calculi

In this chapter we continue to analyze the observational properties of the models we
have presented, but we move to the process calculi side. In particular, we concentrate
on Fusion Calculus and on PRISMA Calculus.

For Fusion Calculus, we consider the concurrent semantics proposed in Sec-
tion 2.3, and we prove that it is a congruence w.r.t. all the operators in the calculus.
This is proved by exploiting the relation with SHR, and the congruence results for
SHR presented in previous chapter. The result for Fusion Calculus is interesting
since the bisimilarity relation that emerges from the standard semantics of Fusion
Calculus is not a congruence, and hyperbisimilarity (see Definition 1.17) has to be
used to get a compositional equivalence (see [Vic98]).

For PRISMA Calculus, first of all we analyze some semantic issues, giving an
observational description of some of its properties. After that, we extend the con-
gruence result for Fusion Calculus in Theorem 1.4 (see also [Vic98]), stating that
hyperbisimilarity is a congruence, to deal with PRISMA Calculus. The generaliza-
tion is non trivial, since the result is shown to hold for PRISMA Calculus on any
SAM.

9.1 Concurrent semantics for Fusion Calculus is
compositional

In this section we prove that the concurrent semantics for Fusion Calculus is a
congruence w.r.t. all the operators in the calculus and w.r.t. renamings, we analyze
some variants of the semantics, and we analyze the relationships with the standard
semantics from an observational point of view.

Since the concurrent semantics for Fusion Calculus has the same labels as the
SHR semantics, we can use single-sorted bisimilarity from Definition 8.8 also on
Fusion processes. This semantics inherits the properties of the corresponding SHR
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semantics, and thus it is a congruence w.r.t. the operators of term composition
(recursion is not considered as an operator of term composition).

Theorem 9.1. The single-sorted bisimilarity Xsiriner,y) 15 @ congruence for the
concurrent LTS of Fusion Calculus defined in Definition 2.6 w.r.t. all the operators
of process composition and w.r.t. renamings.

Proof. For prefix and summation the proof is trivial. As far as parallel composi-
tion, hiding and renamings are concerned, this is a consequence of the corresponding
property of SHR, (since SAM Milner;y satisfies the conditions for SAM composi-
tionality).

Note first of all that the choice of I' in the mapping is not important, since all
the possible terms obtained as result of the translation are bisimilar. Also, all the
names required to make the application of the context well-typed can be added. Let
us consider the required contexts.

The context for hiding of x is 7, e, and it is always well-typed thanks to the
observation above. Let us consider renamings. Each renaming can be decomposed
as the composition of an idempotent renaming and a bijective renaming. Idempotent
renamings can be realized by composing contexts V, ,e, which are always well-typed
thanks to the observation above. Bijective renamings are generated by swappings
such as {z/y,y/x}, which can be realized by context V, ,V,, !, V!, ® where z is
a new name. This context is always well-typed too. Parallel composition is realized
using a bijective renaming ¢ to map the names of a process to new names, applying
then the || operator and mapping back names using the inverse renaming o~'. This
is done by the context (ec||e)o™", where renamings are realized as described above.
Again, the context is well-typed. O

In particular, when concurrent semantics is used, bisimilarity and hyperbisimi-
larity coincide. Hyperbisimilarity is the compositional equivalence usually used for
Fusion Calculus, but it requires to explicitly consider all the possible renamings,
thus it is more difficult to decide whether two processes are equivalent than with
bisimilarity.

We can now analyze the bisimilarity relation that emerges using the concurrent
semantics, and compare it with the notions of bisimilarity and hyperbisimilarity
derived from the standard interleaving semantics.

One may guess that concurrent bisimilarity is a refinement of hyperbisimilarity,
but this is not the case since in concurrent bisimilarity extrusions are not observed.
For instance, the two Fusion processes (z)uz.0 and (z)uz.0 + uy.0 are not bisimilar
with the standard bisimilarity since the transition with label uy of the second process
can not be matched by the first one. Instead, they are bisimilar with the concurrent
semantics, since the corresponding transition with label (u in; (y}), id can be matched
by the one of the first process obtained by extruding name x and choosing y as new
name through a-conversion.



9.1. CONCURRENT SEMANTICS FOR FUSION CALCULUS IS COMPOSITIONAL 181

However, in the multi-sorted setting the set £ of names extruded by the tran-

sition t; —% £, can be easily deduced, since E = sort(ty) \ sort(¢;). Thus we can
choose as new observation the label (E)A, 7 without changing the theory, and in
particular preserving the congruence result.

Definition 9.1 (Extrusion-aware bisimilarity).

The extrusion-aware bisimilarity ~g is the bisimilarity relation obtained from single-
sorted bisimilarity Rs(aimer,y) by adding the set E of extruded names to the labels,
and requiring bisimilarity to preserve them.

Theorem 9.2. The extrusion-aware bisimilarity ~g is a congruence for the con-
current LTS of Fusion Calculus w.r.t. all the operators of process composition and
w.r.t. renamings.

Proof. The proof is analogous to the proof of Theorem 9.1, since the added obser-
vation does not change the multi-sorted semantics, since here the information can
be deduced from sorts. The following parts of the proof are analogous to the ones
for single-sorted bisimilarity. O

Extrusion-aware bisimilarity is a congruence w.r.t. the operators of process com-
position and w.r.t. renamings and it is a refinement of standard hyperbisimilarity.
This is proved by the following theorem.

Theorem 9.3.
Let P, and P, be Fusion processes. Then Py ~p P, = P~ P,.

Proof. We have that P, =g P, = P, =~ P from the property of preservation of inter-
leaving transitions (Corollary 2.1) and from the observation that all the concurrent
transitions have a different form. In addition to that, the bisimilarity relation ~g
is closed under renamings, thus the thesis follows. O

We can now compare this bisimilarity with the hyperbisimilarity obtained using
the standard interleaving semantics. We consider the same aspects considered in
Section 2.3:

concurrent vs interleaving: the concurrent nature of concurrent semantics in-
deed guarantees a more detailed observation. For instance,

uy.0[vz.0 & uy.vx.0 + v2.uy.0

while the two processes are not bisimilar according to ~g. Indeed, hyper-
bisimilarity distinguishes the two processes too, since after applying renaming
{u/v} the first process can perform a fusion transition (with fusion {z = y}) to
0, while the second one can not. Notice however that concurrent bisimilarity
is even more distinguishing than hyperbisimilarity, since:

uy.0vz.0 ~f uy.vz.0 + v.uy.0
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The two processes instead are not equivalent from a concurrency point of view,
since the former can perform a concurrent transition while the latter can not.
Notice however that uy.0|uz.0 g uy.uz.0 + uz.uy.0 since the two actions are
on the same channel and thus they must be performed in interleaving also
according to the concurrent semantics.

located 7: this is another difference that makes concurrent bisimilarity more dis-
tinguishing than standard one, since, e.g., !2.0|!Z.0 and (y)(y.0/7.0)|!z.0|!Z.0
are equivalent with the standard semantics since they can both perform only
inputs and outputs on z, and fusion transitions with () as fusion. However
any bisimilarity relation based on a located 7 allows to distinguish the first
process, which can make only fusion transitions synchronizing on node x, from
the second one, which is also able to perform a fusion transition on an hidden
node. An infinite amount of possible synchronizations on x has to be allowed,
to avoid that the two processes can be distinguished just by counting the num-
ber of synchronizations. Notice that located 7 is necessary for the congruence
result, e.g., when inserting a process in the context z.0le. In fact, x can be
performed together with a 7 from the inserted process iff the 7 is not located
at .

renamings vs fusions: the choices of using either a renaming or a fusion to rep-
resent the equivalence relation in the label produce the same result from an
observational point of view, since each representative can be chosen inside any
equivalence class. Thus, using fusions, there is just one label, while, using
renamings, there are many different labels, but they can all be deduced from
the fusion one.

application of fusion renamings: the idea of applying the fusion renaming di-
rectly in the LTS allows to simplify the definition of bisimulation, however
the two approaches are equivalent, thus this has no influence on the deduced
equivalence relation.

free names: if free names are observed (using a different definition of bisimilarity,
e.g., requiring the two functions A to be equal in Definition 9.2) we get a more
detailed observation, since for instance it is possible to distinguish (z)zy.0
from 0.

idle transitions: idle transitions are not important from an abstract point of view
(at least, if free names are not observed using them), since they are available
for any process.

extrusions: as already said, extrusions must be observed to make concurrent bisim-
ilarity at least as detailed as standard one.

other differences: differences that are only syntactic are clearly not important
from an observational point of view.
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The discussion above shows that the concurrent observational semantics of Fu-
sion Calculus is strongly related to the standard one, the main differences being
the ability to observe concurrent transitions and the node where a synchronization
is performed. Both these differences are fundamental for the congruence result,
and they correspond to the observation of interesting features of the system under
analysis, namely its degree of parallelism and which ports of the system are used.

9.2 Observational properties of PRISMA Calcu-
lus

In this section we concentrate on PRISMA Calculus. We start by proving some
properties of the observational semantics of PRISMA Calculus. In particular, we
extend to PRISMA Calculus a known result for Fusion Calculus, namely that hy-
perbisimilarity is a congruence w.r.t. all the operators in the calculus. The stronger
result of bisimilarity to be a congruence can not hold, since it is not valid in the case
of Fusion Calculus, which corresponds to PRISMA Calculus on Milner SAM. After
that we exploit observational semantics to relate instances of PRISMA Calculus
based on different SAMs.

We need a particular definition of bisimilarity for PRISMA, to deal with the
different kinds of allowed labels. The intuition behind it is however the same behind
Definition 1.16 for Fusion Calculus. Just note that also labels of the form —z must
be simulated, otherwise the resulting semantics is not compositional.

Definition 9.2 (Bisimilarity for PRISMA Calculus).
A bisimulation for PRISMA Calculus on SAM S is a relation Rg on PRISMA
processes such that P Rg @ implies:

QP_‘—;U)P:>Q_|—$>Q,

e PYL P QYN QAP Rs Q,

Y)zay,m
(Y)

o P PAY Nin(Q) =0 = Q ™ o' A PR )

and vice versa, where all the transitions are derived using SAM S. Bisimilarity ~g
s the maximal bistmulation.

We can use for hyperbisimilarity the standard definition (see Definition 1.17).

Notation. We denote hyperbisimilarity for PRISMA Calculus on SAM S as ~g.
If P~s @, we say that P and ) are hyperbisimilar.

We present now some properties of hyperbisimilarity for PRISMA processes.
Note that these can be stated once and they apply to any SAM S, or to any SAM S
that satisfies some requirements (see, e.g., Lemma 9.2). Next lemma, in particular,
shows that hyperbisimilarity abstracts from certain syntactic features of processes
which are intuitively not important from an observational point of view.
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Lemma 9.1. For any SAM S and any PRISMA processes P, @ and R the following
hyperbisimilarity relations hold.

PlQ~sQ|P (P|Q)|R~sP|(QIR) Pl0~sP
P+Q~sQ+P (P+Q)+R~sP+(Q+R) P+0~s5P
P+Pr~gP  (z)(y)P~s(y)(z)P
(@)P|Q~s Pl(2)Q if x ¢ n(P)  (2)P ~s(y)P{y/z} if y ¢ In(P)

Proof. The proofs are similar to some of the proofs of Lemma 8.8 and Lemma 8.9,
and some of them are quite technical. Thus we give only some intuitions on them.
Note that, when referring to rule n, we mean rule n in Table 7.2.

P|Q ~s Q|P) The proof is based on the fact that rule 7.3 is self-symmetric be-
cause of commutativity of action synchronization composition, and that for rules 7.4
and 7.5 symmetric versions exist.

(P|Q)|R~s P|(Q|R)) As far as rule 7.3 is concerned, the thesis follows from
associativity of SAMs, while for rules 7.4 and 7.5 the proof is trivial. Notice that
also the case of application of rule 7.3 for one parallel composition operator and
rule 7.4 for the other one must be considered.

P|0 ~g P) The thesis follows from the fact that the only transitions with source
0 have labels either of the form —z (and in this case rule 7.4 can be used) or of the
form ze(),id (and in this case rule 7.3 can be used, thanks to the conditions in SAM
definition concerning action ¢).

P+ Q ~g5Q+ P) The thesis follows since a symmetric version of rule 7.10 exists.

(P+ Q)+ R~g P+ (Q+ R)) The thesis follows since projection is associative.

P +0~g P) The thesis follows since the only actions that process 0 can perform
are not able to force a choice of a nondeterministic sum to be taken.

P + P ~g P) The thesis follows because a symmetric version of rule 7.10 exists.

(2)(y)P ~s(y)(x)P) The thesis follows from the independence of hidings of dif-
ferent names.

(z)P|Q ~s P|(x)Q) The thesis follows since, either the hidden name is indepen-
dent w.r.t. the one on which synchronization is performed, or, because of the side
condition of the relation, P performs on z just an action of the form —z or ze(), id.

()P ~s(y)P{y/x}) The thesis follows either for coinductive hypothesis since the
name remains hidden, or since, if it is extruded by rule 7.7, it can be a-converted. [

The relation ()0 ~g 0 holds instead only for PRISMA on some of the SAMs.
Lemma 9.2. The hyperbisimilarity relation ()0 ~g0 holds iff € ¢ fFin(S).

Proof. The first implication holds since if € € fFin(S) then rule 7.6 can be applied
to the transition with label ze(),id to get a transition with label (/,id) for the left
process which can not be derived for the right one.

The other implication is trivial. O
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Including € in fFin(S) corresponds to observe internal idle steps as (y/,id) labels.
As observed when describing PRISMA (see Section 7.1), if this feature is not desired,
the precondition can be easily enforced without changing any other aspect of the
semantics.

Next theorem proves that the observational semantics is compositional. This
result is fundamental to compute the observational semantics of large complex sys-
tems from the observational semantics of their components. It extends in a non
trivial way an analogous result for Fusion Calculus [PV98] (see also Theorem 1.4):
the interesting point is that it holds for PRISMA on any SAM.

Before proving it we present a lemma that is used in the proof of the case dealing
with parallel composition.

Lemma 9.3. If P M) P’ is a PRISMA transition withy € Y, then there is also

a PRISMA transition p LW/t /ubm, P'{y'/y} for eachy ¢ ftn(P")U{z}Un(y).

Proof. The proof is by rule induction on the derivation of the transition. O
We can now prove the claim above.

Theorem 9.4. For any SAM S hyperbisimilarity ~g is a congruence w.r.t. all the
operators in PRISMA.

Proof. For each unary (resp. binary) operator op, we have to prove that for each
SAM S and for each P, P, )1, (Q2 processes such that P, ~g @1 and P, ~g5Q)>
we have op(P;) ~gsop(Q1) (resp. op(Pi, Py) ~s0p(Q1,Q2)). The proof is by rule
induction on the derivation of the transition of op(P;) (resp. op(Pi, P»)), and each
step requires a coinductive proof. However, rule induction is needed just for repli-
cation, while in the other cases it is enough to consider each operator in isolation
(in a suitable order). Thus we will use rule induction just for replication.

Notice that the labels of the form —z allow exactly to identify the set of active
names of a process, but by applying any operator to processes with the same sets
of active names, we get again processes with the same sets of active names. Thus
in the following discussion we will not consider explicitly the labels of the form —z.

The first cases of the proof are fully discussed to show the general idea, the
last ones are less detailed. Note that, when referring to rule n, we mean rule n in
Table 7.2.

Case prefix) We have to prove that for each SAM S, each prefix zay and each
pair of processes P and (Q such that P ~g @ we also have zay.P ~g zay.(). Thus we
have to prove that, for each renaming o, (zay.P)o and (zay.Q)o can perform the
same transitions, going into hyperbisimilar processes. The only allowed transitions
are the ones from rule 7.2, which are to the process itself and which thus verify the
thesis (by coinductive hypothesis), and the ones from rule 7.1, which have the same
label as required and which lead to processes Po and Qo which are hyperbisimilar
by hypothesis. In general, we have not to consider explicitly the cases of all the
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renamings o, since we can always choose P’ = Po and Q' = Qo and reason without
an explicit 0. Also, we have not to reason explicitly about transitions labeled by
ze(), id, since they can always be trivially simulated.

Case +) Suppose that Py ~5Q; and P, ~g@Q,. We have to prove that P; +

Py ~5 Q1 + Q. Each (non ¢) transition P, + P, 2 M is derived from rule 7.10 (or
its symmetric, and the two cases are analogous), thus we have that P, A M. By

hypothesis also @ A M’ with M ~g M'. Since we can derive Q1 + Q) A M the
thesis follows.

Case (z)) Suppose that P ~g Q. We have to prove that (z)P ~g(z)Q. We have
different cases according to which rule is used for deriving the transition. Notice
that, in all the cases, the majority of the side conditions deal with the label and the
bound name, thus they hold for P iff they hold for (). Thus we can use the transition
corresponding to the premise of the rule used to derive the transition for P to derive
the transition for ) using the same rule. We have to check that: (1) the derived
labels are the same and (2) the resulting processes are hyperbisimilar. For rule 7.8,
the first part is straightforward, while the second follows by coinduction. The same
happens for rule 7.6. As far as rule 7.7 is concerned, we have the condition that
Z'¢ (n(P)U{z}Un(¥)) \ {2} which involves P’, but notice that 2’ is an extruded
name, thus for definition of bisimulation we have to consider just the cases where
2" ¢ fn(Q). Since 2’ is not an extruded name in the premise (because z' ¢ n(%)),
then it is not a free name of @)’ and the condition is satisfied also for the derivation
for ). Hyperbisimilarity of the resulting processes follows from the closure under
renamings. The proof for rule 7.9 is straightforward.

Case |) Suppose that P; ~g Q)1 and P, ~g Q3. We have to prove that this implies
Py |Py ~g5 Q1|Q2. We have three rules to check here. Let us consider rule 7.3 first.
As before, most of the conditions deal only with the labels, thus they are verified
for P, and P, iff they are verified for (J; and (). The only condition to check is
(Y1UY2)N(fn(Py)Ufn(P,)) = (). By definition of bisimulation we need to simulate only
transitions such that W N(Q1|Q2) = . Thus the only names that can cause prob-
lems are the ones in (Y; UY3) \ W. These are extruded names that will be restricted
in the resulting process. Thanks to Lemma 9.3, we have infinite choices for which
names to use in the premise, thus we can find a choice that will not use names in
fn(@Q1) Un(Q2). Any choice is good, since these names are restricted afterward, and
the a-conversion axiom bisimulates thanks to Lemma 9.1. We still have to prove
that the two resulting processes, namely (5)(P;|P;)o and (5)(Q}|Q%)o are hyper-
bisimilar. For what said before, we can suppose that §is the same in both the cases.
By hypothesis P| ~s @} and P ~sQ%. By coinductive hypothesis, P[|Pj~g Q}|Q5.
Thanks to the closure under renamings of hyperbisimilarity, (P[|Pj)o ~s(Q}|Q%)o-
Finally, for what already proved for restriction, (§)(P{|Ps)o ~s(3)(Q}|@%)o. The
cases for rules 7.4 and 7.5 are simpler than the one just shown.

Case !) We have to prove that if P~g@Q, then !P ~g!Q. We have to use rule

induction for that case. If IP 2 P’  then we also have P|'P 2 P!, which is a
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premise. By inductive hypothesis on the context e|le, Q[!Q A Q' with Q' ~g P'.
Since also !() has the same transition the thesis follows. O

We can prove that bisimilarity is not a congruence by considering the same
counterexample used for Fusion Calculus, which, in PRISMA syntax, is:

210171.0|22a2%2.0 g £101 71 .220272.0 + Toaole-T10171.0

The two processes are bisimilar for each SAM S, since they can just execute the
actions a; and ay in one of the two possible orders, and no synchronization is possible
(there are however the usual transitions to the process itself). If we apply renaming
{x1/z2} to the processes, and a; and as have been chosen in such a way that an
action synchronization of the form (a1, as, (¢, Mob, =)) belongs to fActSyn(S) then
the first member can synchronize, while the second one can not. Notice that this
counterexample can be used for any (non trivial) SAM S. To solve this problem a
concurrent semantics in the style of Section 2.3 can be used, but this makes the LTS
more complex, thus we leave this development for future work.

We can exploit hyperbisimilarity to justify some of the categorical constructions
in Section 5.3, together with the translation of PRISMA processes along morphisms
in Definition 7.3. The first proposition shows that translations along isomorphisms
preserve hyperbisimilarity.

Proposition 9.1.
Let P and Q be two PRISMA processes and H(P) and H(Q) be their translations
according to SAM isomorphism H : Sy — Sy. Then P~g, Q iff H(P)~g, H(Q).

Proof. The thesis follows from Proposition 7.1. O

Note that if H is just a morphism hyperbisimilarity is neither preserved nor
reflected. In fact, a morphism H can collapse two actions that have the same
allowed synchronizations but which produce different observations, thus making two
non bisimilar processes equivalent (or even equal). Vice versa let us consider a SAM
S where actions a; and ao can not synchronize. We have:

za171.0|zaste.0 g xa19).2a2%5.0 + zasye.za1¥;.0

However a morphism can add an action synchronization for this pair of actions,
making the two processes no more equivalent.

However, in some cases bisimilarity is preserved. This allows for instance to
justify the coproduct construction, showing essentially that adding other actions,
which are not used by the translated process, does not change its behaviour.

Proposition 9.2. Let P and @ be two PRISMA processes and H(P) and H(Q) be
their translations according to SAM injection H : S; — S1 + Ss. If € € fFin(S;) =
€€ fFln(SQ) then PNS1 Q Zﬁ H(P) ~S1+Ss H(Q)
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Proof. The proof is by induction on the derivation of the transition. O

A similar result can be shown for the product construction in ASYNC, when €
is chosen as other action of the pair.

Proposition 9.3. Let P and @ be two PRISMA processes and H(P) and H(Q) be
their translations according to SAM morphism H : S1 — S1 ® Sy which maps a to
(a,€2). If €o € fFin(S2) and (eq, €2, (€2, M Py, EQy)) € fActSyn(Ss) then Pr~g, Q
Zﬁ H(P) ~S1+S> H(Q)

Proof. The proof is by induction on the derivation of the transition. O

Intuitively the above proposition says that if only one element of the pair is
actually used, then the semantics is unchanged.

We have thus concluded our analysis of the observational behaviour of PRISMA
Calculus, showing that the translation of processes using suitable morphisms pre-
serves the observational properties, but morphisms that affect the semantics in more
complex ways can be defined too.



Chapter 10

Conclusions and future work

10.1 Conclusions

In our understanding, the work presented so far is built on two main facts.

The first one is the strong relationship between process calculi, and in particular
Fusion Calculus, on one side and graph transformation, and in particular SHR, on
the other side. The results presented in Chapter 2 highlight this relationship. Our
results are not the only ones of this kind. This thread of research started in fact
with [Mil79], with the aim of providing a visual representation for interacting sys-
tems. Further contributions have been given, e.g., by [Mil94, MP95, Gad03, GMO05,
HMO01, FMTO01, JM03, LPV01]. However our approach has some peculiarities, due
mainly to the careful choice of two strongly related models, whose comparison al-
lows a fruitful exchange of results, techniques and ideas between the two worlds. In
particular, while the mapping is from process calculi to graph transformation, the
main flow of contributions is in the opposite direction. Many results of this kind,
such as the concurrent semantics of Fusion Calculus (Section 2.3), the PRISMA
Calculus (Section 7.1) and the congruence result for Fusion Calculus (Section 9.1)
have been presented here, and others are left for future work. Many approaches
such as [Mil79, Mil94, LPVO01] can not obtain this kind of results, since they rely
on graphical formalisms developed ad-hoc. Other approaches are limited in this
direction by the large distance between the two compared frameworks. Our case
is different, since SHR is quite similar to process calculi, featuring in particular a
SOS semantics which includes synchronization and mobility aspects. The same is
true for [HMO1], that uses a different version of SHR, but that work has not been
exploited so far to obtain additional results in the process calculi field, but just to
show an evidence of the expressive power of SHR.

The relation between SHR and Logic Programming has been explored with a
similar aim, and Logic Programming with restriction has emerged as a first result.
Further results are left for future work, since the distance between Logic Program-
ming and SHR is larger than the one between Fusion Calculus and SHR, and this
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makes exchanges of results more difficult to work out. Some ideas are discussed in
the next section.

The second main point in our work is the introduction of SAMs. We think
that this is an important point, since they allow to extend the theory of SAs to
calculi with name mobility. The derived frameworks (parametric SHR, SHR-HS,
PRISMA Calculus) allow to simply model many different systems, and the key
aspect is that SAMs can be used to code inside the model the needed interaction
patterns. This part of the model is kept distinct w.r.t. the modeling of system
structure and behaviour using processes or graphs (together with productions), and
this separation of concerns allows to simplify the modeling step. This idea is partly
shared with process frameworks [Gar00], but we use a LTS approach instead of a
reduction approach. It is important to notice that these parametric frameworks allow
to develop theory and tools in a general way, so that they can be applied in different
contexts. Also, SAMs highlight the role of synchronization, thus allowing to reason
on it as a separate dimension in the “space of models”. When synchronization
patterns have been recognized as first-class entities, they can be compared (e.g.,
using morphisms), combined, and used together (e.g., as in SHR-HS).

In addition to this main points, we recall the congruence results in chapters 8
and 9. The one on SHR is important since it deals with a large class of graph
transformations, and since this kind of result is not common in that field (here
again, the fact that SHR has some process calculi features has been exploited). The
one for Fusion Calculus instead is interesting since it does not hold for the standard
Fusion semantics, and it suggests that a concurrent semantics is more desirable than
an interleaving one.

10.2 Plans for future work

Many of the issues discussed so far require further investigations, and some related
aspects are interesting too.

Starting from the part dealing with mappings, the relation between SHR, and
Logic Programming should allow new developments inside Logic Programming itself.
We have shown, in fact, that Logic Programming is related to Hoare SHR, and the
Hoare synchronization mechanism is related to unification. We think that variations
of Logic Programming that correspond to other synchronization models may be
developed. These variations should exploit a different unification algorithm, and
they should allow to write programs using a different paradigm. We think that the
main feature of Hoare synchronization that makes its unification algorithm simple is
that Hoare synchronization is idempotent, thus neither the number of occurrences
of a variable in the goal nor the order in which unification steps are performed are
important. Further work is required to devise how to use other synchronization
models. Dually, HSHR can be extended to match some more features of Logic
Programming. See the discussion at the end of Section 4.3 for some insights on that
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topic.

As far as the comparison between Hoare and Milner synchronization is con-
cerned, two extensions are possible. On one side, the introduction of SAMs should
allow some general results relating the properties of the SAM with the possibility of
implementing it using other SAMs. It should be interesting to find whether a SAM
able to implement all the others exists or not. Another line of research concerns dif-
ferent forms of expressiveness, which are related to observational semantics instead
of reachability in the reduction system. In this direction we should look in particular
for translations from models on one SAM to models on another that preserve the
bisimilarity relation. The difficult points here are that infinite behaviours should
be considered (it is always possible to simulate finite LTSs using graphs of just one
edge with suitable productions), and that dealing with free names in a distributed
setting is difficult since many different parties should agree on their meaning.

On the side of SAMs, recent works [HT05] have shown a relation between SAMs
and c-semirings [BMR97|, allowing to combine synchronization issues with quality
of service issues. It would be interesting to formally analyze the relation, in order to
see how a SAM can be extended (hopefully in a standard way) to a c-semiring. Also,
an extension of SHR where different transitions are chosen according to their quality
of service properties should be developed (in [HT05], quality of service measures can
only enable or disable transitions).

Moving towards the process calculi side, an extension of PRISMA Calculus in
the direction traced by SHR-HS should be interesting too, however we think that it
is quite straightforward.

Going to the observational semantics aspects, an axiomatization of PRISMA
processes that captures the notion of hyperbisimilarity should be investigated. Here
the main point is to analyze how the properties of the SAM lift to properties of pro-
cesses on that SAM. A similar work, but simpler since the scenario is not parametric,
is required also for the concurrent semantics of Fusion Calculus.

As far as congruence results are concerned, we remember that the results on
parametric SHR and on Fusion Calculus rely on the theory of bialgebras and, in
particular, on the condition that all the structural axioms bisimulate. We think
that this condition is too restrictive. In fact, its intuitive meaning is that structural
axioms simply capture properties of the LTS, that is equivalent terms should have
the same transitions. This means that all the derivations can be done without using
structural congruence. This eliminates the main advantage of structural congru-
ence, that is the possibility to simplify the rules by avoiding to explicitly deal with
some cases which can be obtained for free using structural congruence. Consider,
e.g., a-conversion of extruded names as in rule 7.7, or closure of a name during
synchronization as in rule 7.3 in the operational semantics of PRISMA (Figure 7.2).
The same issues are hidden in the semantics of Fusion Calculus, since it exploits
structural congruence instead. It would be interesting to find general techniques
with less strict application conditions to allow to simplify the LTSs. It is interesting
to note that, in the proof of the congruence properties, applications of axioms inside
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processes do not cause problems, while applications of axioms transforming pieces
of the process together with pieces of the context break compositionality.

Another interesting point is to find a concurrent LTS like the one presented for
Fusion Calculus also for m-calculus and for PRISMA Calculus, and to see whether
the corresponding bisimilarity is a congruence or not. We guess that the answer is
positive. To this aim, inspiration should be taken from SHR presented in [HMO1]
and from parametric SHR respectively.

Finally, we think that our work shows that SHR has many interesting features
as a model for GC systems, since it combines in a coherent framework a graphical
representation, interaction and mobility. Thus it is important to analyze its rela-
tionships with other approaches to graph transformation which are used in the same
field. We refer in particular to double pushout [EPS73] and bigraphs [Mil01].

In the first case we think that SHR should be used to break the application of a
double pushout rule into smaller parts, enabling a distributed application. However,
many different such breakings can be found in general, and finding a suitable canoni-
cal one looks hard. We think however that techniques similar to the ones used to find
a LTS corresponding to a given rewriting system [LMO00] should be used. However,
the problem of distributing the label among the different connections remains.

In the case of bigraphs, the same approach should be analyzed, but a dual
approach is also interesting. In fact, the link structure of bigraphs is essentially
analogous to the structure of SHR hypergraphs. However bigraphs also use a place
structure. Thus an extension of SHR to bigraphs should consider SHR style syn-
chronization on the links, together with some other kind of interaction on the place
structure. A first try can use simple unlabeled rewrite rules, while a more refined
approach may use Ambient [CG98] style capabilities. The second approach looks
more promising, since it may allow interactions between the two different dimen-
sions. Another approach could be to code bigraphs into hypergraphs and consider
the derived behaviour, but this may be not natural when observed directly in the
bigraphical framework.

Apart from these possible next steps, we remember that the general aim of finding
a categorization of models for GC systems, if not a unique model, is still far away,
even if we think that we have contributed with some small steps in this direction.
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